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Abstract
In this paper we study the problem of simultaneous minimization of risks, and maximization of the terminal value of
expected funds assets in a stochastic defined benefit aggregated pension plan. The risks considered are the solvency risk,

measured as the variance of the terminal fund’s level, and the contribution risk, in the form of a running cost associated to
deviations from the evolution of the stochastic normal cost. The problem is formulated as a bi-objective stochastic problem
of mean variance and it is solved with dynamic programming techniques. We find the efficient frontier and we show that
the optimal portfolio depends linearly on the supplementary cost of the fund, plus an additional term due to the random
evolution of benefits.
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1. Introduction

The optimal management of dynamic pension plans is an interesting problem due to the importance that
pension funds have currently in financial markets, as well as their fundamental role in assuring the future
wealth of participants in their retirement period.
Pension funds can be classified into the following two main categories: defined benefit (DB) pension plans

and defined contribution (DC) pension plans. In a DB plan benefits are fixed in advance by the sponsor and
contributions are designed to amortize the fund according to a previously chosen actuarial scheme. Future
benefits due to participants are thus a liability for the sponsor, who bears the financial risk. Of course, this
risk is increased with the formation of a risky portfolio that, however, offers higher expected returns, with
the possibility then of reducing the amortization quote. It is the concern of the sponsor to drive the dynamic
evolution of the fund having into account the trade off between risk and contribution. In a DC plan contri
butions are fixed but benefits depend on the returns of the fund portfolio, so that the participants bear the risk.
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Beginning with the paper of Haberman and Sung (1994), DB plans have been usually modelled as linear-
1
quadratic optimal control problems. This is due to the fact that the dynamics of the fund is postulated linear,

as in Merton’s model, and that it is generally accepted that managers’ objectives should be related with the
minimization of solvency risk and contribution risk. These risk concepts are defined as quadratic deviations
of fund wealth and amortization rates with respect to liabilities and normal cost, respectively. In an environ-
ment where liabilities are random, the risks so formulated do not correspond to the variance, which is by far
the most common measure of risk. The aim of this paper is to study the optimal management of DB plans
when the solvency risk is identified with the variance of the unfunded actuarial liability. To this end, the prob-
lem is settled in the familiar mean variance framework, translating the static model of Markowitz to the con-
tinuous-time setting of a DB plan that evolves with time.

Markowitz (1952) designed the mean variance model to compare securities and portfolios based in a trade-
off between their expected return and risk, measured as the variance of the return. From the point of view of
optimization, the problem of portfolio selection is a multiobjective programming problem where it is desired
to attain the highest possible expected return with the lowest possible variance. Since these objectives are in
general mutually incompatible, the best can be done is to select portfolios where it is not possible to increase
return without increasing risk, and reciprocally, where it is not possible to decrease risk without decreasing
return. The set of pairs (return, variance) enjoying theses properties are called the Pareto frontier or efficient
points set, and the associated portfolios are called efficient.

It has been several attempts in the literature to translate the mean variance methodology from the static
case to the dynamic setting. The most successful and fundamental is of course the one initiated by Merton.
It is worth noting, however, that Merton’s model does not exactly fit the structure of the mean variance
approach. It has been recently, in the papers by Zhou and Li (2000) and Li and Ng (2000) that the method-
ology has been more faithfully carried out to the dynamic setting, in continuous and in discrete time, respec-
tively. In our paper we follow the formulation of Zhou and Li (2000) but with some modifications due to the
specificities of a DB plan, as the inclusion of the supplementary cost as a control variable in addition to the
quantities invested in the risky assets. This point is explained in Section 3 below. Moreover we use the Ham-
ilton Jacobi Bellmam approach instead of the maximum principle.

Problems of mean variance type have been recently considered in pension plans from a static point of view
in Colombo and Haberman (2005) and in Huang and Cairns (2005). A dynamic model for asset and liability
management under the mean variance criteria has been studied in Chiu and Li (2006). The framework pro-
vided by these authors, although general, cannot be applied directly to a DB plan since several of the consti-
tutive elements of the pension plan, as the amortization rate, normal cost, benefits and the technical actuarial
rate, are not contemplated in the model. More fundamentally, a DB plan is identified by two different elements
of control: investment decisions in the portfolio and amortization rate. The latter is absent in the framework
provided by Chiu and Li (2006). The existence of an additional control variable requires a modification in the
objective functional, introducing a running cost associated to the size of the amortization rate, more con-
cretely, associated to quadratic deviations with respect to the stochastic normal cost. Thus our problem com-
bines terminal payoffs due to the final levels of expected surplus/debt and of the variance of fund wealth (the
stock variable) as well as an integral term or running cost that takes care of the contribution risk (the amor-
tization rate is a flow variable).

Our paper follows Josa-Fombellida and Rincón-Zapatero (2004), where the benefits of the DB plan are sto-
chastic, modelled by a geometric Brownian motion. Note that benefits is a non-tradable asset, hence the mar-
ket is incomplete and, furthermore, we also consider the existence of correlation between the sources of
uncertainty in the benefits and in the asset returns.

The paper is organized as follows. Section 2 defines the elements of the pension scheme and describes the
financial market where the fund operates. Section 3 is devoted to formulate the management of the DB plan
in a mean variance framework, with the simultaneous objectives of minimizing the expected unfunded actuarial
liability, as well as its variance at the final time, and to minimize the contribution rate risk over the planning

1 There is a growing amount of papers devoted to the optimal management of DB pension plans (see e.g. Haberman and Sung, 1994;
Chang, 1999; Cairns, 2000; Haberman et al., 2000; Taylor, 2002; Chang et al., 2002; Josa-Fombellida and Rincón-Zapatero, 2001, 2004,

2006a,b).
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interval. The problem is solved in Section 4 using first the well known scalarization method and then the device

provided in Zhou and Li (2000). Once the Pareto frontier is obtained, we compute the total expected supplemen-
tary cost and the total expected contribution rate. Section 5 serves as a numerical illustration of previous results.
Finally, Section 6 is dedicated to establishing some conclusions. All proofs are developed in Appendix A.
2. The pension model
Consider a DB pension plan of aggregated type where at every instant of time active participants as well as
retired participants coexist. Benefits payed to the participants at the age of retirement are fixed in advance by
the sponsor and are governed by an exogenous process which source of randomness is correlated with the
financial market. To cover the liabilities in an efficient way, the manager creates a portfolio and design an
amortization scheme varying with time. The main elements intervening in a DB plan are the following.

T planning horizon or date of the end of the pension plan, with 0 < T <1,
F(t) value of fund assets at time t,
P(t) benefits promised to the participants at time t. They are related with the salary at the moment of

retirement,
C(t) contribution rate made by the sponsor at time t to the funding process,
AL(t) actuarial liability at time t, that is, total liabilities of the sponsor,
NC(t) normal cost at time t; if the fund assets match the actuarial liability, and if there are no uncertain ele-

ments in the plan, the normal cost is the value of the contributions allowing equality between asset
funds and liabilities,

UAL(t) unfunded actuarial liability at time t, equal to AL(t) � F(t),
SC(t) supplementary cost at time t, equal to C(t) � NC(t),
d constant rate of valuation of the liabilities, which can be specified by the regulatory authorities.

