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Abstract
Widely publicized reports of fresh MBAs getting multiple job offers with

six-figure annual salaries leave a long-lasting general impression about the high
quality of selected business schools. While such spectacular achievement in job
placement rightly deserves recognition, one should not lose sight of the resources
expended in order to accomplish this result. In this study, we employ a mea-
sure of Pareto-Koopmans global efficiency to evaluate the efficiency levels of the
MBA programs in Business Week’s top-rated list. We compute input- and output-
oriented radial and non-radial efficiency measures for comparison. Among three
tier groups, the schools from a higher tier group on average are more efficient than
those from lower tiers, although variations in efficiency levels do occur within the
same tier, which exist over different measures of efficiency.
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1. Introduction

Since 1988, Business Week magazine regularly publishes biennially a list of the top-ranked

business schools in the U.S. This ranking reflects survey questionnaire responses from corporate

recruiters, on the one hand, and current and recent graduates, on the other. Apart from enhancing

the prestige of individual schools, this ranking can significantly influence popular perception

about the quality of the MBAs from different schools and, thus, affect their starting salaries.

Conceptually, a professional education produces the stock of marketable human capital of the

individuals graduating from the program. Although far from perfect, the salary offer received on

graduation provides a reasonable index of the market value of the human capital. It is also true,

however, that the students enter the program with varying initial stocks of human capital. Pre-

MBA earnings provide an index of the human capital acquired prior to entering the program.

Thus, the incremental contribution of the program is the differential between the pre- and post-

MBA annual earnings.

Reputational ranking of a business school primarily reflects popular perception of its

graduates in their post-MBA careers. But one should not neglect the resources expended to

accomplish the better achievements in job placement. Harvard MBAs reported average starting

base salary of $90,675 and a total compensation package worth $163,792 (including other

compensation of  $51,917 and a one time signing bonus of $21,200) for the graduating class of

1998. For the graduates of Marriott School of Business at Brigham Young University (BYU),

the corresponding average base salary and total compensation package were $66,789 and

$99,180, respectively. What is seldom mentioned is that the average pre-MBA salary of

Harvard’s graduating class was already as high as $68,000 and a much more modest $27,684 at

BYU. In fact, when accounting for differences in tuition and other expenses, the annuitized value
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of the gain in earnings for BYU graduates exceeds that for the Harvard graduates. The starting

pay package by itself does not accurately reflect the success level of a school. Similarly, most

top-rated schools admit only students with high GMAT scores. Thus, their graduates are pre-

selected for a successful post-MBA career. In sum, the extent of "value added" is often

overstated.

The objective of management education is to produce efficient managers. Efficient

management of production requires optimal utilization of resources. Efficiency is inconsistent

with either unrealized potential increase in output or avoidable waste of inputs. To what extent

do these top rated schools practice what they preach? More specifically, do these schools

themselves, when viewed as production units, make efficient use of their resources?

Decision making problems parallel production processes, where desirable outcomes of the

decision play the role of outputs while actions or conditions facilitating these outcomes play the

role of inputs. The most important achievement of business school widens the difference

between the post-MBA and pre-MBA salaries of its graduates. Also, the number of job offers

provides  another output dimension. Inputs, on the other hand, include faculty and other

resources employed as well as the quality of the entering class. Other factors, such as the gender

ratio and the proportion of international students, can affect the outputs, and therefore they may

enter as inputs in an appropriately specified model.

 In this study, we employ Data Envelopment Analysis (DEA) to evaluate the efficiency of

Business Week's top-rated business schools for the year 1998.3 Johnes and Johnes (1993) use

DEA to measure research efficiency of a number of Economics departments from British

                                                
3 The method of DEA was introduced by Charnes, Cooper, and Rhodes (1978) to non-parametrically measure technical
efficiency of production units with reference to a technology exhibiting constant returns to scale. Subsequently, Banker,
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universities based on publication and personnel data collected by the Royal Economic Society.

Burton and Phimister (1994) apply DEA to evaluate efficiency of a set of "core journals"

identified by Diamond (1989). Breu and Raab (1994) analyze the data from the Top-25

National universities and Liberal Arts colleges to measure their efficiency levels using DEA.

They find that several of the best-rated universities like Cal Tech (rated 5th) and Chicago

(rated 10th) operate at less than 90% efficiency. Colbert, Levary and Shaner (1999) determine

a more accurate ranking of U.S. MBA programs based on DEA and also compare their

efficiency levels with three foreign MBA programs. No study, however, considers a measure

of Pareto-Koopmans non-radial efficiency.

Unlike most DEA studies, this paper uses a global (rather than a radial) efficiency

measure proposed by Pastor, Ruiz, and Sirvent (1999) to evaluate the MBA programs in the

list. Input- and output-oriented radial and non-radial measures are also computed for

comparison. Efficiency in the top tier exceeds that  in the lower tiers. Several of the schools in

the top-25 list, however, emerge as inefficient, while many schools in the lower brackets

exhibit high efficiency.4

This paper is organized as follows. In section 2, we provide the theoretical background and

a brief description of the DEA methodology. Section 3 discusses the implications of the various

efficiency measures calculated. Section 4 summarizes the conclusions.

2. Non-Radial Measures of Technical Efficiency

                                                                                                                                                                                          
Charnes, and Cooper (1984) generalized the model to accommodate variable returns to scale.

4 This paper extends and updates unpublished Ray (1998), which evaluates the efficiency of top-40 MBA schools in
Business Week’s 1994 listing.
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Consider the production possibility set:

T ={(x, y): y can be produced from x},  (1)

where x is an  n-element input bundle  and y is an m-element output bundle. Unlike parametric

models, the non-parametric approach DEA does not specify the production possibility set

explicitly. Instead, it only assumes that: (a) all observed input-output bundles are feasible; (b)

inputs are freely disposable; (c) outputs are freely disposable; and  (d) the production

possibility set is convex.

