
Available online at www.sciencedirect.com
European Journal of Operational Research 188 (2008) 330–341

www.elsevier.com/locate/ejor
Discrete Optimization

A hybrid heuristic ordering and variable neighbourhood
search for the nurse rostering problem

Edmund K. Burke a,*, Timothy Curtois a, Gerhard Post b,
Rong Qu a, Bart Veltman b

a School of Computer Science and Information Technology, University of Nottingham, Jubilee Campus, Wollaton Road,

Nottingham NG8 1BB, UK
b ORTEC, Groningenweg 6-33, 2803 PV Gouda, Holland, The Netherlands

Received 24 January 2006; accepted 24 April 2007
Available online 29 April 2007
Abstract

This paper is concerned with the development of intelligent decision support methodologies for nurse rostering prob-
lems in large modern hospital environments. We present an approach which hybridises heuristic ordering with variable
neighbourhood search. We show that the search can be extended and the solution quality can be significantly improved
by the careful combination and repeated use of heuristic ordering, variable neighbourhood search and back-tracking.
The amount of computational time that is allowed plays a significant role and we analyse and discuss this. The algorithms
are evaluated against a commercial Genetic Algorithm on commercial data. We demonstrate that this methodology can
significantly outperform the commercial algorithm. This paper is one of the few in the scientific nurse rostering literature
which deal with commercial data and which compare against a commercially implemented algorithm.
� 2007 Elsevier B.V. All rights reserved.

Keywords: Variable neighbourhood search; Heuristics and metaheuristics; Nurse rostering; Hybrid methods
1. Introduction

It is clear that the efficient rostering of healthcare
personnel can lead to the more effective utilisation
of valuable resources. Healthcare institutions
around the world are becoming increasingly inter-
ested in the deployment of decision support technol-
ogy to aid the personnel scheduling process. A very
general form of the nurse rostering problem could
be described as follows: Given a set of shifts and a
0377-2217/$ - see front matter � 2007 Elsevier B.V. All rights reserved

doi:10.1016/j.ejor.2007.04.030

* Corresponding author.
E-mail address: ekb@cs.nott.ac.uk (E.K. Burke).
set of nurses over a certain time period, assign each
shift to a nurse subject to a set of constraints. The
constraints are usually defined by regulations, work-
ing practices and the preferences of the nurses.

The problem of nurse rostering is relatively easily
described but like most real world search problems it
is far from easy to automatically generate very high
quality solutions. Indeed, there have been many
papers over the years from across operational
research and artificial intelligence that have tackled
the problem in one form or another. A wide range
of approaches and techniques have been investigated
and used. Ernst et al. [19,20] identified 28 different
.

mailto:ekb@cs.nott.ac.uk

E.K. Burke et al. / European Journal of Operational Research 188 (2008) 330–341 331
categories of methods that have been used on per-
sonnel scheduling problems. These include con-
straint logic programming, constructive heuristics,
expert systems, genetic algorithms, integer program-
ming, set partitioning, simple local search and simu-
lated annealing. A recent review of automated nurse
rostering approaches found that, although there has
been a lot of research in the area, surprisingly few of
the methods were tested on real world data [17]. The
paper went on to conclude that even fewer have actu-
ally been implemented in real hospital wards.

Of those techniques that have been applied on
real-world problems metaheuristic methods seem
to dominate. One approach which has been applied
in multiple real world hospitals is a hybrid tabu
search [15]. The tabu search is integrated with tech-
niques which are usually observed in manual sched-
uling approaches. The algorithm has been
incorporated into software that has been used to cre-
ate nurse rosters in over 40 Belgian hospitals and
copes with many shift types, work regulations and
skill categories. This work was hybridised with an
evolutionary approach [12] to produce a methodol-
ogy which could generate higher quality solutions
but at the cost of increased computational time. Var-
iable Neighbourhood Search [21,28] has also been
applied and tested on highly constrained real world
nurse rostering data [14]. The authors found that
VNS could be effectively used to escape from the
local optima found using single neighbourhood heu-
ristics. They also commented ‘‘After reaching a local
optimum, we recommend the exploration of wider
environments’’. Evaluation methods for challenging
real world problems are presented and discussed in
[13]. A methodology which can handle a more flexi-
ble approach to real world nurse rostering than the
traditional fixed period based approach is presented
in [11]. An overview of the work carried out by these
authors in Belgian hospitals is presented in [16].