2.1. The actuarial functions

Following Josa-Fombellida and Rincón-Zapatero (2004) we suppose that disturbances there exist affecting

the evolution of benefits and hence the evolution of the normal cost and the actuarial liability. To model this
randomness, we consider a probability space ðX;F;PÞ, where F ¼ fFtgtP0 is a complete and right contin-
uous filtration generated by the one-dimensional Brownian motion fBðtÞgtP0 and P is a probability measure
on X. The more general case is to suppose benefits P is a diffusion process built from B, that is, P satisfies the
stochastic differential equation (SDE)

dP ðtÞ ¼ jðt; P ðtÞÞdt þ gðt; P ðtÞÞdBðtÞ; 0 6 t 6 T ; P ð0Þ ¼ P 0;

where P0 is the value of the initial liabilities, and where j and g are functions such that the SDE has a unique

solut

liabil
ion. For analytical tractability, we will need a more concrete specification for benefits, P. We will suppose

that benefits follows a geometric Brownian motion. It is the natural extension of the deterministic case where P
is an exponential function (see Bowers et al., 1986). This assumption is natural since in general benefits de-
pends on salary and population plan, which show in the average exponential growth subject to random dis-
turbances that may supposed to be proportional to the variables’ size.

Assumption 1. The benefits P satisfies

dP ðtÞ ¼ jPðtÞdt þ gP ðtÞdBðtÞ; t P 0;

where j 2 R and g 2 Rþ. The initial condition Pð0Þ ¼ P 0 is a random variable that represents the initial

ities.
To compute the actuarial functions AL and NC, we suppose that all information accumulated up to time t

is used, under the real probability measure P. The definitions of actuarial liability and normal cost, given in
Josa-Fombellida and Rincón-Zapatero (2004), extend to the stochastic case these concepts from Bowers et al.
(1986) as follows:
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ALðtÞ ¼
Z d

e�dðd�xÞMðxÞEðP ðt þ d � xÞjFtÞdx;

for

that

Her
rij P
a

NCðtÞ ¼
Z d

a
e�dðd�xÞmðxÞEðP ðt þ d � xÞjFtÞdx;

every t P 0, where Eð�jFtÞ denotes conditional expectation with respect to Ft, and where M(x) is a
ibution function representing the percentage of actuarial value of future benefits accumulated until
distr

age x, and where m(x) is its associated density function. Without lost of generality we are supposing that
all members enter into plan at age a and retire at the common age d. Thus, to compute the actuarial func-
tions at time t, the manager makes use of the information available up to that time, in terms of the con-
ditional expectation. This procedure, instead of looking for a risk-neutral probability measure and then to
compute the conditional expectation under this measure, is justified since the liabilities are non-tradeable in
the financial market, thus the inherent risk cannot be hedged. The behavior of the actuarial functions AL

and NC are then given in the following result, see Proposition 2.1 in Josa-Fombellida and Rincón-Zapatero
(2004).

Proposition 2.1. Under Assumption 1 there are constants wAL and wNC such that AL ¼ wALP and NC ¼ wNCP .
Furthermore, wNC ¼ 1þ ðj� dÞwAL and the identity NCðtÞ � P ðtÞ ¼ ðj� dÞALðtÞ holds for every t P 0.

From this proposition we deduce:

dALðtÞ ¼ jALðtÞdt þ gALðtÞdBðtÞ; ALð0Þ ¼ wALP 0 ð1Þ
and also
dNCðtÞ ¼ jNCðtÞdt þ gNCðtÞdBðtÞ; NCð0Þ ¼ w P :
NC 0

We will denote by AL and NC the initial values of the actuarial liability and the normal cost, respectively,
0 0

is AL0 ¼ wALP 0 and NC0 ¼ wNCP 0.
2.2. The financial market

In the rest of this section we describe the financial market where the fund operates. Given an (n + 1)-dimen-
sional standard Brownian motion ðw0;w1; . . . ;wnÞ>, we consider the complete probability space ðX;G;PÞ gen-
erated by it, that is to say, G is the filtration fGtgtP0, with Gt ¼ rfw0ðsÞ;w1ðsÞ; . . . ;wnðsÞ; 0 6 s 6 tg.

The plan sponsor manages the fund in the planning interval [0,T] by means of a portfolio formed by n risky
assets fSign

i 1, which are correlated geometric Brownian motions, generated by w ¼ ðw1; . . . ;wnÞ>, and a risk-
less asset S0, as proposed in Merton (1971), that is, whose evolutions are given by the equations:

dS0ðtÞ ¼ rS0ðtÞdt; S0ð0Þ ¼ 1; ð2Þ

i i
Xn

 !
i
dS ðtÞ ¼ S ðtÞ bi dt þ

j 1

rij dwjðtÞ ; S ð0Þ ¼ si > 0; i ¼ 1; 2; . . . ; n: ð3Þ

e r > 0 denote the short risk-free rate of interest, bi > 0 the mean rate of return of the ith risky asset and
0 the covariance between asset i and j, for all i; j ¼ 1; . . . ; n. It is assumed bi > r for all i, so the sponsor

incentives to invest with risk. We suppose that there exists correlation q 2 ½�1; 1� between B and wi, for
has i

i ¼ 1; . . . ; n. As a consequence, B is expressed in terms of fwign
i 0 as BðtÞ ¼ 1� q>q

p
w0ðtÞ þ q>wðtÞ, where

q>q 6 1 for q ¼ ðq1; q2; . . . ; qnÞ
>. In this way the influence of salary and inflation in the evolution of liabilities

P is taken into account, as well as the effect of inflation on the prices of the assets.
The amount of fund invested in time t in the risky asset Si is denoted by kiðtÞ, i ¼ 1; 2; . . . ; n. The remainder,

F ðtÞ �
Pn

i 1kiðtÞ, is invested in the bond. Borrowing and shortselling is allowed. A negative value of ki means
that the sponsor sells a part of his risky asset Si short while, if

Pn
i 1ki is larger than F, then he or she gets into

debt to purchase the stocks, borrowing at the riskless interest rate r. We suppose the investment strategy
fKðtÞ : t P 0g, with KðtÞ ¼ ðk1ðtÞ; k2ðtÞ; . . . ; knðtÞÞ>, is a control process adapted to filtration fGtgtP0, Gt-mea-
surable, Markovian and stationary, satisfying

4



E

Z T

KðtÞ>KðtÞdt <1; ð4Þ

wher

Ther

By s

with
N

W

with
T

that
0

e E is the expectation operator. The contribution rate process C(t) is also an adapted process with respect
g verifying
to fGt tP0

E

Z T

0

SC2ðtÞdt <1: ð5Þ
efore, the fund dynamic evolution under the investment policy K is2Xn i Xn
 !

0

dF ðtÞ ¼ kiðtÞ
dS ðtÞ
SiðtÞ

þ F ðtÞ � kiðtÞ
dS ðtÞ
S0ðtÞ

þ ðCðtÞ � PðtÞÞdt: ð6Þ

i 1 i 1

ubstituting (2) and (3) in (6), we obtain:Xn
 ! Xn Xn
dF ðtÞ ¼ rF ðtÞ þ kiðtÞðbi � rÞ þ CðtÞ � P ðtÞ dt þ kiðtÞrij dwjðtÞ; ð7Þ

i 1 i 1 j 1

initial condition F ð0Þ ¼ F 0 > 0.
ext we will assume the matrix notation: r ¼ ðrijÞ, b ¼ ðb1; b2; . . . ; bnÞ>, 1 ¼ ð1; 1; . . . ; 1Þ> and R ¼ rr>.
We take as given the existence of R�1, that is to say, r�1. Finally the vector of standardized risk premia or
Sharpe ratio of the portfolio is denoted by h ¼ r�1ðb� r1Þ. So, we can write (7) as

dF ðtÞ ¼ ðrF ðtÞ þ K>ðtÞðb� r1Þ þ CðtÞ � P ðtÞÞdt þ K>ðtÞrdwðtÞ; ð8Þ
that, with the initial condition F ð0Þ ¼ F , determines the fund evolution.
0

e assume throughout the paper, as in Josa-Fombellida and Rincón-Zapatero (2004), that the technical

interest rate coincides with the rate of return of the bond plus an additional term related with the market risk
of the liabilities. In fact, this definition of d adjusts the risk of the discounted future value of the liabilities, as if
the preferences of the sponsor were risk-neutral. We are using here the equilibrium approach of Constanti-
nides (1978), as it is detailed in Appendix A. On the other hand, this value of d allows us to obtain the optimal
contribution and portfolio in explicit form.

