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Abstract

In this paper we prove the existence and uniqueness of a solution
concept for n-person games with fuzzy coalitions, which we call the
Shapley mapping. The Shapley mapping, when it exists, associates to
each fuzzy coalition in the game an allocation of the coalitional worth
satisfying the efficiency, the symmetry, and the null-player conditions.
It determines a “cumulative value” that is the “sum” of all coalitional
allocations and for whose computation we provide an explicit formula.
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1 Introduction

Let N := {1, 2, . . . , n} be the set whose elements are called players. As
usual, by a coalition we mean a subset of N. A fuzzy coalition is a vector
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A = (A(1), . . . , A(n)) with coordinates A(i) contained in the interval [0, 1]
(cf. [1, 2]). The number A(i) is called the membership degree of player i to
the fuzzy coalition A. We denote by P the set of all coalitions and by F the
set of all fuzzy coalitions. When referring to coalitions we do not notationally
distinguish between a coalition S and its indicator vector (S(1), . . . , S(n)),
where the coordinates S(i) are either one or zero depending on whether i
belongs or not to S. In this way we can view P as a subset of F . A fuzzy
coalition A can be also seen as a partition of the set of players into coalitions

At := {i ∈ N : A(i) = t}, t ∈ [0, 1],

such that all players belonging to At for some t ∈ [0, 1] have the same degree
of membership to A. Clearly, all but at most n coalitions At are nonempty.

A (characteristic function n-person cooperative) game is a function u :
P → R such that u(∅) = 0. The function u associates to each coalition S its
worth u(S), measuring the utility of forming coalition S. We presume that,
besides coalitions, formation of fuzzy coalitions in the game u is also possible:
the worth of a fuzzy coalition A is the aggregated worth of the coalitions At
weighted by a quantity ψ(t) which depends on the degree of membership t.
In other words, the worth of a fuzzy coalition A in the game u is given by

uψ(A) =
∑
t∈[0,1]

ψ(t)u(At). (1)

Note that the sum occurring here is well-defined since all but finitely many
terms of it are zero. In this context it is natural to assume that the function
ψ : [0, 1] → R is such that the coalition A1 of fully fledged members of A
gets its full worth while the coalition A0 of players who are not members of
A does not contribute to the worth uψ(A). Therefore, all over this paper we
make the following assumption:

Assumption 1: (ψ(t) = 0 ⇔ t = 0) and (ψ(1) = 1).

A function ψ : [0, 1] → R with this property is called a weight function.
In what follows, a function v : F →R satisfying v(∅) = 0 is called a fuzzy

game – cf. [1, 2]. We denote by G[ψ] the set of fuzzy games v satisfying

v(A) =
∑
t∈[0,1]

ψ(t)v(At). (2)

It is easy to see that, if v ∈ G[ψ], then the restriction u of v to P is a game
such that v = uψ. The game u is called the underlying game of v. Clearly,
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a fuzzy game v ∈ G[ψ] and its underlying game u completely determine each
other. Also, observe that G[ψ] is a linear space with the usual operations
induced from R.

A first question we are dealing with in this paper is whether, in games in
which formation of fuzzy coalitions is possible and the worth of each fuzzy
coalition is determined according to (2), there are ways of “fairly” distribut-
ing the worth of all fuzzy coalitions among the players. Of course, the answer
to this question essentially depends on the meaning of “fairness”. In order
to make this precise, recall (cf. [9, 10]) that if v is a fuzzy game and if A is
a fuzzy coalition, then the fuzzy coalition B is called a v-carrier of A if for
every t ∈ (0, 1] we have: Bt ⊆ At, and for every fuzzy coalition C such that
Ct ⊆ At, the equality

v(Bt ∩ Ct) = v(Ct).

holds true. As usual, for every permutation π of N , every A ∈ F , and any
fuzzy game v, we denote πA := A ◦ π−1 and πv(A) := v(π−1A). Clearly,
if v belongs to G[ψ], then the function πv : A 7→ πv(A) from F to R is
still a fuzzy game in G[ψ]. With these in mind we can define the following
notion which describes a concept of fairness according to which each fuzzy
coalition allocates its worth to its members obeying the principles intrinsic
to the Shapley value, that is, efficiency, null-players get nothing, symmetry,
and linearity (see [13]).