Another investigation on real data explored a
genetic algorithm approach [1], which successfully
exploits problem specific knowledge in tackling the
problem. Although the method is tailored for that
particular problem instance, the underlying con-
cepts could be applied to other nurse rostering prob-
lems. In 1998, Dowsland was also able to match the
quality of schedules produced by an expert human
scheduler using a highly developed tabu search
[18]. The algorithm ‘oscillates’ between trying to
improve the cover and improving the preference
costs. As well as using tabu lists, candidate lists
and diversification strategies, the search also uses
a large neighbourhood created by looking for chains
of overall improving swaps. Aickelin and Li [2,3]
have since experimented with the application of
bayesian optimisation and classifier systems to sim-
ilar nurse rostering problems. The results are close
to those produced by an optimal integer program-
ming method and the authors concluded that with
further effort and experimentation the algorithms
could well improve even more. Bellanti et al. [9]
tackled a problem with hard constraints and objec-
tives (or soft constraints) using various local search
techniques. The authors presented good results for a
tabu search and iterated local search which use
neighbourhoods defined by changing the assign-
ment of night shifts.

Another methodology that has been tested on
complex real-world data from a UK hospital is
case-based reasoning [30]. This approach avoids
the use of evaluation functions but instead aims to
imitate how an expert human scheduler would pro-
duce a good schedule. This is done by storing
observed methods for repairing violations in sched-
ules and retrieving, adapting and performing these
repairs or moves whenever a similar violation is
encountered again. As an extension to their work,
the authors also suggest methods in which it could
be combined with a meta-heuristic approach [7,8].
Another relatively recent methodology is a combi-
nation of constraint networks and knowledge-based
rules [24]. The approach was implemented in a com-
mercial software package and has been successfully
used in a number of hospitals.

Berrada et al. [10] developed a multi-objective
mathematical programming model to represent a
real world problem containing both hard and soft
constraints in a Canadian hospital. The schedules
produced met the standards required by the head
nurses. The authors also experimented with a tabu
search and found that although it required greater
computational time it was useful in some circum-
stances. Valouxis and Housos [32] approach a nurse
rostering problem using an approximate integer lin-
ear programming model to produce initial solutions.
The initial solutions are then further optimised
using a local search with a ‘2-opt’ neighbourhood
and a tabu search. Their method compared very
favourably with a constrained programming
approach. In 2004, Bard and Purnomo [5] employed
a combination of heuristic and integer program-
ming methods to solve nurse preference scheduling
problems with up to one hundred nurses and
approximately 13 hard and soft constraints. Individ-

332 E.K. Burke et al. / European Journal of Operational Research 188 (2008) 330–341
ual nurse schedules are created by modifying a base
schedule using swaps. These columns are then used
to form a set covering type problem which, when
solved, creates the overall roster. Later they
extended this work to further improve the quality
of schedules by incorporating the use of a down-
grading option [4] and in [6] present a model which
combines cyclic and preference scheduling.

By defining fuzzy constraints (i.e. constraints that
may be partially satisfied and partially violated)
Meyer auf’m Hofe [27] solved real world nurse
rostering problems as constraint optimisation rather
than as constraint satisfaction problems. Branch
and bound and iterative improvement are used to
quickly produce good rosters. The approach was
developed using experience gained developing a
software rostering system that is used in approxi-
mately 60 German hospitals [26].

There are many more papers in the literature
which are discussed in more detail in [17,19]. It is
clear that relatively few papers in the literature have
worked with real world data or been implemented in
hospitals [17]. One of the main goals in this paper is
to develop an effective and efficient search approach
to improve upon the genetic algorithm based
approach that is currently employed within
ORTEC’s Harmony software.1 As such, the meth-
odology has to be able to handle all the require-
ments and constraints that are inherent in nurse
rostering problems from the modern complex envi-
ronments that are represented by today’s hospitals.

This paper presents our investigation into combin-
ing a variable neighbourhood search with a method
of heuristically unassigning shifts and repairing
schedules using heuristic ordering. The next section
describes the nurse rostering problem we were deal-
ing with. Sections 3 and 4 discuss the algorithm and
results respectively. In Section 5 we draw conclusions
on the success of this approach and present some pos-
sible future extensions in Section 6.