Assumption 2. The technical rate of actualization is d ¼ r þ gq>h.

Notice that if either benefits are deterministic or there is no correlation between benefits and the financial
market, then d is the risk-free rate of interest. With positive (resp. negative) correlation, the valuation of lia-
bilities is r plus a positive (resp. negative) term, weighted by the product of the instantaneous variance of P and
the Sharpe ratio of the assets. This is the right way to price liabilities, since with positive (resp. negative) cor-
relation it is expected that liabilities and assets move in the same (resp. opposite) direction.

Assumption 2 allows us to write SDE (8) in terms of X ¼ �UAL ¼ F � AL and of SC ¼ C � NC as

dX ðtÞ ¼ ðrX ðtÞ þ K>ðtÞðb� r1Þ þ SCðtÞ � gq>hALðtÞÞdt � gALðtÞ 1� q>q
p

dw0ðtÞ
þ ðK>ðtÞr� gALðtÞq>ÞdwðtÞ; ð9Þ
the initial condition X ð0Þ ¼ X 0 ¼ F 0 � AL0. See Appendix A.
o fix the nomenclature, we will suppose along the paper that the fund is underfunded at time 0, X 0 < 0, so
X has the meaning of debt. The same interpretation of the results are valid when the fund is overfunded,
but then X is surplus.

3. The problem formulation

The objective of the manager is double. On the one hand, it is to minimize the expected unfunded actuarial
liability EUALðT Þ ¼ �EX ðT Þ ¼ �ðEF ðT Þ � EALðT ÞÞ, or equivalently to maximize the expected value of fund’s

2 This is the familiar equation obtained and justified in e.g. Merton (1990, p. 124). The only difference is that consumption is replaced
here by P C.
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assets. Note that as we are supposing X < 0, most often we refer to X as debt. On the other hand, the aim is to
2
minimize the variance of the terminal debt, VarX ðT Þ, and the contribution risk SC on the interval ½0; T �. This

bi-objective problem reflects the concern of the promoter of increase fund assets to pay due benefits, but at the
same time not subject the pension fund to large variations to provide stability to the plan. Minimization of the
contribution risk (related with the security of plan) has been considered in other works as Haberman and Sung
(1994), Haberman et al. (2000) and Josa-Fombellida and Rincón-Zapatero (2001, 2004).

Thus we are considering a multiobjective optimization problem with two criteria3

min
ðSC;KÞ2AX ;AL

ðJ 1ðSC;KÞ; J 2ðSC;KÞÞ ¼: min
ðSC;KÞ2AX ;AL

�EX ðT Þ; E
Z T

0

SC2ðtÞdt þVarX ðT Þ
� �

; ð10Þ
sub
an

tie

sub
scr
pe

Pr
0 0 0 0

ject to (9), (1). Here AX 0;AL0
is the set of measurable processes ðSC;KÞ, where SC satisfies (5), K satisfies (4)

d such that (1) and (9) admit a unique solution Gt-measurable adapted to the filter fGtgtP0.

Note that problem (1), (9), (10) is a mean variance problem similar to the one studied in Zhou and Li

(2000), but with the additional control variable SC in the state Eq. (9), and an additional running cost in (10).
An admissible control process ðSC�;K�Þ is Pareto efficient (or simply efficient) if there exists no admissible

ðSC;KÞ such that

J 1ðSC;KÞ 6 J 1ðSC�;K�Þ; J 2ðSC;KÞ 6 J 2ðSC�;K�Þ;
with at least one of the inequalities being strict. The pairs ðJ 1ðSC�;K�Þ; J 2ðSC�;K�ÞÞ 2 R2 form the Pareto fron-
r. We will call to SC� an efficient supplementary cost, C� ¼ SC� þ NC an efficient contribution rate and K�
an efficient portfolio. Throughout the text the term optimal must be understood in the sense of efficiency.
Actually, we are not interested in the representation and properties of the Pareto frontier, but in the pairs
ð�EX ðT Þ;VarX ðT ÞÞ for optimal X ðT Þ, that we call the mean variance efficient frontier.

According to Da Cunha and Polak (1967) when the objective functionals defining the multiobjective pro-
gram are convex, the Pareto optimal points can be found solving a scalar optimal control problem where the
dynamics remain the same and where the objective functional is a convex combination of the original cost
functionals. In our case Eqs. (1), (9) are linear, so both J1 and J2 are obviously convex. Therefore, the original
problem (1), (9), (10) is equivalent to the scalar problem

min
ðSC;KÞ2AX 0 ;AL0

J 1ðSC;KÞ þ lJ 2ðSC;KÞ ¼ min
ðSC;KÞ2AX 0 ;AL0

�EX ðT Þ þ l E

Z T

0

SC2ðtÞdt þVarX ðT Þ
� �

; ð11Þ
ject to (1), (9), with l > 0 a weight parameter. As l varies in the interval (0,1), the solutions of (11) de-
ibe the Pareto frontier. Notice that l serves the manager to transfer linearly units of risk to units of ex-
cted return, and reciprocally. The size of l indicates which one of the objectives is of more concern for
the manager, to reduce risk or to reduce debt.
Problem (1), (9), (11) is not a standard stochastic optimal problem due to the term ðEX ðT ÞÞ2 in the variance,

and the dynamic programming approach cannot be applied here. Following Zhou and Li (2000) or Li and Ng
(2000) we propose an auxiliary problem that turns out to be a stochastic problem of linear-quadratic type:

min
ðSC;KÞ2AX 0 ;AL0

JðSC;KÞ ¼: min
ðSC;KÞ2AX 0 ;AL0

E

Z T

0

SC2ðtÞdt þ EðX 2ðT Þ � 2cX ðT ÞÞ; ð12Þ

subject to (1), (9), where c 2 R.

The relationship between problems (1), (9), (11) and (1), (9), (12) is shown in the following result.

oposition 3.1. For any l > 0, if ðSC�;K�Þ is an optimal control of (1), (9), (11) with associated optimal debt X �,
1 �
then it is an optimal control of (1), (9), (12) for c ¼ ð2lÞ þ EX ðT Þ.

The main consequence of Proposition 3.1 is that any optimal solution of problem (1), (9), (11) can be found
solving problem (1), (9), (12). This will be done in the following section.

3 The complete notation for the objective functionals would be J 1ððt; x; yÞ; ðSC;KÞÞ ¼ EtxyX ðT Þ ¼ EðX ðT ÞjX ðtÞ ¼ x;ALðtÞ ¼ yÞ and
J2ððt; x; yÞ; ðSC;KÞÞ ¼ Etxy

R T
t SC2ðsÞdsþVartxyX ðT Þ.
6



4. Optimal contributions, optimal portfolio and the efficient frontier
In this section we find the efficient frontier for the original problem (1), (9), (10). Previously we solve the
problem (1), (9), (12), depending on the parameter c.