Definition 1. A Shapley mapping is a linear function Φ : G[ψ] → (RN)F

satisfying the following conditions for any v ∈ G[ψ] and any A ∈ F :

Axiom 1 (Coalitional Efficiency) For every v-carrier B ∈ F of A we have∑
i∈N :B(i)>0

Φi(v)(A) = v(B). (3)

Axiom 2 (Non-Member) If A(j) = 0, then Φj(v)(A) = 0.

Axiom 3 (Symmetry) If π is a permutation of N , then

Φπi(πv)(πA) = Φi(v)(A), i = 1, . . . , n. (4)

Note that a Shapley mapping, if it exists, associates to each fuzzy game v ∈
G[ψ] and to any fuzzy coalitionA a vector Φ(v)(A) = (Φ1(v)(A), . . . ,Φn(v)(A)),
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that satisfies the basic principles of efficiency, null-player condition, symme-
try and linearity characterizing the Shapley value ([13]) when extrapolated to
fuzzy coalitional levels. The following result, whose detailed proof is given in
Section 2, shows that these principles uniquely determine a Shapley mapping
on G[ψ].

Theorem 1. There exists a unique Shapley mapping Φ : G[ψ] → (RN)F and
it is given by the following formula:

Φi(v)(A) =

ψ(r)
∑

S∈Pi(Ar)

(|S|−1)!(|Ar|−|S|)!
|Ar|! (v(S)− v(S \ {i})), if A(i) = r > 0,

0, otherwise,

(5)
where

Pi(Ar) = {R ⊆ N |i ∈ R and R ⊆ Ar}.

A second problem we are addressing in this paper concerns the expected
total allocation Φi(v) of player i in the cooperative process in which fuzzy
coalitions allocate to their members their worth. Precisely, we consider

Φi(v) :=

∫
F

Φi(v)(A)dA, (6)

where the integral over the set of fuzzy coalitions F is taken with respect
to the Lebesgue measure. It is interesting to know whether the total-payoff
vector Φ(v) = (Φ1(v), . . . ,Φn(v)), which we call the cumulative value of the
fuzzy game v, is well-defined and, if possible, to estimate its coordinates.
The following result, that is proved in Section 3, contains an answer to that
question.

Theorem 2. If the weight function ψ is bounded and (Lebesgue) integrable,
then, for any v ∈ G[ψ], the cumulative value Φ(v) = (Φ1(v), . . . ,Φn(v)),
given by (6) is well defined and we have

Φi(v) = v({i})
∫ 1

0

ψ(t)dt, (7)

for each i ∈ N.

As noted above, the Shapley mapping models a scheme of allocating each
coalition’s worth to its member following some “fairness criteria”. Theorem
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2 essentially says that if a cooperative game u is extended to a fuzzy game
(i.e., to a game in which formation of fuzzy coalitions is possible) accord-
ing to the rule (1) (or, equivalently, (2)), then the scheme underlying the
Shapley mapping is no more and no less than a procedure through which
each player is re-evaluating his personal worth by taking into account the
”weight” of his membership degrees to fuzzy coalitions. Along this proce-
dure a weight function ψ with average value

∫ 1

0
ψ(t)dt > 1 favors players i

with positive individual worth v({i}), while a weight function ψ with average

value
∫ 1

0
ψ(t)dt < 1 favors players with negative worth v({i}).