2. Problem description

The data for this problem was provided by
ORTEC, a major supplier of software products
and consulting in the field of advanced planning
and scheduling. They support hospitals and other
organisations all over the world with automated
workforce management solutions.
1 The results of this research are incorporated in the latest
product versions of Harmony.
The number of nurses in the problem instances
tested ranges from 30 to 12, the ratio of full to part
time nurses also varies between wards. For example,
one ward consists of 16 nurses, 12 of the nurses are
full time and work 36 hours per week. One nurse
works 32 hours per week and the other 3 are also
part time and work 20 hours per week. Each
instance also has a number of specific personal
requests such as particular shifts and/or days
requested off or on. All the other constraints that
need to be satisfied are presented in Sections 2.2
and 2.3. The scheduling period for each instance is
exactly one month.

The data was provided by ORTEC as a challeng-
ing real world problem and is very typical of their
clients’ needs. An approach which is successful in
dealing with a problem as complex as this will pro-
vide direct benefits in a number of real world per-
sonnel scheduling scenarios.

2.1. Shifts and shift demand

There are four different shift types in the prob-
lem: day, early, late and night shifts. All the shifts
except night shifts cover 9 hours including 1 hour
of rest time. So the actual number of working hours
for each shift type is 8. Night shifts last 8 hours but
include no rest time and so are counted as 8 working
hours. The total cover requirements for each shift
for each day vary between instances. Generally, lar-
ger wards require more nurses on duty during each
shift but similar sized wards can also have different
cover requirements.

Table 1 shows the daily demand for these shifts in
the instance described earlier with 16 nurses.

2.2. Hard constraints

The following rules must be met at all times
otherwise the schedule is considered to be infeasible
and unacceptable.

• Shift cover requirements need to be satisfied.
Over coverage is not permitted.

• A nurse may start only one shift per day.
• The maximum overtime assigned to each nurse

per month is 4 hours.
• The maximum hours worked per week is on aver-

age 36 hours over a period of 13 consecutive weeks
which do not include night shift assignments.

• The maximum number of night shifts in any per-
iod of 5 consecutive weeks is 3.

Table 1
Shift types and an example weekly demand

Shift Start time End time Mon Tue Wed Thu Fri Sat Sun

Day (D) 08:00 17:00 3 3 3 3 3 2 2
Early (E) 07:00 16:00 3 3 3 3 3 2 2
Late (L) 14:00 23:00 3 3 3 3 3 2 2
Night (N) 23:00 07:00 1 1 1 1 1 1 1

E.K. Burke et al. / European Journal of Operational Research 188 (2008) 330–341 333
• A nurse must receive at least 2 weekends off in
any 5 week period. A weekend off lasts 60 hours
including Saturday 00:00 to Monday 04:00.

• Following 2 or more consecutive night shifts, a
42 hour rest is required.

• During any period of 24 hours, at least 11 hours
rest is required. A night shift has to be followed
by at least 14 hours rest. Once in a period of 21
days, however, the rest period may be reduced
to 8 hours.

• The maximum number of consecutive night shifts
is 3.

• The maximum number of consecutive days
worked is 6.

2.3. Soft constraints

Ideally these requirements should be fulfilled.
However, to obtain a schedule that meets all the
hard constraints it is often necessary to break some
of the soft rules. A weight is assigned to each soft
constraint to reflect its importance (especially in
comparison to other soft constraints). A weighting
is simply a number. The higher the number, the
more strongly desired the constraint or request is.
The weights are set either by the head nurses or
through feedback from the nurses about what qual-
ities they desire in their schedules. As a rough guide,
the weights could be described as follows:

Weight 1000: The constraint should not be vio-
lated unless absolutely necessary.
Weight 100: The constraint is strongly desired.
Weight 10: The constraint is preferred but not
critical.
Weight 1: Try and obey this constraint if possible
but it is not essential.

In practice, exponentially scaled weights like these
are most commonly used. However, the users do
have the option of setting and changing the weight
for each constraint to any positive integer value.
2.4. Evaluation function

The evaluation function is the sum of all the pen-
alties incurred due to soft constraint violations. The
penalty for each soft constraint is calculated either
linearly or quadratically using the violation mea-
surement factors listed in Table 2. The violation
measurement factor is the degree to which the con-
straint is violated or the excess of the violation. The
use of either quadratic or linear evaluation func-
tions arises from practices in Harmony which were
developed based on customer preferences and
feedback.

