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On Path Correlation And PERT Bias 
 

 

 

 

 

Abstract 

 

Most studies of project time estimation assume that (a) activity times are mutually independent 

random variables; many also assume that (b) path completion times are mutually independent. In 

this paper, we subject the impact of both these assumptions to close scrutiny. Using tools from 

multivariate analysis, we make a theoretical study of the direction of the error in the classical 

PERT method of estimating mean project completion time when correlation is ignored. We also 

investigate the effect of activity dependence on the normality of path length via simulation. 
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On Path Correlation and PERT Bias 

 

1.  Introduction 

The critical path method of estimating project completion time and its probabilistic version, 

PERT, are widely used by project management practitioners. It is important for practitioners to 

have sound a priori estimates of project completion time because cost planning and resource 

allocation decisions hinge crucially on these estimates.  

 

Ever since the 1950’s, when the PERT method was formulated, researchers have attempted to 

construct a rigorous theoretical foundation for it. It is now well accepted that PERT gives useful 

estimates. However, there is still work to be done on isolating potential sources of bias in its 

application and on developing guidelines linking specific assumptions to their impact on PERT 

bias. The present paper studies correlation between activities and between paths as sources of 

PERT bias. For comprehensive surveys of research on project time estimation, see Elmaghraby [3] 

and Slowinski & Weglarz [11], among many other sources.   

 

Most studies of project time estimation assume that (a) activity times are mutually independent 

random variables; many also assume that (b) path completion times are mutually independent. In 

this note, we study PERT bias in projects with correlated activities and paths using tools from 

multivariate analysis. We also report on a simulation experiment that sheds some light on the 

effect of activity dependence on the normality of path length distribution.  
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2. The impact of correlation on PERT bias 

Recall that the PERT method estimates the mean project completion to be Max(EL1,…,ELN) 

where Li is the length of path ‘i’ in the project network; this is always smaller than E Max 

(L1,…,LN), the true mean project completion time. The difference between these two metrics is the 

magnitude of PERT bias. The PERT method therefore always underestimates true mean project 

duration, a fact that is widely known. Colloquially speaking, PERT yields optimistic estimates.  

MacCrimmon and Ryavec [7] (hereafter referred to as M&R) inferred from numerical examples 

that the higher the correlation in a network because of overlapping paths, the smaller the 

magnitude of PERT bias, but this conclusion has not, to our knowledge, been subjected to rigorous 

scrutiny. We show that whether or not this rule of thumb is true depends on the nature of the 

correlation between activities and paths, and on the distribution of path lengths and activity 

durations.   

 

M&R used the following example to illustrate their point: 

 

 

Figure 1 

x1 x2 

x3 

x4 x5 

x1 x2 

x4 x5 

y 

Project A Project B 
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In Figure 1, the path lengths in Project A are the following: 

Path 1: x1 + x2 

Path 2: x3  

Path 3: x4 + x5  

Note that the path lengths are independent random variables if all the activities are mutually 

independent. The path lengths in Project B are as follows:  

Path 1: x1 + x2 

Path 2: x1 + y + x5 

Path 3: x4 + x5  

Note that although the projects have two path lengths that are identical, the two projects differ in 

an essential way: the path lengths in Project B are pairwise dependent because of the connecting 

activity with duration y.  M&R conjecture that the correlated paths in Project B should buy it a 

smaller value of PERT bias compared with Project A provided the mean lengths of Path 2 are the 

same in both projects. They verify their conjecture with specific discrete distributions for the 

activity times. However, the following counterexample shows that even for the specific networks 

constructed by M&R, a correlated project may carry a higher PERT bias than an independent 

project.  