Using (7) it is easy to deduce that the function v 7→ Φ(v) is a semi-value
on G[ψ], that is, it has the null-player property, it is symmetric and linearly
dependent on v. Moreover, on the linear subspace of G[ψ] consisting of all
games having the property(∑

i∈N

v({i})
) ∫ 1

0

ψ(t) dt = v(N), (8)

the cumulative value of v is also efficient, that is,∑
i∈N

Φi(v) = v(N), (9)

and, thus, the function v 7→ Φ(v) is a value.
The concepts of fuzzy coalition and the possibility of extending games to

games with fuzzy coalitions naturally emerged from the works of R. Aumann
and L. S. Shapley where “ideal set” and “ideal set functions” (fuzzy coalitions
and fuzzy games, respectively) are technical tools in the study of games
with infinitely many players [7]. However, it was J.-P. Aubin who not only
introduced notions of fuzzy coalitions and fuzzy games but also studied them
per se (see [1, 2, 3, 4, 5, 6]). The notion of Shapley mapping studied in this
article was introduced in [10], where the existence of a Shapley mapping
was proved for a particular class of fuzzy games. The existence theorem
for Shapley mapping given above (Theorem 1) as well as the form of the
cumulative value given in Theorem 2 essentially depend on the specific way
in which the worth of each fuzzy coalition is aggregated from the worth of
its level sets in formula (2). There are other meaningful ways of embedding
games into fuzzy games. The oldest among them, as far as we know, is Owen’s
multilinear extension [12] which can be seen as a fuzzy game extending a game
(see [11], Section 19). More recently, M. Tsurumi et al. [14] proposed another

5



way of extending a game to a fuzzy game and have shown that by using their
extension, which is more regular than the one given by (2), one can also
obtain Shapley mappings on a class of necessarily continuous games. As one
can see from the examples from Section 4, fuzzy games defined by (2) need
not be continuous. The notion of cumulative value introduced here measures
the pay-off each player should expect from his participation in the extended
fuzzy game. It is an interesting open question whether different rules of
aggregating fuzzy games from games and, in particular, that of [14] and
other mentioned above, leads to well-defined cumulative values and whether
it is possible to estimate them.

We have noted above that the vector Φ(v) is a semi-value on G[ψ], which
is even a value on some subspace of G[ψ]. It is natural to ask how this new
value relates with the other value concepts already discussed in literature. In
Section 4 we point out that the cumulative value exists for some fuzzy games
for which the other existing value concepts need not be defined.

2 Proof of Theorem 1

We start our proof by observing that if v ∈ G[ψ] and if B is a v-carrier of A,
then v(At) = v(Bt) for all t ∈ (0, 1] and, therefore, v(A) = v(B) because of
(2). We follow Shapley [13] and to any non-empty coalition S we associate
the simple game wS : P → {0, 1} defined by

wS(A) =

{
1, if S ⊆ A,

0, otherwise,
(10)

and the number
cS(v) =

∑
B∈P:B⊆S

(−1)|S|−|B|v(B). (11)

It is known (see Lemma 3 in [13]) that the set G0 of all simple games is a basis
in the linear space G of all games, and, if u is a game, then it can be uniquely
written as

u =
∑

S∈P:S 6=∅

cS(u)wS. (12)

We prove below that there exists a unique Shapley mapping on G[ψ]. Our
proof consists of a sequence of lemmata.
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Lemma 1. If v ∈ G[ψ], then

v =
∑

S∈P:S 6=∅

cS(v)w
ψ
S . (13)

Proof. Let v ∈ G[ψ] and A ∈ F . Then, applying (12) to the restriction of
v to P , we obtain:

v(A) =
∑
t∈[0,1]

ψ(t)v(At) =
∑
t∈[0,1]

ψ(t)
∑

S∈P:S 6=∅

cS(v)wS(At)

=
∑

S∈P:S 6=∅

cS(v)
∑
t∈[0,1]

ψ(t)wS(At) =
∑

S∈P:S 6=∅

cS(v)w
ψ
S (A).

Observe that, according to (1), for every fuzzy coalition A and for every
non-empty coalition S the fuzzy game wψS can be represented as

wψS (A) =

{
ψ(r), if S ⊆ Ar for some r ∈ (0, 1],

0, otherwise.