A soft constraint with a linear penalty function is
simply calculated as: The violation measurement
factor multiplied by the weight. For example, it is
preferable to have at most zero stand-alone or iso-
lated shifts. This is a soft constraint with weight
1000. However, to produce a feasible schedule (i.e.
one in which all the hard constraints are fulfilled)
it may be necessary to allocate a nurse to an isolated
shift. This is one more than is preferred so a penalty
of 1000 is incurred. If the nurse had two isolated
shifts, they would have a penalty of 2000 (2 * 1000).

A quadratic penalty function is calculated as:
The violation measurement factor squared and mul-
tiplied by the weight. For example, it is preferable
that, during a period of 5 weeks, a nurse performs
no more than three night shifts. This is a soft con-
straint with a weight of 1000. However, it may be
necessary to assign five night shifts in the 5 week
period (i.e. 2 more than preferred), then the penalty
for this soft constraint violation would be 4000
(22

* 1000).
It is now possible to define the objective of the

problem: To find a feasible schedule with the lowest
possible penalty caused by soft constraint viola-
tions. From the perspective of the head nurse, of
course, the actual penalty hides a lot of information
about the solution but it is not totally meaningless.
By examining the penalty for each schedule it is pos-
sible to gain some idea of the schedule quality. For
example, if the penalty is less than 1000 then we

Table 2
Soft constraints

Constraint Weight Penalty
function

Violation measurement factor

From Friday 22:00 to Monday 0:00 a nurse should
have either no shifts or at least 2 shifts (‘complete
weekend’)

1000 Linear Number of incomplete weekends

No stand-alone shifts, i.e. a day off, day on, day off
sequence

1000 Linear Number of isolated shifts

The length of a series of night shifts should be within
the range 2–3. It could be before another series

1000 Quadratic Difference between length of series and acceptable
length. e.g. if 1 night shift, factor = 1, if 2 or 3 night
shifts, factor = 0, if 4 night shifts, factor = 1, if 5
factor = 2 etc.

A minimum of 2 days rest after a series of day, early

or late shifts
100 Linear Factor is one if only one day of rest otherwise zero

Employees with availability of 30–48 hours per week,
should receive a minimum of 4 shifts and a
maximum of 5 shifts per week

10 Quadratic Difference between number of shifts received and
acceptable number per week

Employees with availability of 0–30 hours per week,
should receive a minimum of 2 shifts and a
maximum of 3 shifts per week

10 Quadratic Difference between number of shifts received and
acceptable number per week

For employees with availability of 30–48 hours per
week, the length of a series of shifts should be
within the range of 4–6

10 Quadratic Difference between length of series received and
acceptable series length

For employees with availability of 0–30 hours per
week, the length of a series of shifts should be
within the range 2–3

10 Quadratic Difference between length of series received and
acceptable series length

The length of a series of early shifts should be within
the range 2–3. It could be within another series

10 Quadratic Difference between length of series received and
acceptable series length

The length of a series of late shifts should be within
the range of 2–3. It could be within another series

10 Quadratic Difference between length of series received and
acceptable series length

An early shift after a day shift should be avoided 5 Linear Number of early shifts after days shifts
A night shift after an early shift should be avoided 1 Linear Number of night shifts after early shifts

334 E.K. Burke et al. / European Journal of Operational Research 188 (2008) 330–341
know that all the constraints with weight 1000 have
been satisfied. However, the key to producing satis-
factory schedules is obviously setting the correct
weights and ensuring that all the required con-
straints are defined. Therefore it is essential that
the end user either has a good understanding of
how to set the weights and define constraints or
has clearly described the requirements to the soft-
ware administrator.

As mentioned previously, a feasible schedule is
a schedule that satisfies all the hard constraints.
A penalty for an infeasible schedule can still be
calculated but in our system a feasible schedule
is always considered to be better than an infeasible
schedule regardless of penalty values. The only
infeasible schedules that may be introduced during
the search or returned afterwards are those that
provide insufficient cover. This is ensured by never
assigning a shift to a nurse if it will violate a hard
constraint. For example, at certain points in the
algorithm, shifts may be unassigned in a schedule
and so the coverage constraint will be violated.
These shifts will then only be reassigned if no hard
constraint violations occur in doing so. If the qual-
ity of infeasible schedules need to be compared,
the schedules with the lowest number of unas-
signed shifts (i.e. minimum shift coverage viola-
tion) are ranked higher regardless of their
penalties. If infeasible schedules have the same
number of shifts unassigned, then the penalty
function is used.