Theorem 4.1. The optimal rate of supplementary cost and the optimal investment in the risky assets are given by

SC�ðt;X ;ALÞ ¼ f ðtÞðce�rðT�tÞ � X Þ; ð13Þ
wher

with

The
ing

This
tizat
mon
K�ðt;X ;ALÞ ¼ R�1ðb� r1Þðce�rðT�tÞ � X Þ þ gr�>qAL; ð14Þ
e

ð2r�h>hÞðT�tÞ

f ðtÞ ¼ ð1� c1Þe

1� c eð2r�h>hÞðT�tÞ
; 8t 2 ½0; T �; ð15Þ
1

c1 ¼ 1=ð�2r þ h>hþ 1Þ.
�rðT�tÞ
The efficient strategies depend on the term ce � X ðtÞ that, by the definition of c in Proposition 3.1,

decomposes in three terms that we collect into two summands

1

2l
e�rðT�tÞ þ ½EðX ðT Þe�rðT�tÞÞ � X ðtÞ�:
first summand is always positive, increasing with time, and depends inversely on l, the parameter weigh-
the relative importance of the objective of variance minimization with respect to the objective of debt
reduction. The summand in brackets is the expected value of debt reduction planned, valued at time t. Notice
from the expression of SC� that if this reduction is positive, then amortization rate is higher than the normal
cost. In the same way, the first summand in K� is also positive. Of course, this behavior is also observed for
small values of l, even if there is no reduction of the expected debt. As the control of variance becomes less
important for the sponsor, that is, as l decreases, the investment strategies are riskier.

In contradistinction to the supplementary cost, optimal investment depends also on AL and on the elements
giving the randomness of assets and benefits. If the actuarial liability AL is positively correlated with the finan-
cial market (an extreme case being uncorrelated, where q = 0), then the investment in the risky assets is greater
than if the correlation is negative. It is also remarkable that does not depend on the rate of growth of benefits,
j.

A technical assumption to obtain some properties of the optimal solutions is necessary. We suppose that
twice the risk-free rate of interest is lesser than the norm square of the Sharpe ratio.

Assumption 3. The Sharpe ratio vector satisfies 2r < h>h.

This hypothesis implies for the constant c1 and the function f defined in Theorem 4.1 that 0 < c1 < 1 and
0 < f ðtÞ < 1, for all 0 6 t < T.

Theorem 4.1 gives also a linear relationship between the supplementary cost and investment strategies,
which vector coefficient is the optimal growth portfolio, R�1ðb� r1Þ, multiplied by the inverse of f(t):

K� ¼ 1

f ðtÞR
�1ðb� r1ÞSC� þ gr�>qAL: ð16Þ
can be considered as a ‘‘rule of thumb’’ for the sponsor: at time t, each monetary unit of additional amor-
ion with respect to the computed normal cost, must be accompanied by an investment of 1

f ðtÞR
�1ðb� r1Þ

etary units in risky assets, plus gr�>qAL units due to the stochastic elements defining the pension plan.

The following result characterizes the efficient frontier in terms of the expected returns and variance (dis-

regarding the influence of the contribution risk).

Theorem 4.2. The mean variance efficient frontier of the problem (1), (9), (10) is given by

VarX ðT Þ ¼ 1� b
b

� �2

ðeh>hT � 1ÞðEX ðT Þ � erT X 0Þ2 þ m; ð17Þ
7



where
b ¼ 1� e�h>hT 1� c1
> ¼ 1� e2rT f ð0Þ;
ð2r�h hÞT

The
whe

The
show

whe
the

The

whe
1� c1e

m ¼ g2ð1� q>qÞAL2
0eð2jþg2ÞT

Z T

0

eð2r�h>h�2j�g2Þt

ð1� c1eð2r�h>hÞtÞ2
dt:

ression (17) shows the familiar quadratic relation between debt and its variance. The minimum possible

variance, VarX ðT Þ ¼ m P 0, is attained when the sponsor borrows money for the total amount of debt at date

rT
Exp

t = 0 for T years, so that EX ðT Þ ¼ e X 0.
From (17), the expected debt and the standard deviation, rX ðT Þ, at time T are related by

EX ðT Þ ¼ erT X 0 þ
b

h>hT
p r2

X ðT Þ � m
q

:

ð1� bÞ e � 1

re are two cases where it is a straight line: when the benefits are exponential and deterministic, g = 0, and
n the market is complete (Brownian B only depends on w), q>q ¼ 1. In both cases the capital market line is
EX ðT Þ ¼ erT X 0 þ
b

ð1� bÞ eh>hT � 1
p rX ðT Þ;
slope, b= ð1� bÞ eh>hT � 1
p� �

, is the price of risk. This is positive because 0 < b < 1 by Assumption 3. It
s how much the expected optimal debt decreases if its standard deviation increases by one unit.
Observe that parameter m and in consequence the terminal variance in (17) does not depend on the sign of
correlations qi.

Remark 4.1. The optimal investment decisions, contribution rate and fund’s wealth evolution can be
expressed in terms of the optimal expected debt at time T, EX �ðT Þ, instead of using the parameters c or l. This
provides a more clever interpretation of the results. The substitution of c may be done from the equality
erT ð1� bÞX 0 þ bc ¼ EX �ðT Þ, which is obtained in (29) in Appendix A. Taking into account (14) and (29), the
investment at instant t is

K�ðt;X ;ALÞ ¼ R�1ðb� r1Þ e�rðT�tÞ

b
ðz� erT X 0Þ � ðX � ertX 0Þ

� �
þ gr�>qAL;
re z ¼ EX �ðT Þ. This shows the existing relation between the desired expected levels of debt at time T and
optimal composition of the portfolio at every instant of time t.
Analogously, (13) and (29), allows us to rewrite the optimal rate of contribution at instant t as

C�ðt;X Þ ¼ NCðtÞ þ f ðtÞ e�rðT�tÞ

b
ðz� erT X 0Þ � ðX � ertX 0Þ

� �
:

following proposition gives the total optimal contribution.
Proposition 4.1. The total expected discounted value of the optimal contribution and the optimal supplementary
cost in the interval [0,T] of problem (1), (9), (10), denoted C and SC respectively, are given by

SC ¼: E

Z T

0

e�rtSC�ðt;X ðtÞÞdt ¼ pðEX ðT Þ � erT X 0Þ;Z
 T �ðr�jÞT

C ¼: E

0

e�rtNCðtÞdt þ SC ¼ 1� e

r � j
NC0 þ SC;

re

p ¼ 1� b e2rT � 1
e�rT :
b 2r
8



The relation between SC and EX ðT Þ is linear, with positive slope p, since 0 < b < 1 by Assumption 3. Thus,

a reduction of one monetary unit of expected debt at time T is attained with an extra expected amortization of
p monetary units over the total expected discounted normal cost computed along the time horizon [0,T].

Other interesting fact is that total contribution does not depend on diffusion parameter g, so it coincides
with total contribution in the case of deterministic benefits.

Since the mixed portfolio has higher mean returns than the bond, the contribution effort made by the spon-
sor under risky investment is less than the contribution effort arising under safe investment. This is proved in
the following result.

Corollary 4.1

(a) The total expected value of the supplementary cost is less when the manager invests in the mixed portfolio
than when he or she invests only in the bond.
(b) If q>h P 0 then the total expected value of the optimal contribution is less when the manager invests in the

mixed portfolio than when he or she invests only in the bond.

5. A numerical illustration
In this section we illustrate the results of section above in a specific example. In order to give a more sound
illustration of the model’s properties we consider two risky assets. The objective is to observe the behavior of
the terminal standard deviation, the initial investment and the total expected optimal contribution, with
respect to the terminal date, the expected terminal debt and the correlations between benefits and risky assets.
The values of parameters that we consider are the following.

• benefits are random with g = 0.03 and j = 0.2;
• the risk-free rate of interest is r = 0.06;
• risky investment is in two assets (n = 2) with b ¼ ð0:12; 0:10Þ> and r ¼ 0:15 0:07

0:07 0:10

� �
; this implies a

Sharpe ratio h ¼ ð0:317; 0:178Þ>;
• the initial values are AL0 ¼ 1, F 0 ¼ 0:8, so that the initial liability is X 0 ¼ �0:2, that is, the fund is 20%

underfunded; benefits at time t = 0 are supposed to be 1% of AL0, that is, P 0 ¼ 0:01.