We denote
G0[ψ] = {wψS | S ∈ P , S 6= ∅}.

Note that, according to Lemma 1, G0[ψ] is a basis G[ψ]. With these remarks
and notations in mind we can state the following result.

Lemma 2. Let Φ : G0[ψ] → (RN)F be the function defined by

Φi(w
ψ
S )(A) =

{
ψ(r)
|S| , if i ∈ S ⊆ Ar for some r ∈ (0, 1],

0, otherwise.
(14)

The function Φ satisfies the Coalitional Efficiency, the Non-Member, and the
Symmetry Axiom given in Definition 1 for games in G0[ψ].

Proof. Let S be a non-empty coalition and A be a fuzzy coalition. We claim
that Φ satisfies the Coalitional Efficiency Axiom. In order to prove this
claim, let B be wψS -carrier of the fuzzy coalition A. Then there exists only
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one r ∈ (0, 1] such that S ⊆ Br ⊆ Ar. Note that, according to (14), if i /∈ S
then Φi(w

ψ
S )(A) = 0. Consequently, we have∑

i∈N :B(i)>0

Φi(w
ψ
S )(A) =

∑
i∈S

Φi(w
ψ
S )(A) =

∑
i∈S

ψ(r)

|S|

= ψ(r) = wψS (B),

proving our claim. We prove next that Φ satisfies the Symmetry Axiom too.
Let π be a permutation of N . We obviously have

πwψS (A) = wψS (π−1A) =

{
ψ(r), if S ⊆ π−1Ar for some r ∈ (0, 1],

0, otherwise,

and since S ⊆ π−1Ar if and only if πS ⊆ Ar, it results that

πwψS (A) = wψπS(A). (15)

If i ∈ N , then
Φπi(πw

ψ
S )(πA) = Φπi(w

ψ
πS)(πA),

where, by (14), we have that

Φπi(w
ψ
πS)(πA) =

{
ψ(r)
|πS| , if πi ∈ πS ⊆ πAr for some r ∈ (0, 1],

0, otherwise.

Since |πS| = |S| and the condition πi ∈ πS and πS ⊆ πAr is equivalent to
i ∈ S and S ⊆ Ar, respectively, we have

Φπi(πw
ψ
S )(πA) = Φi(w

ψ
S )(A).

Observe that if A(j) = 0 for some j ∈ N , then we have Φj(w
ψ
S )(A) = 0

by (14). Hence, the Non-Member Axiom is also verified.

Lemma 3. The function Φ defined by (14) is the only function from G0[ψ]
to (RN)F which simultaneously satisfies the Coalitional Efficiency, the Non-
Member, and the Symmetry Axiom for any v ∈ G0[ψ].

Proof. Suppose that Φ′ : G0[ψ] → (RN)F is another function satisfying the
Coalitional Efficiency and Symmetry Axioms for every fuzzy game in G0[ψ].
Let A be a fuzzy coalition and S be a non-empty coalition. We distinguish
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two possible cases.
Case 1: S ⊆ Ar for some r ∈ (0, 1]. Note that the fuzzy coalition B defined
by

B(i) =

{
A(i), if i ∈ S,
0, otherwise,

is a wψS -carrier of A. Therefore we have∑
i∈S

Φ′
i(w

ψ
S )(A) =

∑
i∈N :B(i)>0

Φ′
i(w

ψ
S )(A) = wψS (B) = ψ(r) 6= 0. (16)

Fix i, j ∈ S such that i 6= j. Let π be a permutation of N such that:

πk =


j, if k = i,

i, if k = j,

k, otherwise.

Observe that πS = S and πA = A. Consequently, by the Symmetry Axiom
and (15) we obtain

Φ′
i(w

ψ
S )(A) = Φ′

j(πw
ψ
S )(πA) = Φ′

j(w
ψ
πS)(πA) = Φ′

j(w
ψ
S )(A).