 

We fix the activity times to the following values: x1 = 2 with probability ½ and 4 with probability 

½ , x2 = 6, x3 = 5, x4 = 4 , x5 = 5, y = 0 with probability ½ and 2 with probability ½ . Note that 

Path 1 and Path 3 in Project A are identical to the corresponding paths in Project B; Path 2 in 

Project A has the same mean completion time as Path 2 in Project B. A simple computation shows 

that the completion time of Project A is 9 with probability ½ and 10 with probability ½, giving a 

mean completion time of 9.5. On the other hand, the completion time of Project B is 9 with 
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probability ½, 10 with probability ¼ and 11 with probability ¼ giving a mean completion time of 

9.75. This example shows that correlation between paths may inflate PERT bias. 

 

In the remainder of the paper, we attempt to find broad patterns between PERT bias and 

correlation. We deal separately with two categories of projects: (a) projects with independent 

activities giving rise to correlated paths, and (b) projects in which the activities are correlated per 

se. 

 

2.1 Projects with independent activities 

We begin with a result on PERT bias in networks with independent activities and overlapping 

paths (that is, paths with at least one activity in common). Although we have not seen it explicitly 

stated in the literature, it may be easily inferred from the theoretical framework developed in 

Dodin [2].  The proof is a direct application of some properties of associated random vectors. A 

random vector X = (X1,…,XN) is said to be associated if Cov(f(X),g(X)) > 0 for all coordinate-

wise increasing functions f(.) and g(.) from NR  to R. If X is associated, it follows from the 

definition that the components of X are pair-wise positively correlated. The other facts about 

associated random vectors used in the proof of the following theorem are taken from Esary, 

Proschan and Walkup [4].  

Theorem 1  

Consider a project network with overlapping paths  in which the activity durations are mutually 

independent random variables with arbitrary distributions.  Then the path lengths are positively 

correlated, and the true mean project completion time is smaller than the mean project completion 

time computed under the assumption that the path lengths are independent rather than positively 

correlated.  
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Proof: First we claim that if the activity durations are mutually independent, the path lengths Ti  

constitute an associated random vector. This is a consequence of the following two facts: (1) A  

random vector consisting of independent components is associated; (2) If T is associated and  

f1, …, fK are coordinate-wise non-decreasing real valued functions of T, then the random vector  

(f1(T), …, fK(T)) is associated. Consider a project network with K independent paths and N  

independent activities with durations T1,…,TN. By (1) above, (T1,…,TN) is associated. It follows 

from (2) that the collection of path lengths is an associated random vector as claimed.  

Now the theorem follows from the following property of associated random vectors: 

}.Pr{},...,Pr{
1

11 i

K

i
iKK tTtTtT ≤≥≤≤ ∏

=

       Q.E.D. 

 

Remark 1: The proof is not valid in general when the activity durations are correlated. However, 

if the activity durations are normally distributed, the result does hold even when activities are 

correlated. This is because normal random variables are positively correlated if and only if they 

are associated (Pitt [7]). 

 

Theorem 1 compares two extreme categories: independent paths and positively correlated paths. A 

natural question to ask is whether the result can be extended to account for all possible degrees of 

correlation between paths. Our analysis of the M&R project networks shows that one cannot 

expect to obtain a structural result in this direction if the project networks under comparison have 

different topologies. Let us therefore fix the topology of a project network and see if we can 

quantify the impact of an increase in correlation between paths. It is immediate that the covariance 

between two paths is equal to the sum of the variances of the activities common to both paths. So 

we can model an increase in correlation between two paths by inflating the variance of a common 
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activity while keeping its mean unchanged. It follows easily from standard results on convex 

stochastic ordering that this will actually increase PERT bias for many distributional classes of 

activity times (eg. Normal, Uniform, and most location-scale distributions).  