We consider four values of the time horizon, T ¼ 1; 2; 5 and 10 years. The goal of the manager is to reduce
expected debt EX ðT Þ to values �0.15, �0.10, �0.05 and 0, that is to say, to attain the 25%, 50%, 75% and
100%, of debt reduction, respectively. The last variable elements that we consider are the correlations
q ¼ ðq1; q2Þ

>. We suppose the norm square of correlation vector, q>q ¼ q2
1 þ q2

2, takes the values 0, 0.50
and 1. More values could be considered obtaining similar properties. The extreme values are uncorrelation
and perfect correlation, respectively. In order to fix the correlations we suppose symmetric cases, i.e.
q1 ¼ �q2, so the vectors q considered are ð0; 0Þ>, ð�1=2;�1=2Þ> and ð� 2

p
=2;� 2

p
=2Þ>.

The remainder elements depending on correlations are easily found. For instance, the technical interest rate d
can be calculated from Assumption 2, and from this, Proposition 2.1 for t = 0 allows to obtain NC0 in each case.

Table 1 shows for several final dates of the pension plan what the terminal standard deviation must be in
order to reduce debt. We observe that the standard deviation does not depend on the sign of the correlations

Table 1

Terminal standard deviation rX ðT Þ

Expected debt z EX ðT Þ Uncorrelation q>q 0 Intermediate correlation q>q 0:5 Perfect correlation q>q 1

T 1 T 2 T 5 T 10 T 1 T 2 T 5 T 10 T 1 T 2 T 5 T 10

0.15 2.0029 2.7013 5.1545 14.1069 1.4163 1.9101 3.6448 9.9751 0.0184 0.0144 0.0112 0.0093
0.10 2.0031 2.7013 5.1545 14.1069 1.4166 1.9102 3.6448 9.9751 0.0331 0.0240 0.0159 0.0115
0.05 2.0034 2.7014 5.1546 14.1069 1.4170 1.9104 3.6448 9.9751 0.0478 0.0336 0.0206 0.0137
0 2.0038 2.7016 5.1546 14.1069 1.4176 1.9105 3.6449 9.9751 0.0626 0.0431 0.0253 0.0159
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and it grows with respect to the planning horizon when q>q < 1, but it decreases when q>q ¼ 1. In fact, it is

more sensible to changes in the horizon length than to changes in the reduction of debt.

Another interesting fact is that the standard deviation is reduced when the norm square of correlation vec-
tor is increased, attaining the minimum value when the market is complete.

The total amount of initial investment proportion in the risky assets, ðk1 þ k2Þ=F 0, chosen to reduce debt to
the prescribed levels, is shown in Table 2. The investment in the bond is 1� ðk1 þ k2Þ=F 0, that can be obtained
from the table. There are two cases of shortselling, which appear of course when both correlations are the

Table 2

Initial investment in the risky assets ðk1ð0;X 0;AL0Þ þ k2ð0;X 0;AL0ÞÞ=F 0

Expected debt z EX ðT Þ q ð0; 0Þ> q ð1=2; 1=2Þ> q ð 1=2; 1=2Þ>

T 1 T 2 T 5 T 10 T 1 T 2 T 5 T 10 T 1 T 2 T 5 T 10

0.15 0.308 0.265 0.287 0.355 0.512 0.470 0.491 0.559 0.104 0.061 0.082 0.151
0.10 0.555 0.441 0.406 0.438 0.759 0.645 0.610 0.642 0.351 0.237 0.202 0.234
0.05 0.802 0.617 0.526 0.521 1.006 0.821 0.730 0.725 0.598 0.413 0.321 0.317
0 1.049 0.793 0.645 0.604 1.253 0.997 0.849 0.808 0.845 0.588 0.441 0.399

q ð1=2; 1=2Þ> q ð 1=2; 1=2Þ> q 2
p

=2; 2
p

=2
� �>

T 1 T 2 T 5 T 10 T 1 T 2 T 5 T 10 T 1 T 2 T 5 T 10

0.15 0.215 0.173 0.194 0.262 0.401 0.358 0.380 0.448 0.597 0.554 0.575 0.644
0.10 0.462 0.348 0.313 0.345 0.648 0.534 0.499 0.531 0.844 0.730 0.695 0.727
0.05 0.709 0.524 0.433 0.428 0.895 0.710 0.618 0.614 1.091 0.906 0.814 0.810
0 0.956 0.700 0.552 0.511 1.142 0.886 0.738 0.696 1.338 1.081 0.934 0.892

q 2
p

=2; 2
p

=2
� �>

q 2
p

=2; 2
p

=2
� �>

q 2
p

=2; 2
p

=2
� �>

T 1 T 2 T 5 T 10 T 1 T 2 T 5 T 10 T 1 T 2 T 5 T 10

0.15 0.019 0.023 0.002 0.066 0.177 0.134 0.155 0.224 0.439 0.397 0.418 0.486
0.10 0.266 0.152 0.117 0.149 0.424 0.310 0.275 0.307 0.686 0.572 0.537 0.569
0.05 0.513 0.328 0.237 0.232 0.671 0.486 0.394 0.390 0.933 0.748 0.657 0.652
0 0.760 0.504 0.356 0.315 0.918 0.661 0.514 0.472 1.181 0.924 0.776 0.735

Table 3
Total expected discounted contribution C

Expected debt z EX ðT Þ q ð0; 0Þ> q ð1=2; 1=2Þ> q ð 1=2; 1=2Þ>

T 1 T 2 T 5 T 10 T 1 T 2 T 5 T 10 T 1 T 2 T 5 T 10

0.15 0.210 0.399 1.145 3.333 0.202 0.382 1.091 3.171 0.218 0.416 1.199 3.495
0.10 0.249 0.434 1.170 3.347 0.241 0.417 1.116 3.185 0.257 0.451 1.223 3.509
0.05 0.288 0.469 1.194 3.361 0.280 0.451 1.140 3.199 0.296 0.486 1.248 3.523
0 0.328 0.503 1.219 3.375 0.320 0.486 1.165 3.213 0.336 0.521 1.273 3.537

q ð1=2; 1=2Þ> q ð 1=2; 1=2Þ> q 2
p

=2; 2
p

=2
� �>

T 1 T 2 T 5 T 10 T 1 T 2 T 5 T 10 T 1 T 2 T 5 T 10

0.15 0.208 0.394 1.130 3.288 0.212 0.404 1.160 3.379 0.199 0.375 1.069 3.104
0.10 0.247 0.429 1.155 3.302 0.251 0.438 1.185 3.393 0.238 0.409 1.094 3.118
0.05 0.286 0.464 1.179 3.316 0.291 0.473 1.209 3.406 0.277 0.444 1.118 3.132
0 0.325 0.499 1.204 3.330 0.330 0.508 1.234 3.420 0.316 0.479 1.143 3.146

q 2
p

=2; 2
p

=2
� �>

q 2
p

=2; 2
p

=2
� �>

q 2
p

=2; 2
p

=2
� �>

T 1 T 2 T 5 T 10 T 1 T 2 T 5 T 10 T 1 T 2 T 5 T 10

0.15 0.221 0.423 1.221 3.562 0.207 0.392 1.124 3.269 0.213 0.406 1.166 3.397
0.10 0.260 0.458 1.246 3.576 0.246 0.427 1.148 3.283 0.252 0.440 1.191 3.411
0.05 0.300 0.493 1.270 3.590 0.285 0.462 1.173 3.297 0.292 0.475 1.216 3.425
0 0.339 0.528 1.295 3.604 0.324 0.497 1.198 3.311 0.331 0.510 1.240 3.440
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more negative allowed values. In some cases borrowing to invest in the risky assets is needed. Specially,

this happens when the target is to eliminate completely debt in a short period of time. As expected, the risky
investment increases with higher debt reduction levels. Note that there is a ‘‘horizon effect’’ in the investment
strategies, since that they do not follow a monotonic pattern with respect to final time T.