 If (x0, y0) is a feasible production plan, then Tyx ∈),( 00  implies that y0 can be produced

from x0.  The Debreu-Farrell input-oriented measure of technical efficiency of the bundle (x0,

y0) is

TEI(x0, y0) = min θ : (θx0, y0) ∈T. (2)

Similarly, the corresponding output-oriented measure is

TEO(x0, y0) = *
1
ϕ

(3)

where ϕ*= max ϕ : (x0,ϕ y0) ∈T. To evaluate the input-oriented radial technical efficiency of a

firm producing output y0 from input x0 under variable returns to scale in any empirical

application, one solves the following DEA model due to Banker, Charnes, and Cooper (BCC)

using a sample of observed input-output bundles (xj, yj) (j = 1,2,…,N):

min θ

s.t.   ∑ ≥
j

rrjj yy ;0λ  (r = 1,2,…,m);

        ∑ ≤
j

iijj xx ;0θλ   (i= 1, 2,…, n); (4)

       ∑ =
j

j ;1λ         ;0≥jλ  (j =1, 2,…, N).

Similarly, for the output-oriented radial measure, one solves the following problem:
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max φ

s.t.   ∑ ≥
j

rrjj yy ;0φλ  (r = 1,2,…,m);

∑ ≤
j

iijj xx ;0λ   (I = 1, 2,…, n); (5)

∑ =
j

j ;1λ ;0≥jλ  (j =1, 2,…, N).

The output-oriented measure is the inverse of the optimal value of the objective function.

In general, many input bundles exist other than x0, all of which can also produce y0. For

the specific output bundle y0, we can define the input (requirement) set

V(y0) = { x : y0 can be produced from x }. (6)

For each specific output bundle y, there is a specific input set V(y). Thus, the same production

possibility set T generates a family of input sets. Every observed input bundle xj lies in the

input set of the corresponding output bundle yj. Further, if x0∈V(y0) and x1≥ x0, then x1∈V(y0).

Also, if x1∈V(y0) and y1≤ y0, then x1∈V(y1). If the production possibility set T is convex, the

input sets are also convex.

Many input bundles in the input set of a specific output bundle are inefficient, because

one can produce the target output from a smaller input bundle. These are strictly interior

points of the input set. By contrast, the isoquant of an output bundle y0 consists only of

boundary points of V(y0). The isoquant of y0 is

)(:{)( 00 yVxxyV ∈= and )( 0yVx∉λ if }.1<λ (7)

Thus, if x )( 0yV∈ , then it is not possible to reduce all inputs even by the smallest amount and

still produce the output level y0. The quantity of at least one input in the x0 bundle must be

strictly binding. From the definition of the isoquant, if x0 ∈V (y0), then the input-oriented

technical efficiency of  (x0, y0) equals unity. Indeed, every input-oriented radial projection of
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an inefficient input-output bundle (x, y) lies in the isoquant of the output bundle y. The

efficient subset of the isoquant of any output bundle y0 is defined as

)(:{)( 00* yVxxyV ∈= and )(' 0yVx∉ if }.' xx ≤ (8)

Note that if x0∈V*(y0), then reducing any input in the x0 bundle renders the output bundle y0

infeasible. Thus, every input bundle in the efficient subset of the isoquant of an output bundle

is technically efficient and no slack exists in any individual input. The non-radial measure,

proposed by Färe and Lovell (1978), measures the technical efficiency of a firm relative to a

point in the efficient subset of the isoquant.

In an output-oriented analysis of technical efficiency, the objective is to produce the

maximum output from a given quantity of inputs. For this, we first define the (producible)

output set of any given input bundle. For the input bundle x0, the output set

P(x0) = { y: (x0, y)∈  T} (9)

consists of all output bundles that x0 can produce. Because different output sets exist for

different input bundles, the production possibility set is equivalently characterized by a family

of output sets. If (xj, yj) is an actually observed input-output combination, then yj∈P( xj).

Further, if y0∈P(x0) and if x1≥ x0, then  y0∈P(x1). Similarly, if y0∈P(x0) and if y1≤ y0, then 

y1∈P(x0). Finally, convexity of T ensures that each output set P(x) is also convex.

The output isoquant of any input bundle x0 is defined as

)(:{)( 00 xPyyxP ∈= and )( 0xPy∉λ if }.1>λ (10)

Thus, if y0 ∈ P (x0), then the output-oriented radial technical efficiency of the pair (x0, y0)

equals unity, because one cannot increase all outputs holding the input bundle unchanged.

This does not, of course, rule out the possibility that one can increase some individual



9

components of the y0 output bundle. The efficient subset of the output isoquant of x0, on the

other hand, is

)(:{)( 00* xPyyxP ∈= and )(' 0xPy ∉ if }.' 0yy ≥ (11)

Therefore, an output-oriented radial technically efficient projection of y0 produced from x0

onto P(x0) may include slacks in individual outputs. But no such slacks may exist, if the

projection is onto P*(x0). The radial measure of output-oriented technical efficiency does not

reflect any unutilized potential for increasing individual outputs. Again, as shown below, a

non-radial, output-oriented measure does include all potential increases in any component of

the output bundle.

The problem of slacks in any optimal solution of a radial DEA model arises because we

seek to expand all outputs or contract all inputs by the same proportion. In non-radial models,

one allows the individual outputs to increase or the inputs to decrease at different rates. Färe and

Lovell (1978) introduced the following output-oriented, non-radial measure of technical

efficiency, which they called the Russell measure: 5

y
y yxRM

ρ
1),( 00 = , (12a)

where ∑=
r

rmy φρ 1max

s.t.   ∑ ≥
j

rrrjj yy ;0φλ  (r = 1,2,…,m);

                                                
5 Färe and Lovell allow individual components of the input or output bundle to take zero values. They define the
indicator variables rδ that take the value 0, if output r is 0, and 1 otherwise. Their objective function is

.
∑
∑=

r

r
y δ

φ
ρ

Throughout the present analysis, we assume that all inputs and outputs are strictly positive. The Range Adjusted
Measure (RAM) introduced by Cooper, Park, and Pastor (1999) can accommodate zero inputs or outputs unless the
relevant input/output is constant across observations.
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        ∑ ≤
j

iijj xx ;0λ   (I = 1, 2,…, n); (12b)

     ∑ ≥=
j

rj ;1;1 φλ  (r = 1, 2,…,m);       ;0≥jλ  (j =1, 2,…, N).