 

2.2 Projects with correlated activities 

Real world projects consist of a number of activities, the durations of some of which are correlated 

with the durations of others. For example, if the same subcontractor is responsible for completing 

a number of related activities that share the same resources (for instance, the same construction 

crew or the same machines), it is reasonable to conclude that the activity durations of the subset of 

tasks covered by the subcontractor are positively correlated (if the contractor is uniformly efficient 

or inefficient across all the activities under his purview) or negatively correlated (if he has limited 

resources and the efficient accomplishment of some activities hinders the efficient completion of 

others). For project networks incorporating complex interdependencies between activities 

stemming from resource sharing, the covariance between two paths is not simply equal to the sum 

of the variances of the activities common to both paths. It is interesting to see whether we can 

deepen Theorem 1 by relaxing the activity independence assumption by allowing activity 

durations to be correlated. We provide a partial answer in Theorem 2 below. The price paid for 

relaxing activity independence is that the result we obtain is no longer distribution free.   

 

Theorem 2 

For a PERT network with a multivariate normal distribution of activity durations and fixed mean 

and variance vectors, the greater the correlation between activity durations, the smaller is the 

error in the PERT method. 
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Proof: Let A = (A1,A2, … ,AN) and B = (B1,B2, … ,BN) be multivariate normal vectors of activity 

times with the same mean vector ( µ  ) and covariance matrices )( A
ijA

σ� = and  )( B
ijB

σ� = . 

Consider an N-activity network with a given topology; we obtain two versions of this network by 

endowing it with activity vectors A and B, respectively. Let L = (L1,L2, … ,LK) be the vector of 

path lengths corresponding to activity vector A and M = (M1,M2, … ,MK) be the vector of path 

lengths corresponding to activity vector B. Since each path length is a sum of activity durations 

and since the two networks have the same topology, it follows that there exists a linear operator Q  

(characterized by a N by K matrix) such that L = AQ and M = BQ. Now since A and B are 

multivariate normal vectors with the same mean and variance vectors and Q is a linear operator, it 

follows from a standard property of the multivariate normal distribution that L and M are 

multivariate normal vectors too, and have common mean and variance vectors. Further, if each 

off-diagonal (covariance) term in the covariance matrix of B is greater than or equal to the 

corresponding off-diagonal term in the covariance matrix of A (and the variance terms are 

identical), it follows that each off-diagonal term in the covariance matrix of M is greater than or 

equal to the corresponding off-diagonal term in the covariance matrix of L (and again, the 

variance terms are identical). Finally, we recall Slepian’s inequality (see Joag-Dev, Perlman and 

Pitt [4]) which states that in the case of a multivariate normal vector (X1,…,XN) with n by n 

covariance matrix  )( ijσ�= , Pr{Max (X1,…,XN) < C}is increasing in each ijσ  (with i < j) for all 

C. The theorem now follows from the following steps:  

E Max (M1,…,MN) =  dxxMMMax N }),...,(Pr{
0

1 >�
∞

  = dxxMMMax N }),...,(Pr{1
0

1 ≤−�
∞

  

< dxxLLMax N }),...,(Pr{1
0

1 ≤−�
∞

 = E Max (L1,…,LN). Q.E.D. 

 



 9 

Corollary 3 

Consider a project network in which the vector of activity durations is multivariate normal and the 

activity durations are pairwise positively correlated.  

(a) Then the true mean project completion time is smaller than the mean project completion 

time computed under the assumption that the activity durations are independent rather 

than positively correlated.  

(b) The probability that the project is completed within a given due date is greater with 

positively correlated activities than with independent activities.  

 

Remark 2: Rather than assume a multivariate normal vector of activity durations, we might 

simplify the set up of Theorem 2 by starting with a multivariate normal vector of path lengths. 

This is the framework that is usually adopted for the PERT method with the difference that PERT 

imposes a particular correlation structure on the multivariate normal distribution of path lengths: 

the special assumption of independence (which is equivalent to zero correlation for the normal 

distribution). Restated along these lines, the proof of Theorem 2 would be quicker in that we 

would not need to start with vectors of activity durations and transform them into vectors of path 

lengths via linear operators. However, the proof in the existing form is instructive because it 

brings out the special properties of the multivariate normal distribution that are necessary for the 

proof to work. Indeed, the linear transformation used in the proof would change the distributions 

of many multivariate random vectors. 