This, together with (16), implies

Φ′
i(w

ψ
S )(A) =

ψ(r)

|S|
,

for every i ∈ S. Hence in this situation we have

Φ′
i(w

ψ
S )(A) = Φi(w

ψ
S )(A) (17)

for any i ∈ S. Now, take k /∈ S and denote T = S ∪{k}. The fuzzy coalition
B′ defined by

B′(i) =

{
A(i), if i ∈ T,
0, otherwise,

is a wψS -carrier of A and, therefore, by the Coalitional Efficiency Axiom and
(16) we get ∑

i∈S

Φ′
i(w

ψ
S )(A) = wψS (B′).
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By consequence we have

wψS (B′) =
∑

i∈N :B′(i)>0

Φ′
i(w

ψ
S )(A) =

∑
i∈T

Φ′
i(w

ψ
S )(A)

and hence Φ′
k(w

ψ
S )(A) = 0. Combining this fact with (17), we conclude that

Φ(wψS )(A) = Φ′(wψS )(A).
Case 2: S 6⊆ Ar for every r ∈ (0, 1]. In this case, it can be easily verified
that any B ∈ F such that Bt ⊆ At for all t ∈ (0, 1] is a wψS -carrier of A. Let
j ∈ N . If A(j) = 0, then Φ′

j(w
ψ
S )(A) = 0 due to the Non-Member Axiom. If

A(j) 6= 0, then we define the fuzzy coalition C as follows:

C(i) =

{
A(j), if i = j,

0, otherwise.

Obviously, Ct ⊆ At for all t ∈ (0, 1] because Ct = {j}, if t = A(j), and
Ct = ∅, otherwise. If B is a fuzzy coalition such that Bt ⊆ At for all
t ∈ (0, 1], then there is no t ∈ (0, 1] such that S ⊆ Bt because otherwise
S ⊆ At. Consequently, we have

wS(Bt ∩ Ct) = 0 = wS(Bt),

showing that the fuzzy coalition C is a wψS -carrier of A. Hence, by the
Coalitional Efficiency Axiom and (14), we get

Φ′
j(w

ψ
S )(A) =

∑
i∈N :C(i)>0

Φ′
i(w

ψ
S )(A) = wψS (C) = 0 = Φj(w

ψ
S )(A).

Summarizing, in both cases Φ′ and Φ coincide which contradicts our initial
assumption.

According to Lemma 1 it is possible to extend the function Φ defined by (14)
from G0[ψ] to G[ψ] by letting

Φi(v)(A) =
∑

S∈P:S 6=∅

cS(v)Φi(w
ψ
S )(A). (18)

Lemma 4. The function Φ defined by (18) is the unique Shapley mapping
over G[ψ].
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Proof. The fact there is no more than one Shapley mapping over G[ψ] results
from Lemma 1 and Lemma 3 because they show that all Shapley mappings
coincide on the set of generators G0[ψ] of G[ψ]. It remains to show that
the function Φ defined by (18) is indeed a Shapley mapping on G[ψ], that
is, it satisfies the axioms given in Definition 1. The mapping Φ is linear
because, for each non-empty subset S of N , the function v 7→ cS(v) is linearly
dependent on v ∈ G[ψ].

In order to show that Φ satisfies the Coalitional Efficiency Axiom, assume
that B ∈ F is a v-carrier of a fuzzy coalition A. Hence, we have∑

i∈N :B(i)>0

Φi(v)(A) =
∑

i∈N :B(i)>0

∑
S∈P:S 6=∅

cS(v)Φi(w
ψ
S )(A)

=
∑

i∈N :B(i)>0

∑
S∈Pi(AB(i))

cS(v)
ψ(B(i))

|S|∑
i∈N :B(i)>0

ψ(B(i))
∑

S∈Pi(AB(i))

cS(v)
1

|S|

=
∑
t∈[0,1]

ψ(t)
∑
i∈Bt

∑
S∈Pi(At)

cS(v)
1

|S|
.