When output slacks do exist at the optimal solution of a radial DEA model, the non-radial

Russell measure falls below the conventional measure obtained from an output-oriented BCC

model. That is, because the radial projection is always a feasible point for this problem,

.*φρ ≥y  Hence, the non-radial Russell measure of technical efficiency never exceeds the

corresponding radial measure.

The analogous input-oriented non-radial measure of technical efficiency is:6

xx yxRM ρ=),( 00 , (13a)

where ∑=
i

inx θρ 1min

s.t.   ∑ ≥
j

rrjj yy ;0λ  (r = 1,2,…,m);

        ∑ ≤
j

iiijj xx ;0θλ   (i= 1, 2,…, n); (13b)

       ∑ ≤=
j

ij ;1;1 θλ  (i= 1, 2,…, n);       ;0≥jλ  (j =1, 2,…, N).

The optimal solution projects the observed input bundle x0 onto the bundle x* = (θ1
*x10, θ2*x20,

…, θn
*xn0) in the efficient subset of the isoquant of the output y0.7

                                                
6 See Russell (1985) for a number of limitations of this non-radial measure. Zieschang (1984) proposes a two-step
“Russell–extended-Farrell” measure that synthesizes the best features of the conventional radial Debreu-Farrell
measure and the non-radial Russell measure. In the input-oriented case, this extended measure emerges by first
projecting an observed input bundle x0 radially onto the isoquant of the corresponding output bundle. Once one
achieves this proportional scaling (by the factor θ),  one projects any input slack present in this bundle θx0 further
onto the efficient subset of the isoquant by solving the non-radial problem for RMx(θx0, y0). When no input slack
exists in the radial projection of the observed input bundle, no further adjustment need occur so that the radial and
non-radial measures coincide.
7 In an alternative approach, Torgersen, Forsund, and Kittelsen (1996) adjust the efficient radial projection of the
output bundle for slacks in individual outputs to obtain a non-radial projection onto the efficient subset of the output
isoquant. Instead of a summary measure of efficiency combining the radial expansion factor with the slacks, they
report the potential output quantities individually reflecting the output-specific efficiency levels.
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No approach focuses on output and input slacks simultaneously, however. Because these

are either output-oriented or input-oriented measures, either input slacks or output slacks are

ignored. Instead, we consider a non-radial measure that accommodates slacks in both outputs

and inputs. An input-output combination (x0, y0) is not Pareto-Koopmans efficient if it violates

either of the following inefficiency postulates: (i) It is possible to increase at least one output in

the bundle y0 without reducing any other output and without increasing any input in the bundle

x0; or (ii) It is possible to reduce at least one input in the bundle x0 without increasing any other

input and without reducing any output in the bundle y0.

Clearly, unless RMx(x0, y0) = RMy(x0, y0) = 1, at least one of the two inefficiency

postulates is violated and (x0, y0) is not Pareto-Koopmans efficient. Input-output bundle (x0,

y0) is Pareto-Koopmans efficient, when both of the following conditions hold: 

(i) )( 0*0 yVx ∈ and (ii) ).( 0*0 xPy ∈

Consider the vectors ),...,,( 21 nθθθθ =  and ).,...,,( 21 mφφφφ =  A non-radial Pareto-

Koopmans measure of technical efficiency of the input-output pair (x0, y0) is computed as:

∑
∑

=Γ

r
rm

i
in

φ

θ

1

1

min

s.t. ∑
=

≥
N

j
rrrjj yy

1
0 ;φλ );,...,2,1( mr =

∑
=

≤
N

j
iiijj xx

1
0 ;θλ );,...,2,1( ni = (14)

;1≥rφ );,...,2,1( mr = ;1≤iθ );,...,2,1( ni =

∑
=

≥=
N

j
jj

1

;0;1 λλ  ).,...,2,1( Nj =
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Note that the efficient input-output projection (x*, y*) satisfies

∑
=

≤=
N

j

j
j xxx

1

0** λ and ∑
=

≥=
N

j

j
j yyy

1

0** λ .

Thus, (x0, y0) is Pareto-Koopmans efficient, if and only if 1* =rφ  for each output r and 1* =iθ

for each input i, implying .1=Γ  We can visualize the Pareto-Koopmans generalized

efficiency measure (GEM) as the product of two factors. The first is the input-oriented

component (GEMIN) ∑=
i

in θγ 1
1 and the second is an output-oriented component (GEMOUT)

∑
=

r
rm φ

γ
12

1 . Thus, .. 21 γγ=Γ

The objective function in this mathematical programming problem is non-linear. Cooper,

Park, and Pastor (1999) note that one can use a linear approximation. In the present context,

however, the objective function in (14) linearizes as:

∑ ∑ 







∂
∂−+








∂
∂−+≈=Γ

i r r
rr

i
ii

ffff
0

0

0

000 )()(),(),(
φ

φφ
θ

θθφθφθ . (15)

Note that
∑

=
∂
∂

r
rm

n

i

f
φθ 1

1

(15a)

 and  .2
1

1









−=

∂
∂

∑

∑

r
rm

in

r

f

φ

θ

φ
(15b)

Thus, using 10 =iθ for all i and 10 =rφ for all r, at the point of approximation,

∑ ∑−+≈Γ
i r

rmin .1 11 φθ (16)

We may, therefore, solve the linear programming problem:
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min ∑ ∑−
i r

rmin φθ 11

s.t. ∑
=

≥
N

j
rrrjj yy

1
0 ;φλ );,...,2,1( mr =

∑
=

≤
N

j
iiijj xx

1
0 ;θλ );,...,2,1( ni = (17)

;1≥rφ );,...,2,1( mr = ;1≤iθ );,...,2,1( ni =

∑
=

≥=
N

j
jj

1
;0;1 λλ  ).,...,2,1( Nj =

Once we obtain the optimal ),( ** φθ from this problem8, we use

∑
∑

=Γ

r
rm

i
in

*1

*1

*

φ

θ
(18)

as a measure of  the Pareto-Koopmans efficiency of (x0, y0). Note that this LP problem is a

special case of the more general optimization problem with the same constraints, but the

objective function

min ∑ ∑−=Ω
i r

rrii φβθα

s.t. ∑
=

≥
N

j
rrrjj yy

1
0 ;φλ );,...,2,1( mr =

∑
=

≤
N

j
iiijj xx

1
0 ;θλ );,...,2,1( ni = (19)