 

Remark 3: Theorem 2 implies that when path lengths form a pair-wise positively correlated 

normal vector, the optimistic bias in the PERT method is in truth smaller than the bias when path 
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lengths form an independent normal vector. This is the analogue of Theorem 1 for networks with 

correlated activities.  

 

2.3 Extension to non-normal distributions 

It is pertinent to ask whether Theorem 2 can be extended to distributions other than the 

multivariate normal. We give a simple extension in which path lengths are positively correlated 

but the marginal distributions are not normally distributed and have finite support. Consider an N-

dimensional sphere with probability mass uniformly distributed in it. We label the coordinates of a 

random point in the sphere U1, ….,UN. Consider the M random variables defined as follows: 

X1 = a11U1 + … + a1NUN 

X2 = a21U1 + … + a2NUN 

. 

. 

. 

XM = aM1U1 + … + aMNUN 

where aij are positive numbers. 

We can use these random variables to model M positively correlated paths in a project network.  
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Figure 2 

 

Now Slepian’s inequality applies to the random vector (X1, …, XM) since the distribution of  

(X1, …, XM) can be easily shown to be a member of the class of elliptically contoured 

distributions, to which Slepian’s inequality has been proved to apply (see [6]). The marginal 

distributions of Xi are symmetric and unimodal; this follows from the fact that the underlying 

generating distribution is radially symmetric since it is uniformly distributed in a sphere. Figure 2 

shows joint distribution of activity times and the marginal distributions from simulations for the 

bivariate case. Note that both marginal distributions have finite support.  
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We note in passing that Slepian’s Inequality (and therefore Theorem 2) does not apply when we 

replace the normally distributed marginal distributions by normal distributions truncated at zero. 

An essential requirement for the inequality to hold is that the joint distribution be isotropic; 

truncating the marginals at zero destroys the spatial symmetry of the joint distribution because the 

truncation is one-sided and hence asymmetric. 

 

2.4 The case of highly correlated paths  

 There is one situation in which the rule “greater correlation implies smaller bias” does hold. This 

is the case when the correlation between the paths in a project network is sufficiently high. To 

show this formally, consider two projects A and B each with 2 parallel paths (the result can easily 

be generalized to an arbitrary number of paths, as we shall show). Denote the paths of project A by 

X1 and X2 and the paths of project B by Y1 and Y2.  

We write the distributions of the path lengths of projects A and B as follows: 

X1 = a11Z1 + … + a1NZN 

X2 = a21Z1 + … + a2NZN 

Y1 = b11Z1 + … + b1NZN 

Y2 = b21Z1 + … + b2NZN 

where the Zi are independently and identically distributed random variables. With this set up, we 

can model large classes of distributions X1, X2, Y1 and Y2 and simultaneously control the 

correlation between the pairs (X1, X2) and (Y1,Y2). We may assume E(Zi) = 0 without any loss of 

generality; we can always add a non-zero bias term to each path length to shift it if needed.  

We denote the variance of Zi by V. 

 

Consider the matrices A = (aij) and B = (bij). It can easily be verified that  
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Variance X1 =V�
=

N

j
ja

1

2
1 , Variance X2 = V�

=

N

j
ja

1

2
2 , Variance Y1 = V�

=

N

j
jb

1

2
1 , Variance Y2 = V�

=

N

j
jb

1

2
2  

Covariance (X1,X2) = V j

N

j
j aa 2

1
1�

=

, and Covariance (Y1,Y2) = V j

N

j
jbb 2

1
1�

=

. 