The investment is sensible with respect to the sign of the correlations and the norm square of the correla-
tions vector. With negative signs, a more conservative strategy is implemented and the investment behavior is
more aggressive for higher levels of correlations.

Table 3 shows the total expected terminal optimal value of the contribution rate. The total contribution
grows with the debt reduction and with the planning horizon. The correlation has little influence in the total
contribution although it is smaller with positive correlation.

Table 4 shows the total expected optimal value of the supplementary cost when the portfolio comprises the
bond and two risky assets, whereas Table 5 shows the result when investment is only in the bond. In both cases
the supplementary cost grows with debt reduction, and a horizon effect appears as in the other components of
the plan previously analyzed.

We observe in the tables the result obtained in Corollary 4.1: supplementary cost is greater when the invest-
ment is made only in the bond. Risky investment allows to get higher mean returns, making possible to dimin-
ish the expected amortization rate.

Table 6 is the corresponding one to Table 3, but showing the total expected contribution when the invest-
ment is in the bond only. When the inequality q>h P 0 holds, the total contribution with safe investment is
higher than with investment in risky assets, see Corollary 4.1. When the opposite inequality holds, the prop-
erty is not generally true. For example, in Table 3 are emphasized values where the optimal contributions with
Table 4
Total expected discounted supplementary cost

Expected debt z EX ðT Þ SC

T 1 T 2 T 5 T 10

0.15 0.049 0.053 0.059 0.060
0.10 0.088 0.087 0.084 0.074
0.05 0.127 0.122 0.108 0.088
0 0.167 0.157 0.133 0.102

Table 5
Total expected discounted supplementary cost: safe investment

Expected debt z EX ðT Þ SC0

T 1 T 2 T 5 T 10

0.15 0.059 0.067 0.089 0.118
0.10 0.106 0.111 0.126 0.145
0.05 0.153 0.156 0.163 0.173
0 0.200 0.200 0.200 0.200

Table 6
Total expected discounted contribution: safe investment

Expected debt z EX ðT Þ C0

T 1 T 2 T 5 T 10

0.15 0.220 0.413 1.175 3.391
0.10 0.267 0.458 1.212 3.419
0.05 0.314 0.502 1.249 3.446
0 0.361 0.546 1.286 3.473
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investment in risky assets is greater than the corresponding with investment only in the bond; of course in all
>
of them q verifies q h < 0.

Finally, in all the cases of Tables 4 6 there is no dependency with respect to the correlations.

6. Conclusions

We have analyzed the management of a pension funding process of an aggregated defined benefit pension
plan where the benefits are stochastic. The objective is to determine contributions and investments strategies
maximizing the expected terminal fund and at the same time minimizing both the contribution risk and the
variance of the unfunded actuarial liability. The problem is formulated as a modified mean variance optimi-
zation problem and has been solved by means of dynamic programming techniques.

The efficient frontier has a parabolic shape, but it is not given by a perfect square due to the randomness of
benefits and to the existence of correlations between risky assets and benefits. The optimal investment strat-
egies have three summands. One term depends on the current level of the actuarial liability, with a coefficient
involving the instantaneous variance of benefits and risky assets, as well as its correlation. Other summand
depends on the preferences of the sponsor, that is, of the relative importance of the objectives in the minimi-
zation functional. The remainder summand is proportional to the present expected value of debt reduction
planned. We have also found what seems to be a new result in the literature of DB pension funds due to
the stochastic character of the pension plan: there is a linear relationship between the optimal supplementary
cost and the vector of optimal investment strategies, given in (16). A correction term is present due to the ran-
dom behavior of benefits.

We have also proved that under suitable conditions about the sign of the correlations, the total expected
contribution is lesser when the investment is in the mixed portfolio than when it is in the bond only.

A numerical illustration shows the analytical results proved in the paper, as well as other features of the
model.

Further research should be directed to include: no-shortselling and no-borrowing restrictions, final bank-
ruptcy prohibition, stochastic riskless rate of interest and other bi-objective problems.
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Appendix A

Proof of Proposition 3.1. The proof relies in a standard separation argument for concave functions. It
follows the arguments in Zhou and Li (2000), but we have an extra term in the form of the running cost
giving the contribution risk. Let ðSC�;K�Þ be an optimal solution of problem (1), (9), (11), with associated
process X �, where c ¼ l 1=2þ EX �ðT Þ. Let us suppose it is not optimal solution of (1), (9), (12). Then there
exists an admissible strategy ðSC;KÞ such that the associated path X verifies JðSC;KÞ < JðSC�;K�Þ, that is to
say,

E

Z T

0

SC2ðtÞdt � E

Z T

0

ðSC�Þ2ðtÞdt þ EX 2ðT Þ � EðX �Þ2ðT Þ � 2cðEX ðT Þ � EX �ðT ÞÞ < 0: ð18Þ
2 3
The

defin

whic
function gðy1; y2; y3Þ ¼ lðy1 þ y3Þ � ly2 � y2 is concave in R because the Hessian matrix is negative semi-
ite. Observe Z T� �

g EX 2ðT Þ; EX ðT Þ; E

0

SC2ðtÞdt ¼ J 1ðSC;KÞ þ lJ 2ðSC;KÞ;
h is the objective function of problem (1), (9), (11).
12



The concavity4 of g and (18) imply
Z T� �

g EX 2ðT Þ; EX ðT Þ; E SC2ðtÞdt

Ther
mal

It is

Note
from

of th

Afte

with

g at �y
0

6 g EðX �Þ2ðT Þ; EX �ðT Þ; E
Z T

0

ðSC�Þ2ðtÞdt
� �

þ lðEX 2ðT Þ � EðX �Þ2ðT ÞÞ

� ð1þ 2lEX �ðT ÞÞðEX ðT Þ � EX �ðT ÞÞ þ l E

Z T

0

SC2ðtÞdt � E

Z T

0

ðSC�Þ2ðtÞdt
� �

6 g EðX �Þ2ðT Þ; EX �ðT Þ; E
Z T

0

ðSC�Þ2ðtÞdt
� �

þ l EX 2ðT Þ � EðX �Þ2ðT Þ � 2cðEX ðT Þ � EX �ðT ÞÞ
�

þ E

Z T

0

SC2ðtÞdt � E

Z T

0

ðSC�Þ2ðtÞdt
�
< g EðX �Þ2ðT Þ; EX �ðT Þ; E

Z T

0

ðSC�Þ2ðtÞdt
� �

: ð19Þ

efore J 1ðSC�;K�Þ þ lJ 2ðSC;KÞ < J 1ðSC;KÞ þ lJ 2ðSC�;K�Þ, by (19), that is to say, ðSC�;K�Þ is not opti-
for (1), (9), (11), which is a contradiction. h
Proof of Theorem 4.1. In order to prove this result we use the dynamic programming approach, see Fleming
and Soner (1993). Consider the value function of the control problem (1), (9), (12)

bV ðt;X ;ALÞ ¼ min
ðSC;KÞ2AX ;AL

fJððt;X ;ALÞ; SC;KÞ : s:t: ð1Þ; ð9Þg:
well known bV is solution of the HJB equation:	

2 > >
V t þmin

SC;K
SC þ ðrX þ K ðb� r1Þ þ SC � gq hALÞV X þ jALV AL 

þ 1

2
ðK>RK� 2gALK>rqþ g2ALÞV XX þ

1

2
g2AL2V AL;AL þ ðgALK>rq� g2AL2ÞV X ;AL ¼ 0; ð20Þ

V ðT ;X ;ALÞ ¼ X 2 � 2cX : ð21Þ
that in (20) we have used (9) and the SDE of AL as function of the Brownian motions fwign

i 0, obtained
(1), that is p

dALðtÞ ¼ jALðtÞdt þ gALðtÞ 1� q>qdw0ðtÞ þ gALðtÞq> dwðtÞ:

If there exists a smooth solution V of this equation, strictly convex with respect to X, then the minimizer values

e supplementary cost and investments are given by � �
cSCðV X Þ ¼ �

V X

2
; bKðV X ; V XX ; V X ;ALÞ ¼ �R�1ðb� r1Þ V X

V XX
þ gALr�>q 1� V X ;AL

V XX
: ð22Þ
r substitution of these values in (20) we obtain bV satisfies

1 2 1 > V 2
X 1 2 2 1 2 2 > 2 2 >
V þ rXV � V � h h þ jALV þ g AL V þ g AL ð1� q qÞV � g AL ð1� q qÞV
t X

4 X 2 V XX
AL

2
AL;AL

2
XX X ;AL

2
V

� gALh>qV X

V X ;AL

V XX
� 1

2
g2AL2q>q X ;AL

V XX
¼ 0;

the final condition (21). We try a quadratic solution of the form

bV ðt;X ;ALÞ ¼ b0ðtÞ þ bX ðtÞX þ bALðtÞALþ bXX ðtÞX 2 þ bAL;ALðtÞAL2 þ bX ;ALðtÞXAL;
4 If g : R3 ! R is a concave function of class C1, then 8�x; �y 2 R3; gð�xÞ gð�yÞ 6 rgð�yÞð�x �yÞ, wherergð�yÞ denotes the gradient vector of

, i.e. rgð�yÞ ðgy1

; gy2
; gy3
Þ.
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so that from (22) the optimal controls must be� � � �

K ¼ R�1ðb� r1Þ �bX � X �

bX ;AL AL þ gALr>q 1�
bX ;AL

;

The

The
exa

Pro

wit

wit
tion

whe
2bXX 2bXX bXX

SC ¼ � 1

2
ðbX þ 2bXX X þ bX ;ALALÞ ¼ bXX �

bX

2bXX
� X �

bX ;AL

2bXX
AL

� �
:

ð23Þ

following ordinary differential equations are obtained for the above coefficients:
_b0 ¼
b2

X þ h>h
b2

X bXX ; b0ðT Þ ¼ 0;

4 4

_bX ¼ ð�r þ h>hÞbX þ bX bXX ; bX ðT Þ ¼ �2c; ð24Þ

_bAL ¼ �jbAL þ
1

2
ðh>hþ gh>qÞ

bX bX ;AL

bXX
þ 1

2
bX bX ;AL; bALðT Þ ¼ 0;

_bXX ¼ ð�2r þ h>hÞbXX þ b2
XX ; bXX ðT Þ ¼ 1: ð25Þ

_bAL;AL ¼ �ð2jþ g2ÞbAL;AL þ
h>h

4
þ g

2
h>qþ g2q>q

� �
b2

X ;AL

bXX

þ g2ð1� q>qÞðbX ;AL � bXX Þ þ
b2

X ;AL

4
; bAL;ALðT Þ ¼ 0;

_bX ;AL ¼ ð�r � jþ gþ h>hÞbX ;AL þ bXX bX ;AL; bX ;ALðT Þ ¼ 0: ð26Þ

method of resolution of this system is standard. The solution of Eq. (25), of Ricatti type, can be found for
mple in Kloeden and Platen (1999, p. 572),
bXX ðtÞ ¼ f ðtÞ;
and using this explicit expression of bXX we can obtain from (24) (see Arnold (1974, p. 139))
bX ðtÞ ¼ �2ce�rðT�tÞf ðtÞ:

Substituting in (26), bXAL is given by
_bX ;AL ¼ ð�r � jþ gþ h>hþ f ðtÞÞbX ;AL; bX ;ALðT Þ ¼ 0;
that is to say bX ;AL ¼ 0. Plugging these expressions into (23) we obtain (13) and (14), respectively. h
of of Theorem 4.2. Under the optimal feedback control (13), (14), the stochastic differential equation for

process X, (9), is

dX ðtÞ ¼ ððr � h>h� f ðtÞÞX ðtÞ þ ðh>hþ f ðtÞÞce�rðT�tÞÞdt � g 1� q>q
p

ALðtÞdw0ðtÞ
þ h>ðce�rðT�tÞ � X ðtÞÞdwðtÞ;
h X ð0Þ ¼ X 0. Applying the Ito’s formula to X2 we obtain

dX 2ðtÞ ¼ 2ððr � h>h=2� f ðtÞÞX 2ðtÞ þ f ðtÞce�rðT�tÞX ðtÞ þ ð1=2Þh>hc2e�2rðT�tÞp

þ ð1=2Þg2ð1� q>qÞAL2ðtÞÞdt � 2g 1� q>qALðtÞX ðtÞdw0ðtÞ
> �rðT�tÞ 2
þ 2h ðce X ðtÞ � X ðtÞÞdwðtÞ;

h X 2ð0Þ ¼ X 2
0. Taking expectations on both previous stochastic differential equations we obtain that func-

s m1ðtÞ ¼ EX ðtÞ and m2ðtÞ ¼ EX 2ðtÞ satisfy the linear ordinary differential equations

_m1ðtÞ¼ ðr�h>h� f ðtÞÞm1ðtÞþðh>hþ f ðtÞÞce�rðT�tÞ; m1ð0Þ¼X 0;
_m2ðtÞ¼ ð2r�h>h�2f ðtÞÞm2ðtÞþ2f ðtÞce�rðT�tÞm1ðtÞþh>hc2e�2rðT�tÞ þg2ð1�q>qÞAL2
0eð2jþg2Þt; m2ð0Þ¼X 2

0;

ð27Þ

re in (27) we have used that EAL2ðtÞ ¼ AL2

0eð2jþg2Þt, by (1).
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Following Arnold (1974, p. 139),
R t

0
ðr�h>h�f ðsÞÞ ds >

Z t
�
R s

0
ðr�h>h�f ðvÞÞ dv �rðT�sÞ

� �

m1ðtÞ ¼ EX ðtÞ ¼ e X 0 þ ðh hþ f ðtÞÞc e e ds ;

that,

for a

wher

Anal

that,

wher

In or

wher
0

after some calculations it is
ðr�h>hÞt ð2r�h>hÞðT�tÞ X 0 �ðr�h>hÞT e�h>hðT�tÞ e�h>hT
 ! !
EX ðtÞ ¼ e ð1� c1e Þ > þ ce > � > ;

1� c1eð2r�h hÞT 1� c1eð2r�h hÞðT�tÞ 1� c1eð2r�h hÞT

ð28Þ

ll t 2 ½0; T �. For t =T we have
EX ðT Þ ¼ aX 0 þ bc; ð29Þ
e

b ¼ 1� e�h>hT 1� c1

1� c eð2r�h>hÞT
¼ 1� e2rT f ð0Þ;
1

a ¼ erT ð1� bÞ:

ogously, Z�
R t R

m2ðtÞ ¼ EX 2ðtÞ ¼ e

t

0
ð2r�h>h�2f ðsÞÞ ds X 2

0 þ 2c e
�

s

0
ð2r�h>h�2f ðvÞÞ dvf ðsÞe�rðT�sÞm1ðsÞds
0

þ h>hc2

Z t

0

e
�
R s

0
ð2r�h>h�2f ðvÞÞ dv

e�2rðT�sÞ dsþ g2ð1� q>qÞAL2
0

Z t

0

e�
R s

0
ð2r�h>h�2f ðvÞÞ dv

eð2jþg2Þs ds
�
;

after some calculations it is transformed in
2 2 2
EX ðT Þ ¼ qX 0 þ 2ac�X 0 þ c ðb� ð1� bÞ�Þ þ m; ð30Þ
e