;1≥rφ );,...,2,1( mr = ;1≤iθ );,...,2,1( ni =

∑
=

≥=
N

j
jj

1
;0;1 λλ  ).,...,2,1( Nj =

Setting ni
1=α  for all i and mr

1=β  for all r, we get the Pareto-Koopmans problem. If,

                                                
8 One may choose to use the optimal solution (θ*,φ*) as the new point of approximation and update (15a-b) to obtain
new coefficients for the objective function for the LP problem in (17). The iterative process may be terminated
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additionally, we set 0=rβ  for all r, we get the input-oriented Russell measure. Further, when

all restrict each ,αα =i  we get the usual input-oriented radial DEA problem. Similarly, the

restrictions 0=iα  for all i lead to the output-oriented Russell problem. Further restricting

ββ =r  for all r, we get the usual output oriented radial DEA problem.

3. The Empirical Analysis – Reputation and Efficiency

In this study, we consider a 2-output, 6-input technology for business schools. The first

output GAIN measures the difference between the annuitized pre- and post-MBA earnings flow

of a representative graduate of the school, which can be treated as the value added. Management

education helps the students acquire and develop various management skills, which make them

more valuable to subsequent employers. Therefore, in an efficient market, a graduate with better

skills relevant for effective management will be rewarded with a higher salary. Another

component of the output bundle is the adjusted placement rate (PLACE). More worthy

candidates usually generate multiple job offers. Given that the job placement rate does not reach

100%, however, the average number of offers received by the graduates who actually get any

offer is adjusted by the probability that a graduating student has an offer in hand.

The six inputs include: (i) the faculty-student ratio (FSRATIO), (ii) the average GMAT

score of the incoming class (GMAT), (iii) the degree of selectivity in the admission process

measured by the proportion of applications rejected (REJECT), (iv) the percentage of male

students in the class (MALE), (v) the percentage of U.S. students in the class (US), and (vi) the

expenditure per student (BUDGET). Faculty-student ratio measures an important school input.

                                                                                                                                                                                          
when the optimal values of (θ , φ) change by less than some small value in two successive iterations.
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An increase in the FSRATIO should contribute positively to the output bundle. The student's

background is measured in two alternative ways. One possible measure is the proportion of

applicants accepted for admission by a school. The more selective the school is, the higher is its

rejection rate and the better is the quality of its graduating students. Self-selection, however, may

occur in the applicant pools across schools, where better applicants target only the more reputed

schools (like Harvard or Stanford). In that case, the second quartile of the pool of applicants for

one school may include better applicants than the top quartile for another. Hence, a rejection rate

of 80% for both schools does not imply the same quality of the students admitted. An alternative

measures selectivity by the average GMAT scores of the in-coming class across schools. In this

study, we include both measures of student quality as inputs.

The two demographic variables, MALE and US, reflect characteristics of the students that

may affect their salaries without affecting their managerial ability. Due to family constraints, a

female MBA exhibits less mobility than the male graduates in her class, implying that her

starting salary is lower, on average. Also, a gender bias may exist against female graduates in the

market. For both reasons, a school with a higher proportion of female students may find that the

expected salary increase (pre- vs. post-MBA) is lower. Similar logic applies for a school with a

higher proportion of international students. Often, due to visa problems, MBAs who are not U.S.

residents accept jobs that pay lower than average. On the other hand, outstanding MBAs who are

foreign nationals may return to their own countries. As a result, the average salaries of those who

accept employment in the U.S. probably are lower. By including the inputs MALE and US, we

control for these two "qualitative dimensions" of the student input. Finally, BUDGET measures

resources spent per student. The data for the individual schools used in this study were

downloaded from the Business Week website. The appendix provides details of construction of
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the various input and output variables.

Table 1 reports the input-output data for the individual schools used in this study and the

group-wise average values. The schools are listed according to their ranking in the Business

Week list. They are grouped into 3 categories – tier-1 consists of the top-25 schools, tier-2

includes the next 25 schools, and tier-3 includes 11 schools from the next lower category. On

average, the schools from a higher category achieve higher salary gain and a better placement

record than schools from a lower category. At the individual school level, Carnegie Mellon

University shows the highest gain ($43,376), closely followed by New York University

($43,354). At the other end, University of Florida shows a modest gain of $21,636. In terms of

placement, Purdue University with 4.1 job offers per graduate proves most successful, while

SUNY Buffalo and Thunderbird with only 1.5 offers per graduate show the poorest performance.

Examining school resources, the top-25 schools possess a substantially lower faculty-student

ratio than the schools in the other categories while the tier-2 schools have a substantially lower

expenditure per pupil compared to the other two categories. Georgia Tech with an expenditure

level of $173,054 towers over all others. Tulane, University of Georgia, Harvard, and University

of Pennsylvania also spend in excess of $100,000 per student. University of Tennessee,

Knoxville spends a mere $3,400 per student. South Carolina spending of $9,400 per pupil was

the second lowest. Schools in higher categories are, as expected, more selective with both higher

average GMAT scores and higher rejection rates. Stanford accepts only 7% of the applicants and

enrolls a class with an average GMAT score of 722. At the other extreme, Clark Atlanta (ranked

54th) with a rejection rate near 30% possesses an average GMAT score of 430. The proportion of

US students does not move much (between 71.6% and 73.6%), on average, across all three

categories. Compared to the other categories, tier-3 schools possess a higher proportion of
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female students (33.8%).

Table 2 reports the group-wise and individual average levels of the global efficiency

measure (GEM), along with its various components. The average levels of Pareto-Koopmans

global efficiency measure equal 90.7% for tier-1, 85.6% for tier-2, and 74.1% for tier-3 schools.