We may regard the rows of matrices A and B as vectors in N-dimensional Euclidean space. Note 

that the variance of each Xi and Yj is a fixed multiple of the square of the length of the N-vector 

representing it. So the condition that the two projects have paths with the same variance implies 

that A and B have rows that represent vectors of the same Euclidean length, row for row. From the 

formulas developed above, it is clear that the covariance between the paths of project A is greater 

than the covariance between the paths of project B if and only if the dot product between the rows 

of the matrix A is greater than the dot product between the rows of the matrix B. Now recall that 

that the dot product of two N-vectors Xi and Xj is )( X
ijji CosXX ϑ  where X

ijϑ  is the angle 

between the two vectors. Since ii YX = , the condition Covariance (X1,X2) > Covariance (Y1,Y2) 

is equivalent to YXYX CosCos 12121212 )()( ϑϑϑϑ <⇔> .  

 

Now Variance Xi = Variance Yi (i = 1, 2) and Covariance (X1,X2) > Covariance (Y1,Y2) does not 

necessarily imply that E Max(X1,X2) < E Max(Y1,Y2). This can be verified with the following 

matrices: 

           A=�
�

�
�
�

�

5.1       24.99

5                 0
                   B=�

�

�
�
�

�

7        1
3        4

 

and Zi uniformly distributed on [-0.5,0.5]. Note that the correlation coefficients of (X1,X2) and 

(Y1,Y2) are 0.72 and 0.707, respectively. In this case it can be verified that  

E Max(X1,X2) = 0.612 > E Max(Y1,Y2) = 0.594. 
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However, we can salvage the following result, stated for the bivariate case but easily extended to 

joint distributions of N random variables. 

 

Theorem 4 

Fix the correlation coefficient of Y1 and Y2 to any value 0ρ  strictly less than 1 and let  

Variance Xi = Variance Yi (i = 1, 2). Then there exists a positive fraction )( 0ρC  such that if the 

correlation coefficient of X1 and X2 is greater than )( 0ρC , it follows that E Max(X1, X2) <  

E Max(Y1,Y2). 

Proof: Note that when X
12ϑ = 0, X1 is a scalar multiple of X2. In that case we have E Max(X1,X2) 

= E Max(X1,kX1) which is equal to E kX1 = 0 (if k > 1) or EX1 = 0 (if k < 1). On the other hand,  

E Max(Y1,Y2) is strictly positive provided .012 ≠Yϑ  Now since )( 12
XCos ϑ  is a continuous 

function of X
12ϑ , it follows that for any fixed non-zero value of ,12

Yϑ  E Max(X1,X2) < E 

Max(Y1,Y2) for all values of X
12ϑ  sufficiently close to zero. This proves our claim for the case 

when the projects have two paths. The result can easily be extended to projects with an arbitrary 

number of paths by letting the angles between every pair of rows of the matrix B be sufficiently 

small.             Q.E.D. 

 

The foregoing counterexample was one in which the marginal distributions induced by the joint 

were different, since the matrices A and B were not identical. For the record, we give a 

counterexample with discrete distributions in which the marginal distributions are identical. 
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 X2      Y2    
X1 6 7 9   Y1 6 7 9  

6 0.1 0.2 0.1 0.4  6 0.2 0.08 0.12 0.4 
8 0.4    0.4  8 0.2 0.08 0.12 0.4 
9     0.2 0.2  9 0.1 0.04 0.06 0.2 

           
 0.5 0.2 0.3     0.5 0.2 0.3  

  

The correlation coefficient of X1 and X2 is 0.167 while Y1 and Y2 are independent.  

But E Max(X1,X2) = 7.9 > E Max(Y1,Y2) = 7.8. 

 

2.5 The effect of activity correlation on the distribution of path length 

A crucial ingredient of the PERT method is the assumption that the Central Limit Theorem applies 

to each path of a large project network. However, if the activities on a path are correlated, the path 

length may not be normally distributed. We report the results of a simulation experiment to 

demonstrate the non-normality of path length distributions when activity durations are correlated. 