Let t ∈ (0, 1] and let ut be the game with the set of players At defined by
ut(T ) = v(T ), for all T ∈ P(At), where P(At) is the set of all sub-coalitions
of At. Let ϕ(ut) ∈ RAt be the Shapley value (as defined in [13]) associated
to the game ut. According to [13], the coordinates of ϕ(ut) are given by

ϕi(ut) =
∑

S∈Pi(At)

cS(v)
1

|S|
, (19)

for all i ∈ At. Note that if the fuzzy coalition B is a v-carrier of A, then,
for each t ∈ (0, 1], the coalition Bt is a ut-carrier of At. Due to the efficiency
and null-player properties of the Shapley value ϕ(ut), we have∑

i∈Bt

ϕi(ut) = ut(B).

Combined with (19), this implies that∑
i∈Bt

∑
S∈Pi(At)

cS(v)
1

|S|
= ut(Bt) = v(Bt).
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Consequently, we have that

v(B) =
∑
t∈(0,1]

ψ(t)v(Bt)

=
∑
t∈(0,1]

ψ(t)
∑
i∈Bt

ϕi(ut)

=
∑
t∈(0,1]

ψ(t)
∑
i∈Bt

∑
S∈Pi(At)

cS(v)
1

|S|

=
∑
t∈(0,1]

∑
i∈Bt

∑
S∈Pi(At)

cS(v)
ψ(A(i))

|S|

=
∑
t∈(0,1]

∑
i∈Bt

Φi(v)(A) =
∑

i∈N :B(i)>0

Φi(v)(A).

Hence, the Coalitional Efficiency Axiom is satisfied.
Now, we show that the function Φ also satisfies the Symmetry Axiom.

To this end, observe that, according to Lemma 1,

πv(A) =
∑

S∈P:S 6=∅

cS(πv)w
ψ
S (A),

for every A ∈ F . According to (18), for any i ∈ N , we have that

Φπi(πv)(πA) =
∑

S∈P:S 6=∅

cS(πv)Φπi(w
ψ
S )(πA)

=
∑

S∈P:S 6=∅

cπ−1S(v)Φπi(π(π−1wψS ))(πA)

=
∑

S∈P:S 6=∅

cπ−1S(v)Φi(π
−1wψS )(A)

=
∑

S∈P:S 6=∅

cπ−1S(v)Φi(w
ψ
π−1S)(A)

=
∑

S∈P:S 6=∅

cS(v)Φi(w
ψ
S )(A) = Φi(v)(A),

where the second equality is true because cS(πv) = cπ−1S(v) and the third
equality results from the symmetry of Φ over G0[ψ] (see Lemma 2). The
last two equalities show that Φπi(πv)(πA) = Φi(v)(A) for every i ∈ N and
A ∈ F and, hence, the Symmetry Axiom is verified.
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Finally, we show that the Non-Member Axiom is satisfied. If A(j) = 0
for some j ∈ N , then Φi(w

ψ
S )(A) = 0, for every non-empty coalition S, and

thus Φi(v)(A) = 0 by (18).

In order to complete the proof of Theorem 1, we still have to prove the
following result.

Lemma 5. The function Φ defined by (18) is also given by formula (5).

Proof. Let i ∈ N and denote r = A(i). We distinguish two complementary
cases.
Case 1. If r = 0, then Φi(w

ψ
S )(A) = 0 for any non-empty coalition S and

thus Φi(v)(A) = 0 because of (18).
Case 2. If r > 0, then

Φi(v)(A) =
∑

S∈Pi(Ar)

cS(v)Φi(w
ψ
S )(A) = ψ(r)

∑
S∈Pi(Ar)

cS(v)
1

|S|
.

It follows from ([13], formula (13)) that the last sum above is exactly∑
S∈Pi(Ar)

cS(v)
1

|S|
=

∑
S∈Pi(Ar)

(|S| − 1)!(|Ar| − |S|)!
|Ar|!

(v(S)− v(S \{i}))

and this completes the proof.