Because the overall score, GEM, is the product of the two components, GEMIN and GEMOUT,

we also examine them separately. The input-oriented factor, GEMIN, reflects the inefficiency

associated with possible reduction in inputs, while the output-oriented factor, GEMOUT, shows

the inefficiency due to unrealized potential increase in outputs. For the top-25 schools, both

input- and output-efficiency levels (GEMIN and GEMOUT) equal about 95%. Tier-2 schools

show a lower level of output efficiency than input efficiency. The difference is more pronounced

for the tier-3 schools. Of the 25 schools in tier-1, 10 are inefficient. Two schools (Texas-Austin

and Indiana) operate at efficiency as low as 66%, six others (including Dartmouth, Virginia,

UCLA, and UC Berkeley) operate at efficiency below 80% while three others (including 6th

ranked Columbia, and 9th ranked Stanford) operate below 90% efficiency. In all cases, the output

efficiency component falls below the input efficiency component. Among the tier-2 schools, 12

operate at less than 100% Pareto-Koopmans efficiency. Arizona (53%), Georgia (46%), and

Penn State (51%) exhibit the least efficiency not only within this group, but also in the whole

sample. Among the tier-3 schools, only 2 (Boston and Clark Atlanta) of the 11 are efficient.  The

columns φ1 and φ2 show the potential increase in the two outputs, if the school attains its Pareto-

Koopmans efficient projection. For example, the optimal value of φ1 for Dartmouth is 1.24. This

implies that the average salary gain achieved by its graduates could reach nearly $37,075

(instead of the actual $29,899). The input contraction factors θ1 through θ5 do not show any
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significant potential for input reduction. For the per student expenditure, the optimal value of θ6

is below 0.50 for Indiana (0.31), Georgia (0.21), Penn State (0.41), Georgia Tech (0.27), and

Tulane (0.37).

Table 3 shows the individual and group-wise average values of the radial and non-radial

input- and output-oriented efficiency measures along with the GEM and its input- and output-

oriented components. Note that the GEMIN (GEMOUT) measure often exceed the

corresponding RUSSIN (RUSSOUT) measure. This occurs because the input-oriented (output-

oriented) Russell measure ignores slacks in the outputs (inputs) in the optimization. The average

output-oriented measures of efficiency (RUSSOUT, GEMOUT, BCC) compare favorably within

each category. But the input-oriented BCC radial measure exceeds the non-radial Russell

measure (especially for the tier-3 schools) by large amounts. This clearly reflects the presence of

very high levels of slack in a particular input (BUDGET) in a number of schools in this category.

While the BCC radial measure ignores this slack, the input-oriented Russell measure captures

the slack. At the individual level, schools operate at respectable levels of efficiency, in general,

when only radial input- or output-oriented BCC measures are considered. But even by the

output-oriented BCC radial measure several schools (Arizona (0.67), Georgia (0.66), Texas

A&M (0.66), UC-Davis (0.66) and Washington-Seattle (0.63)) operate at particularly low levels

of efficiency.

4. Conclusion

In this paper, we formulate a DEA model to obtain Pareto-Koopmans measures of technical

efficiency for the top-61 business schools from the 1998 ranking of Business Week. We

categorize the schools into 3 groups -- the top 25 schools, the schools ranked from 26th to 50th
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place, and the following 11 schools. Several top-rated schools exhibit technical inefficiency,

since it is possible to increase their "outputs" while reducing some of their "inputs" at the same

time. On the other hand, many lower-rated schools exhibit high efficiency. Our results show that

reputational rankings are principally based on the outcomes measured by salary gains and

placement rates without relating these outcomes to the inputs used. A school with less

spectacular salary gains can exhibit more efficient production when both inputs and outputs are

taken into consideration. That is, many of the schools in the "runner up" list are fully efficient

while several from the "top-25" list are not. Further, a radial measure of efficiency -- whether

input- or output- oriented -- generally presents an unduly favorable picture of the performance of

a school when any kind of technical inefficiency exists.

Finally, a note of caution is in order. The present study looks at the MBA programs purely

from the standpoint of technical efficiency in resource utilization. Numerous other factors

significantly influence the image of a business school. A more efficient program need not match

an applicant’s best choice. Personal cost-benefit ratios may dominate the input-output ratio

embodied in these technical efficiency measures. Also, our study looks only at the starting

salaries of business school graduates and fails to take account of how their incomes grow over

time once they are employed.
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APPENDIX – Inputs and Outputs in DEA

Output 1: GAIN =  average post MBA salary  + annuity value of first year compensation
- average pre MBA salary
- 2 years times annuity value of tuition and fee including room & board

where (1) annuity value of first year compensation includes average signing bonus and
average other compensation; interest rate is equal to 5% for the next 25 years

(2) 2 years *annuity value of tuition and fee includes room & board (that is,
Annual Out-of-State Tuition*probability(out-of-state)+ Annual In-State
Tuition*[1-Probbability(out of state)]+Room & Board) and also making annuity
values by using 5% interest rate for the next 25 years

Output 2:  PLACE = job offers by graduation
=Average Job Offers per student * the percentage of graduates with job offers

Input 1: FSRATIO = faculty- student ratio
  = (resident faculty+0.5 visiting faculty) / (full time student + 0.5 part time student)

Input 2: GMAT = average GMAT score

Input 3: REJECT = 100 – selectivity (applicants accepted), unit: percentage

Input 4: MALE = 100 –  female enrollment percentage, unit: percentage

Input 5: US = 100 – international enrollment percentage, unit:percentage

Input 6: BUDGET = 1998/99 school budget / enrollment
Where enrollment = full time student + 0.5 * part time student
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Table 1: The Business Schools Data and Summary Statistics

output 1 output 2 input 1 input 2 input 3 input 4 input 5 input 6
no Tier school name Gain PLACE FSRATIO GMAT REJECT MALE US BUDGET

top 25 average 34897 3.017 0.141 666.60 78.920 70.440 71.600 58971
next 25 average 30126 2.463 0.211 629.16 61.800 69.800 72.200 39782