2 h>hT
q ¼ a e ;
h>hT
� ¼ 1� ð1� bÞe ;

m ¼ g2ð1� q>qÞAL2
0eð2jþg2ÞT

Z T

0

eð2r�h>h�2j�g2Þt

ð1� c1eð2r�h>hÞtÞ2
dt:

der to find the mean variance efficient frontier we obtain the terminal variance:

VarX ðT Þ ¼ EX 2ðT Þ � ðEX ðT ÞÞ2
2 2 2
¼ qX þ 2ac�X þ c ðb� ð1� bÞ�Þ þ m� ðEX ðT ÞÞ
0 0

¼ qX 2
0 þ 2a

1

b
ðEX ðT Þ � aX 0Þ�X 0 þ

1

b2
ðEX ðT Þ � aX 0Þ2ðb� ð1� bÞ�Þ þ m� ðEX ðT ÞÞ2

¼ 1� b
b

b� �
b
ðEX ðT Þ � erT X 0Þ2 þ m

¼ 1� b
b

� �2

ðeh>hT � 1ÞðEX ðT Þ � erT X 0Þ2 þ m;

e in the second equality we have used (30) and in the third one we have used (29). h
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Proof of Proposition 4.1. By (13),
E

Z T

e�rtSC�ðt;X ðtÞÞdt ¼
Z T

e�rtf ðtÞðce�rðT�tÞ � EX ðT ÞÞdt
whe

whe

with
seco

by A
Assu

By
P 0 þ
0 0

¼ ð1� c1Þe�h>hT

1� c1eð2r�h>hÞT
ðce�rT � X 0Þ

Z T

0

e2rt dt

¼ pðEX ðT Þ � erT X 0Þ;

re the second equality is due to (15) and (28), and the third to the definition of b and (29). h
Proof of Corollary 4.1. We suppose that the manager wishes to attain an expected terminal debt EX ðT Þ ¼ z
with both investment possibilities, in the mixed portfolio and in the fixed rent.

(a) Consider the total supplementary cost as a function of the Sharpe ratio of the portfolio, h>h:

SCðyÞ ¼ e2rT � 1
e�rT ðz� erT X 0Þ

1 � 1

� �
; y 2 ½0; T �;
2r bðyÞ
re
bðyÞ ¼ 1� e�Ty 1� c1ðyÞ
1� c1ðyÞe�T ð�2rþyÞ ;
c1ðyÞ ¼ 1=ð�2r þ y þ 1Þ. The expected total supplementary cost in the first situation is SCðh>hÞ and in the
nd SCð0Þ.
It is very easy to check

b0ðyÞ ¼ T e�Ty ð�2r þ yÞ2 þ ð�2r þ yÞ þ e�ð�2rþyÞT=T

ð�2r þ y þ 1� e�ð�2rþyÞT Þ2
> 0;
ssumption 3. Using (29) and Proposition 3.1 we obtain z ¼ erT X 0 þ b=ð2lð1� bÞÞ > erT X 0, again by
mption 3; that is, the expected terminal unfunded liability is lesser than the debt accrued at t ¼ T for bor-
rowing money at date t = 0 at an interest rate r. Thus we obtain SC0ðyÞ < 0, that is to say, SC is a strictly
decreasing function in R. Therefore SCðh>hÞ < SCð0Þ.

(b) The expected total contribution is in the first case

C ¼ 1� e�ðr�jÞT

r � j
NC0 þ SCðh>hÞ:
Proposition 2.1 and Assumption 2, NC0 ¼ P 0 þ ðj� r � gq>hÞAL0, that is smaller or equal to
ðj� rÞAL0, because q>h P 0. Total contribution in the second case is obtained making h = 0, so the
proof finishes applying (a). h

Justification of Assumption 2. Consider for the moment that only one worker exists, with age x. Once the
liability is valued for one worker, the aggregated case is easily obtained as it is shown below. The sponsor
wishes to value at the current time t the asset Y xðt; PÞ consisting in paying P monetary units at the age of retire-
ment d, where P is a geometric Brownian motion according to Assumption 1. Since P is not tradeable and we
suppose the existence of two independent sources of uncertainty, to value Yx we resort to equilibrium argu-
ments, following the approach of Constantinides (1978). To simplify the exposition, let us consider that only a
risky asset S exists, which is freely traded in the market. The multidimensional case is straightforward. The
method considers that the risk uncorrelated with S is not priced. Consider the asset at any intermediate time,
Y xðt þ s; P Þ, 0 6 s 6 d � x. Forming a portfolio with one unit of asset Yx and n units of S, R ¼ Y x þ nS, and
applying Itô’s Lemma, we have

16



dR ¼ dY x þ ndS

The fi

with

hence
aggre

On th

See th
obtai

By P

and,
¼ Y x
pjP þ 1

2
Y x

ppg
2P 2 þ Y x

s þ nbS
� �

dt þ Y x
pgPdBþ nrS dw

¼ Y x
pjP þ 1

2
Y x

ppg
2P 2 þ Y x

s þ nbS
� �

dt þ Y x
pgP 1� q2
p

dw0 þ ðY x
pgPqþ nrSÞdw:

rst equality is the self-financing condition, the second one follows from Itô’s Lemma, using that P is geo-
2

p
x
metric Brownian motion, and the last equality uses B ¼ 1� q w0 þ qw. The selection n ¼ �Y pgPq=rS elim-

inates the risk related with Brownian w. We also disregard the risk orthogonal to it, that is, the risk related
with w0 is not priced. The total return of the hedge portfolio must be equal to the risk-free rate of interest,
rðY x þ nSÞ. Thus we obtain the pricing partial differential equation

rY x ¼ Y x
s þ Y x

pP j� qg
r
ðb� rÞ

� �
þ 1

2
Y x

ppg
2P 2
boundary conditions Y xðt þ d � x; PÞ ¼ P , Y xðt þ s; 0Þ ¼ 0. The solution is

x �ðr�jþqghÞðd�x�sÞ
Y ðt þ s; P Þ ¼ Pe ;

x �ðr�jþqghÞðd�xÞ
at time of valuation t (s = 0), Y ðt; P ðtÞÞ ¼ PðtÞe . Now, to obtain the total liability AL(t) we
gate the result for any age x 2 ½a; d� having into account the way benefits accumulates depending on age,
to obtain

ALðtÞ ¼
Z d

Y xðt; P ðtÞÞMðxÞdx ¼ P ðtÞ
Z d

e�ðr�jþqghÞðd�xÞMðxÞdx:

a a

e other hand, the actuarial definition of AL given in Section 2 and Assumption 1 provide
Z d
ALðtÞ ¼ P ðtÞ e�ðd�jÞðd�xÞMðxÞdx:

a

e proof of Proposition 2.1 in Josa-Fombellida and Rincón-Zapatero (2004). Comparing the expressions
ned, we conclude that d must be chosen equal to r þ qgh in order to attain a risk-neutral valuation of the
liabilities.

Obtaining Eq. (9). Eq. (8) in terms of X ¼ F � AL and of SC ¼ C � NC is, by (1),

dX ðtÞ ¼ ðrF ðtÞ þ K>ðtÞðb� r1Þ þ SCðtÞ þ NCðtÞ � P ðtÞ � jALðtÞÞdt þ K>ðtÞrdwðtÞ � gALðtÞdBðtÞ:
roposition 2.1 and Assumption 2, the above can be written
> > >
dX ðtÞ ¼ ðrX ðtÞ þ K ðtÞðb� r1Þ þ SCðtÞ � gq hALðtÞÞdt þ K ðtÞrdwðtÞ � gALðtÞdBðtÞ;
n
using the independent Brownian motions fw g , SDE (9) is obtained.
i i 0
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