3 Proof of Theorem 2

In this section we assume, in addition to Asumption 1, that the function ψ is
bounded and (Lebesgue) integrable on [0, 1]. We begin our proof of Theorem
2 with the following result implicitly showing that the cumulative value is
well-defined.

Lemma 6. For every i ∈ N and every v ∈ G[ψ], the function Φi(v)(·) is
integrable over F .

Proof. Since F is a space F of finite Lebesgue measure it is sufficient to
show that for every i ∈ N and v ∈ G[ψ], the function Φi(v)(.) is bounded
and measurable over F . By formula (18), in order to prove boundedness and
measurability of Φi(v)(.), it is enough to show that, for every S ∈ P , S 6= ∅,
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the function Φi(w
ψ
S )(.) is bounded and measurable over F . Let A ∈ F .

According to (14), we have that∣∣∣Φi(w
ψ
S (A))

∣∣∣ ≤ |ψ(r)|
|S|

≤ |ψ(r)|,

for some r ∈ (0, 1]. This shows that the function Φi(w
ψ
S )(·) is bounded

because so is ψ. For proving measurability of Φi(w
ψ
S )(·), define the function

δ : [0, 1]2 → [0, 1] by

δ(x1, x2) =

{
1, if x1 = x2,

0, otherwise,
(20)

and observe that δ is measurable over [0, 1]2 since it is the characteristic
function of the closed subset {(x1, x2) ∈ [0, 1]2 | x1 = x2} of [0, 1]2. We claim
that the following formula holds true for every A ∈ F , every i ∈ N , and
every non-empty coalition S:

Φi(w
ψ
S )(A) =

ψ(A(i))

|S|
S(i)

∏
j∈S

δ(A(i), A(j)). (21)

In order to prove this, let i ∈ N be fixed. We can distinguish two cases. First,
if i ∈ S ⊆ Ar for some r ∈ (0, 1], then r = A(i) and δ(A(i), A(j)) = 1 for each

j ∈ S. This implies that the right-hand side of (21) is exactly ψ(A(i))
|S| , that

is, the equality in (21) holds (see (14)). Second, we consider the situation
when i /∈ S or there is no r ∈ (0, 1] such that S 6⊆ Ar. In this case, S(i) = 0
or there exists j ∈ S such that A(i) 6= A(j). Therefore, in this situation we
have

S(i)
∏
j∈S

δ(A(i), A(j)) = 0,

and formula (21) holds because of (14). By (21) we deduce that Φi(w
ψ
S )(.)

is a product of the measurable functions ψ(A(i)) and of
∏

j∈S δ(xi, xj) which
is the characteristic function of the closed subset of F defined by {A ∈
F | A(j) = A(i), for every j ∈ S}, and therefore Φi(w

ψ
S )(.) is measurable.

Now we are going to establish formula (7) and, in this way, to complete
the proof of Theorem 2.

Lemma 7. If i ∈ N and v ∈ G[ψ], then Φi(v) is given by (7).
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Proof. Denote by F1 the set of all fuzzy coalitions A such that A(k) 6= A(l)
for any pair of players k, l ∈ N with k 6= l. For any j ∈ {2, 3, . . . , n}
and for any set of j pairwise different numbers {i1, . . . , ij} contained in N,
let Fj(i1, . . . , ij) be the set of fuzzy coalitions A such that A(il) = A(i1)
for l = 1, . . . , j. Denote by Fj the union of all sets Fj(i1, . . . , ij). Clearly,
Fj(i1, . . . , ij) is included in the intersection of the set F with a hyperplane
in Rn and, therefore, it has Lebesgue measure zero. Consequently, the set Fj
has also Lebesgue measure zero because it is a finite union of sets with this
property. Obviously, we also have that

F =
n⋃
l=1

Fl

and the sets F1 and F ′ :=
⋃n
l=2Fl are disjoint. So, we deduce that

Φi(v) =

∫
F

Φi(v)(A)dA

=

∫
F1

Φi(v)(A)dA+

∫
F ′

Φi(v)(A)dA,

where the last integral is null because the set F ′ has Lebesgue measure zero.
This implies

Φi(v) =

∫
F1

Φi(v)(A)dA. (22)

Now, let A ∈ F1. The level sets At are either empty or singletons and thus
there are n mutually different numbers tl ∈ [0, 1] such that Atl are singletons.
This implies that, if S is a coalition such that i ∈ S ⊆ At, we necessarily
have S = At = {i}. Hence, the only non-zero term occuring in the summation
contained in (5) is that corresponding to the coalition S = {i} and we have

Φi(v)(A) = v({i})ψ(A(i)).