Group
Average

tier-3 average 28548 2.374 0.214 606.91 57.455 66.182 73.636 62320
1top 25 Pennsylvania (Wharton) 32262 3.1 0.04146 685 87 71 69 109184
2top 25 Northwestern (Kellogg) 35172 3.3 0.09054 695 86 68 76 70270
3top 25 Chicago 33904 3.3 0.07003 690 76 78 77 49148
4top 25 Michigan 39531 3.4 0.11582 672 78 72 74 70648
5top 25 Harvard 27616 3.7 0.12912 689 87 70 74 111049
6top 25 Columbia 34198 2.8 0.11799 680 88 64 72 62305
7top 25 Duke (Fuqua) 41123 3.1 0.13595 664 83 67 75 66322
8top 25 Cornell (Johnson) 36783 3.1 0.09012 647 72 74 68 48527
9top 25 Stanford 30179 3.4 0.11812 722 93 71 71 67114

10top 25 Dartmouth (Tuck) 29889 2.6 0.10590 671 88 71 76 66756
11top 25 UVA (Darden) 40022 2.6 0.14227 685 85 70 79 72784
12top 25 UCLA (Anderson) 30477 2.6 0.09945 690 86 72 76 49451
13top 25 NYU (Stern) 43354 2.5 0.13480 675 82 62 66 57697
14top 25 Carnegie Mellon 43376 3.5 0.16184 654 70 76 61 59675
15top 25 MIT (Sloan) 41206 3.5 0.13418 690 87 73 63 79096
16top 25 UC Berkeley 34906 2.2 0.15212 674 89 62 66 44015
17top 25 Washington University (Olin) 34739 3.0 0.16635 624 67 74 69 67486
18top 25 Texas at Austin 30365 2.9 0.25491 661 77 75 78 49214
19top 25 UNC (Kenan-Flagler) 33762 2.8 0.16173 642 76 73 79 21142
20top 25 Yale 42775 2.8 0.12269 682 75 68 70 56970
21top 25 Indiana (Kelley) 33149 2.7 0.25865 635 60 72 81 84201
22top 25 Maryland (Smith) 31288 3.2 0.14627 653 79 64 61 24332
23top 25 Wisconsin -- Madison 22273 2.7 0.17188 613 53 69 68 19792
24top 25 Purdue (Krannert) 35638 4.1 0.21011 623 75 74 64 27378
25top 25 USC (Marshall) 34445 2.6 0.18248 650 74 71 77 39708
26next 25 Arizona (Eller) 24863 2.4 0.30597 637 78 64 82 59701
27next 25 Arizona State 28795 2.6 0.09845 628 58 70 81 16850
28next 25 Babson (Olin) 28527 2.2 0.13092 634 58 65 69 12830
29next 25 BYU (Marriott) 41294 2.4 0.25641 639 58 78 82 28187
30next 25 Emory (Goizueta) 31862 2.4 0.13721 640 64 67 75 62791
31next 25 Georgetown 36750 2.6 0.16145 637 65 65 67 30470
32next 25 Georgia (Terry) 28516 2.2 0.54777 640 75 80 80 129299
33next 25 Illinois at Urbana-Champaign 26196 2.6 0.26680 612 55 70 56 20520
34next 25 Iowa 32793 2.5 0.25089 613 73 75 65 30975
35next 25 Michigan State (Broad) 33154 3.7 0.45082 628 74 72 62 62295
36next 25 Notre Dame 28668 2.7 0.32321 613 43 72 75 71786
37next 25 Ohio State (Fisher) 28632 2.5 0.24595 642 73 71 76 19922
38next 25 Penn State (Smeal) 29896 2.1 0.40467 618 75 74 77 66926

output 1 output 2 input 1 input 2 input 3 input 4 input 5 input 6
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no Tier school name Gain PLACE FSRATIO GMAT REJECT MALE US BUDGET
39next 25 Pittsburgh (Katz) 22119 2.0 0.13897 641 51 69 59 28971
40next 25 Rice (Jones) 30290 3.0 0.15260 632 52 71 83 39994
41next 25 Rochester (Simon) 36797 2.4 0.09692 652 67 76 52 39374
42next 25 SMU (Cox) 30029 2.4 0.14783 636 68 68 78 36348
43next 25 South Carolina (Darla Moore) 30730 1.8 0.18470 604 40 67 75 9400
44next 25 Tennessee -- Knoxville 27237 3.1 0.27778 615 68 70 88 3611
45next 25 Texas A&M 24347 2.0 0.15676 619 67 60 72 54054
46next 25 Thunderbird 28026 1.5 0.07606 601 32 63 53 42989
47next 25 UC Irvine 30147 3.3 0.11680 650 73 73 71 31986
48next 25 Vanderbilt (Owen) 33859 2.6 0.11458 635 58 71 73 45650
49next 25 Wake Forest (Babcock) 27938 2.2 0.08198 633 55 76 81 28175
50next 25 William & Mary 31689 2.5 0.15842 630 65 58 73 21452
51tier-3 Boston College 24185 2.0 0.13966 622 55 68 76 14414
52tier-3 Boston University 30980 2.1 0.12876 608 63 66 59 25271
53tier-3 Case Western (Weatherhead) 26607 2.5 0.12446 614 60 64 62 39839
54tier-3 Clark Atlanta 37634 2.6 0.24151 430 30 40 90 22642
55tier-3 Florida (Warrington) 21634 2.5 0.24457 610 58 72 85 73772
56tier-3 Georgia Tech (DuPree) 28289 2.9 0.29000 632 55 72 69 173054
57tier-3 Minnesota (Carlson) 32939 3.2 0.18908 620 54 68 80 54276
58tier-3 SUNY Buffalo 26170 1.5 0.15509 598 59 68 68 23595
59tier-3 Tulane (Freeman) 34169 2.4 0.38564 632 58 73 58 127660
60tier-3 UC Davis 24223 2.3 0.25746 663 72 61 90 38701
61tier-3 Washington -- Seattle 27200 2.2 0.19733 647 68 76 73 92295
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Table 2: Pareto-Koopmans  Measure of Efficiency and its Components

no tier school name φ1 φ2 θ1 θ2 θ3 θ4 θ5 θ6 GEMIN GEMOUT GEM
Top 25 average 1.048 1.090 0.987 0.970 0.943 0.993 0.969 0.887 0.958 0.943 0.907
next 25 average 1.108 1.190 0.919 0.974 0.978 0.982 0.970 0.869 0.949 0.893 0.856