 

Dependent and independent random vectors were created from independent and identical random 

variables X1 through X50, each distributed uniformly on [0,1]. Denote the vector [X1 …. X50] by 

X. We generated the vectors Y = AX and Z = BX via 50 by 50 matrices A and B. Letting A be the 

identity matrix, we obtained a vector Y with independent components. The sum of the components 

of Y is shown in Figure 3; it is approximately bell shaped, as expected.  
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Figure 3 

The elements bij of B were generated as follows. For each row i, the following was done: 

 for j=1, bij was sampled uniformly from [0,2]; for all other values of j, bij was sampled uniformly 

from [-.5,.5]. The matrix B was then fixed for the rest of the experiment. Note that the vector Z 

generated by B consists of correlated components. Each component represents the completion 

time of an individual activity and the sum represents the path length. The sum of the 50 

component random variables is pictured in Figure 4. Half a million data points were used to 

generate figures 3 and 4. The plateau like nature of Figure 4 is clear evidence of the non-normality 

of the underlying distribution. 
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Figure 4 

It is worth noting that some of the elements of the matrix B are guaranteed to be negative, by 

construction, implying negative correlation between some pairs of activities. An interesting 

observation from our simulation was the following: the path length showed the most severe 

departures from the bell shape when the path comprised a mixture of pair-wise positively 

correlated as well as negatively correlated activities. Recall from the discussion on page 16 that 

there are practical justifications for modeling correlations of either sign. 

  

We remark in passing that it is a hard theoretical problem to obtain precise results that capture the 

extent to which the Central Limit Theorem breaks down when the summands are dependent 
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random variables. The existing results in this direction do not seem to be relevant to PERT 

networks (see [1] and [8]).  

 

2.6 Correlated activity durations and correlated activity completion times 

Ringer [10] developed formulae for the distribution functions of serial and parallel projects with 

correlated activity completion times, where the completion time of an activity is the point in time 

at which it finishes as opposed to its duration. (Recall that a serial project is one in which the 

activities are required to be completed one after the other because of precedence constraints while 

a parallel project is one in which all the activities start simultaneously because there are no 

precedence constraints between them.) We ask: are pair-wise positively correlated activity 

completion times equivalent to pair-wise positively correlated activity durations? Theorem 5 

partially answers the question.  

 

Theorem 5 

If activity durations are pairwise positively correlated, then so are activity completion times  

provided the activity durations form a multivariate normal vector. 

Proof: Let A = (A1,A2, … ,AN) and C = (C1,C2, … ,CK) denote vectors of activity durations times 

and activity completion times, respectively. Each Ci is a coordinatewise increasing function of A. 

Hence it follows from a standard result on association that if A is associated, so is C. Now a 

theorem of Pitt [6] states that a normal random vector is associated if and only if it is pairwise 

positively correlated. The theorem follows.  Q.E.D  
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3. Concluding Remarks 

The rule of thumb ‘greater correlation implies smaller PERT bias’ holds true for projects with 

joint distributions that are spatially symmetric is a strong sense; these joint distributions induce 

marginal distributions (that may be viewed as the distributions of path lengths) that are symmetric. 

The rule breaks down when path lengths have asymmetric distributions. An exception is when 

paths are very highly correlated; in that case, the rule of thumb does hold irrespective of the shapes 

of the distributions of path durations. 

 

Theorem 2 of this paper may be viewed as a correlated-activity counterpart of an independent-

activity result on the impact of increasing activity variance on PERT bias. It has been shown, 

using stochastic ordering tools, that increasing activity variance holding mean durations constant 

inflates PERT bias in a network with independent activities for several commonly encountered 

classes of probability distributions (but not all; see Gutierrez and Paul [5] for counterexamples). 

Note that Theorem 2 is a result on PERT bias in which the mean and covariance vectors are fixed, 

and the variance vector is perturbed. In the present paper, we examine the impact on PERT bias 

when the mean and the variance vectors are fixed and the covariance matrix is perturbed. It is 

interesting to note that neither result is distribution-free.   
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