This and (22) show that

Φi(v) = v({i})
∫
F1

ψ(A(i))dA = v({i})
∫
F
ψ(A(i))dA

= v({i})
∫ 1

0

ψ(t)dt,

where the last equality results from Fubini’s Theorem.
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4 Comments and Examples

It was mentioned in Section 1 that there are various ways of defining fair
allocation in games with fuzzy coalitions. The oldest among them, as far
as the knowledge of authors goes, is Aubin’s concept of value studied in the
series of papers [1, 2, 3, 4, 5, 6]. Conceptually speaking, Aubin’s multivalue
(see [6]) is essentially different from our Shapley mapping concept. The
multivalue is a point-to-set mapping whose selectors may be seen as values
of the fuzzy games. By contrast, a Shapley mapping associates to each fuzzy
game the set of allocations that fuzzy coalitions may make in accordance with
the Shapley’s fairness criteria. It is worth noting that Aubin’s multivalue is
not defined for all fuzzy games in G[ψ]. This is shown by the following
example.

Example 1. Let N = {1, 2} and ψ(t) = t. The game v defined by v({1}) = 1,
v({2}) = 1, v({1, 2}) = 3 extends by the formula (1) to a fuzzy game that
is not continuous at (1, 1), and thus its multivalue is not defined. According
to Theorem 1 and Theorem 2, the Shapley mapping gives Φi(v)(A) = A(i),
i = 1, 2, and the cumulative value Φ(v) is the vector (1

2
, 1

2
), respectively.

On the other hand, the class of fuzzy games G[ψ] essentially depends on the
aggregation rule (1). Therefore, there are fuzzy games for which Aubin’s
multivalue exists, but they are not contained in G[ψ]. Here is an example of
such a game.

Example 2. Let N = {1, . . . , n} and

v(A) = max
i∈N

A(i).

While the Aubin’s multivalue of this fuzzy game is defined and equals the
subgradient of v at N , it is clear that v can not be expressed in the form (2)
and, therefore, it is not contained in G[ψ].

The difference mentioned above are not only conceptual but also technical.
The necessary condition for the existence of Aubin’s multivalue is continuity
of a fuzzy game in the open neighborhood of the coalition N . This property is
not necessarily shared by all the fuzzy games in G[ψ]. Hence the cumulative
value may exist for fuzzy games which are discontinuous on the diagonal for
which Aubin’s multivalue is not defined at all.
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In historical order another value concept was introduced in [9, 10]. In fact,
the notion of Shapley mapping discussed in our paper is a generalization of
that concept. Among other approaches of extending games there are fuzzy
games studied by M. Tsurumi et al. [14], which are rather continuous and
belong to generalized sharing games with side payments of Aubin (Definition
13.4 in [6]). Systematic research of alternative value concepts in games with
fuzzy coalitions was carried out by S. Tijs and his collaborators (see [8] and
the references therein). Inspired by Owen’s multilinear extension [12], they
study the so-called diagonal value for continuously differentiable fuzzy games,
and also the class of compromise values that are defined for fuzzy games with
non-empty Aubin’s core [6]. For these games a cumulative value may even
exist and, if this is the case, it is natural to ask how such cumulative value
relates to Aubin’s multivalue concept.
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C. R. Acad. Sci. Paris Sér. A, 279:963–966, 1974.

[2] J.-P. Aubin. Coeur et valeur des jeux flous à paiements latéraux. C. R.
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