Group
Average

tier-3 average 1.301 1.240 0.857 0.964 0.980 0.960 0.954 0.730 0.908 0.812 0.741
1top 25 Pennsylvania (Wharton) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2top 25 Northwestern (Kellogg) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3top 25 Chicago 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
4top 25 Michigan 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
5top 25 Harvard 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
6top 25 Columbia 1.03 1.00 1.00 0.87 0.68 1.00 1.00 0.83 0.90 0.98 0.88
7top 25 Duke (Fuqua) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
8top 25 Cornell (Johnson) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
9top 25 Stanford 1.19 1.00 1.00 0.92 0.84 1.00 1.00 0.80 0.93 0.91 0.85

10top 25 Dartmouth (Tuck) 1.24 1.18 1.00 0.94 0.77 1.00 0.92 0.70 0.89 0.83 0.73
11top 25 UVA (Darden) 1.00 1.23 1.00 0.91 0.77 1.00 0.86 0.69 0.87 0.90 0.78
12top 25 UCLA (Anderson) 1.21 1.18 1.00 0.92 0.81 1.00 0.91 0.95 0.93 0.84 0.78
13top 25 NYU (Stern) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
14top 25 Carnegie Mellon 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
15top 25 MIT (Sloan) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
16top 25 UC Berkeley 1.00 1.37 1.00 0.93 0.81 1.00 1.00 0.74 0.92 0.84 0.77
17top 25 Washington University (Olin) 1.21 1.12 1.00 1.00 0.97 0.96 0.95 0.80 0.95 0.86 0.81
18top 25 Texas at Austin 1.17 1.41 0.82 0.94 0.97 0.99 0.82 0.56 0.85 0.77 0.66
19top 25 UNC (Kenan-Flagler) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
20top 25 Yale 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
21top 25 Indiana (Kelley) 1.10 1.33 0.85 0.88 1.00 0.87 0.90 0.31 0.80 0.82 0.66
22top 25 Maryland (Smith) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
23top 25 Wisconsin -- Madison 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
24top 25 Purdue (Krannert) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
25top 25 USC (Marshall) 1.05 1.43 1.00 0.94 0.95 1.00 0.87 0.81 0.93 0.81 0.75
26next 25 Arizona (Eller) 1.46 1.52 0.72 0.89 0.79 1.00 0.87 0.44 0.78 0.67 0.53
27next 25 Arizona State 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
28next 25 Babson (Olin) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
29next 25 BYU (Marriott) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
30next 25 Emory (Goizueta) 1.20 1.28 1.00 0.94 0.98 1.00 0.95 0.72 0.93 0.81 0.75
31next 25 Georgetown 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
32next 25 Georgia (Terry) 1.25 1.86 0.38 0.97 1.00 0.93 0.80 0.21 0.72 0.64 0.46
33next 25 Illinois at Urbana-Champaign 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
34next 25 Iowa 1.08 1.58 0.83 1.00 0.98 0.96 1.00 0.89 0.94 0.75 0.71
35next 25 Michigan State (Broad) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
36next 25 Notre Dame 1.32 1.00 0.59 0.86 1.00 0.76 1.00 0.52 0.79 0.86 0.68
37next 25 Ohio State (Fisher) 1.16 1.49 0.94 0.95 0.97 1.00 0.96 1.00 0.97 0.76 0.73
38next 25 Penn State (Smeal) 1.19 1.93 0.52 1.00 0.98 0.99 0.84 0.41 0.79 0.64 0.51

no tier school name φ1 φ2 θ1 θ2 θ3 θ4 θ5 θ6 GEMIN GEMOUT GEM
39next 25 Pittsburgh (Katz) 1.34 1.12 1.00 0.97 1.00 0.97 1.00 1.00 0.99 0.81 0.81
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40next 25 Rice (Jones) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
41next 25 Rochester (Simon) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
42next 25 SMU (Cox) 1.19 1.37 1.00 0.96 1.00 1.00 0.89 1.00 0.97 0.78 0.76
43next 25 South Carolina (Darla Moore) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
44next 25 Tennessee -- Knoxville 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
45next 25 Texas A&M 1.44 1.49 1.00 0.94 0.93 1.00 1.00 0.59 0.91 0.68 0.62
46next 25 Thunderbird 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
47next 25 UC Irvine 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
48next 25 Vanderbilt (Owen) 1.05 1.06 1.00 0.95 1.00 0.93 0.95 0.94 0.96 0.95 0.91
49next 25 Wake Forest (Babcock) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
50next 25 William & Mary 1.00 1.02 1.00 0.92 0.82 1.00 1.00 1.00 0.96 0.99 0.94
51tier-3 Boston College 1.22 1.21 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.82 0.82
52tier-3 Boston University 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
53tier-3 Case Western (Weatherhead) 1.23 1.03 1.00 1.00 0.98 1.00 1.00 0.86 0.97 0.89 0.86
54tier-3 Clark Atlanta 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
55tier-3 Florida (Warrington) 1.93 1.29 0.76 0.96 1.00 0.91 0.82 0.66 0.85 0.62 0.53
56tier-3 Georgia Tech (DuPree) 1.43 1.06 0.62 0.92 1.00 0.89 1.00 0.27 0.78 0.80 0.63
57tier-3 Minnesota (Carlson) 1.08 1.00 1.00 0.90 1.00 0.89 0.99 0.57 0.89 0.96 0.86
58tier-3 SUNY Buffalo 1.27 1.76 1.00 1.00 1.00 0.92 1.00 1.00 0.99 0.66 0.65
59tier-3 Tulane (Freeman) 1.07 1.18 0.35 1.00 1.00 0.98 1.00 0.37 0.78 0.89 0.70
60tier-3 UC Davis 1.50 1.53 0.86 0.83 0.80 1.00 0.82 0.66 0.83 0.66 0.55
61tier-3 Washington -- Seattle 1.58 1.57 0.84 0.99 1.00 0.98 0.86 0.63 0.88 0.63 0.56
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Table 3: Radial and Non-radial Measures of Technical Efficiency

    input-oriented measures output-oriented measures
no tier school name GEM CCR BCC RUSSIN GEMIN CCR BCC RUSSOUT GEMOUT

top 25 average 0.907 0.934 0.968 0.928 0.958 0.933 0.945 0.933 0.943
next 25 average 0.856 0.890 0.962 0.901 0.949 0.890 0.911 0.891 0.893

Group
Average

tier-3 average 0.741 0.823 0.946 0.843 0.908 0.823 0.849 0.811 0.812
1top 25 Pennsylvania (Wharton) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2top 25 Northwestern (Kellogg) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3top 25 Chicago 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
4top 25 Michigan 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
5top 25 Harvard 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
6top 25 Columbia 0.88 0.92 0.97 0.89 0.90 0.92 0.93 0.92 0.98
7top 25 Duke (Fuqua) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
8top 25 Cornell (Johnson) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
9top 25 Stanford 0.85 0.96 0.97 0.91 0.93 0.96 0.96 0.88 0.91

10top 25 Dartmouth (Tuck) 0.73 0.79 0.91 0.81 0.89 0.79 0.79 0.79 0.83
11top 25 UVA (Darden) 0.78 0.91 0.92 0.84 0.87 0.91 0.93 0.86 0.90
12top 25 UCLA (Anderson) 0.78 0.83 0.93 0.84 0.93 0.83 0.83 0.83 0.84
13top 25 NYU (Stern) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
14top 25 Carnegie Mellon 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
15top 25 MIT (Sloan) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
16top 25 UC Berkeley 0.77 0.88 0.96 0.84 0.92 0.88 0.88 0.83 0.84
17top 25 Washington University (Olin) 0.81 0.86 0.95 0.85 0.95 0.85 0.86 0.86 0.86
18top 25 Texas at Austin 0.66 0.72 0.86 0.73 0.85 0.71 0.77 0.76 0.77
19top 25 UNC (Kenan-Flagler) 1.00 0.99 1.00 1.00 1.00 0.99 1.00 1.00 1.00
20top 25 Yale 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
21top 25 Indiana (Kelley) 0.66 0.76 0.86 0.70 0.80 0.76 0.81 0.81 0.82
22top 25 Maryland (Smith) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
23top 25 Wisconsin -- Madison 1.00 0.90 1.00 1.00 1.00 0.90 1.00 1.00 1.00
24top 25 Purdue (Krannert) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
25top 25 USC (Marshall) 0.75 0.82 0.87 0.80 0.93 0.82 0.86 0.79 0.81
26next 25 Arizona (Eller) 0.53 0.64 0.85 0.66 0.78 0.64 0.67 0.67 0.67
27next 25 Arizona State 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
28next 25 Babson (Olin) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
29next 25 BYU (Marriott) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
30next 25 Emory (Goizueta) 0.75 0.81 0.90 0.82 0.93 0.81 0.81 0.80 0.81
31next 25 Georgetown 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
32next 25 Georgia (Terry) 0.46 0.62 0.84 0.55 0.72 0.62 0.66 0.64 0.64
33next 25 Illinois at Urbana-Champaign 1.00 0.89 1.00 1.00 1.00 0.89 1.00 1.00 1.00
34next 25 Iowa 0.71 0.89 0.95 0.84 0.94 0.88 0.88 0.75 0.75
35next 25 Michigan State (Broad) 1.00 0.95 1.00 1.00 1.00 0.95 1.00 1.00 1.00
36next 25 Notre Dame 0.68 0.92 0.98 0.76 0.79 0.92 0.96 0.86 0.86
37next 25 Ohio State (Fisher) 0.73 0.81 0.90 0.83 0.97 0.81 0.83 0.76 0.76
38next 25 Penn State (Smeal) 0.51 0.67 0.87 0.63 0.79 0.67 0.70 0.64 0.64

    input-oriented measures output-oriented measures
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no tier school name GEM CCR BCC RUSSIN GEMIN CCR BCC RUSSOUT GEMOUT
39next 25 Pittsburgh (Katz) 0.81 0.73 0.98 0.95 0.99 0.73 0.86 0.81 0.81
40next 25 Rice (Jones) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
41next 25 Rochester (Simon) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
42next 25 SMU (Cox) 0.76 0.79 0.90 0.83 0.97 0.79 0.81 0.78 0.78
43next 25 South Carolina (Darla Moore) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
44next 25 Tennessee -- Knoxville 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
45next 25 Texas A&M 0.62 0.65 0.92 0.79 0.91 0.65 0.66 0.65 0.68
46next 25 Thunderbird 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
47next 25 UC Irvine 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
48next 25 Vanderbilt (Owen) 0.91 0.94 0.95 0.93 0.96 0.94 0.95 0.94 0.95
49next 25 Wake Forest (Babcock) 1.00 0.97 1.00 1.00 1.00 0.97 1.00 1.00 1.00
50next 25 William & Mary 0.94 0.97 1.00 0.95 0.96 0.97 0.99 0.99 0.99
51tier-3 Boston College 0.82 0.82 0.99 0.96 1.00 0.82 0.83 0.82 0.82
52tier-3 Boston University 1.00 0.96 1.00 1.00 1.00 0.96 1.00 1.00 1.00
53tier-3 Case Western (Weatherhead) 0.86 0.83 0.99 0.95 0.97 0.83 0.94 0.88 0.89
54tier-3 Clark Atlanta 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
55tier-3 Florida (Warrington) 0.53 0.68 0.86 0.69 0.85 0.68 0.71 0.62 0.62
56tier-3 Georgia Tech (DuPree) 0.63 0.88 0.94 0.73 0.78 0.88 0.91 0.80 0.80
57tier-3 Minnesota (Carlson) 0.86 0.98 0.98 0.89 0.89 0.98 0.98 0.96 0.96
58tier-3 SUNY Buffalo 0.65 0.77 0.97 0.91 0.99 0.77 0.77 0.66 0.66
59tier-3 Tulane (Freeman) 0.70 0.89 0.98 0.73 0.78 0.89 0.90 0.89 0.89
60tier-3 UC Davis 0.55 0.64 0.83 0.71 0.83 0.64 0.66 0.66 0.66
61tier-3 Washington -- Seattle 0.56 0.60 0.87 0.69 0.88 0.60 0.63 0.63 0.63