For all the instances we tested we were able to
produce feasible schedules. It is possible though that
there may be an instance for which a feasible sche-
dule does not exist. In practice, if a feasible schedule
cannot be found (either because one does not exist
or it is too difficult to find) then the head nurse or
manager decides whether to work with the best
infeasible schedule or relax some of the constraints
or hire extra personnel and/or to assign some extra
nurses to the ward (usually agency or float nurses)
and then restart the search.

E.K. Burke et al. / European Journal of Operational Research 188 (2008) 330–341 335
3. The hybrid variable neighbourhood search

algorithm

The algorithm that we present in this paper rep-
resents an iterative process in which variable neigh-
bourhood search is followed by a schedule
disruption and repair strategy. The repairing of
the schedule is performed using a heuristic ordering
technique. Back-tracking is also carried out to fur-
ther improve the quality of the schedules produced.

The overall process is illustrated by the pseudo-
code in Fig. 1.

3.1. Initialisation

A heuristic ordering is used to create the initial
schedule. In the experimentation section, we will
be comparing our approach against a commercial
genetic algorithm developed by ORTEC and in
use in real hospital environments. The commercial
genetic algorithm this hybrid variable neighbour-
hood search is evaluated against uses a similar heu-
ristic ordering method to create its initial
population of schedules.

The aim of the heuristic ordering process is to
sort all the shifts in order of the estimated difficulty
of assigning them or how likely they are to cause
high penalties (by using the criteria shown in Table
3). Using the weighted sum to identify them, the
more troublesome shifts are then assigned earlier
on in the schedule construction process.

Once the shifts have been sorted in the order in
which to try and assign them, they are in turn
assigned to each nurse to calculate the penalty that
Create Initial Schedule

REPEAT

 Variable Neighbourhood Search

 IF current penalty < best penalty

 SET best schedule to current sc
 SET best penalty to current pe

 ELSE

 SET Current Schedule to Best Sc

 ENDIF

 Unassign shifts of a set of nurses

 Repair schedule (using heuristic or

UNTIL search terminated

Fig. 1. Pseudo-code of the ov
would be incurred if the shift was assigned to that
nurse. The shift is then assigned to the nurse that
gains the least penalty in receiving that shift.

The attributes of a shift that are examined when
ranking the shifts in the order of possible difficulty to

assign are described in Table 3 along with the func-
tions used to assign its total weight for ranking.

The first two criteria in Table 3 are obvious to
examine as there are high penalties associated with
night shift and weekend shift constraints. The third
criterion used is to deduce how many nurses are able
to fulfil this shift. If there are many nurses able to
undertake it then it can be scheduled later but if
there are very few then it is a good idea to assign
it early on in the process. The shift date criteria is
used to try and ensure that shifts in the early days
in the scheduling period are assigned earlier on in
the process. This is useful as these shifts are more
likely to conflict with the previous schedule’s assign-
ments. The shift date evaluation function is in units
of days.
3.2. Variable neighbourhood search

When the initial schedule has been created using
the heuristic ordering method described above, a
variable neighbourhood search is applied. This
makes use of two neighbourhoods. Both of these
neighbourhoods are commonly used by meta-heu-
ristics and other approaches and have been
described before, see, for example, [22,23,25,29].
The two neighbourhoods are defined by the follow-
ing moves or changes to a schedule:
THEN

hedule
nalty

hedule (i.e. Back-track one step)

dering method)

erall hybrid algorithm.

Table 3
Shift evaluation criteria

Shift criteria Evaluation function Weight

Night shift Weight 100
Weekend shift Weight 50
Number of valid nurses (NumValidNurses/TotalNumNurses) * Weight 70
Shift date Weight * (Schedule.EndDate � Shift.BeginDate) 20

336 E.K. Burke et al. / European Journal of Operational Research 188 (2008) 330–341
1. Assigning a shift to a different nurse.
2. Swapping the nurses assigned to each of a pair of

shifts.

The first neighbourhood is a lot smaller than the
second neighbourhood. However, it is observed that
moves in the second neighbourhood can improve
the quality of the schedule quite significantly.

Our variable neighbourhood approach is a vari-
able neighbourhood descent. As can be seen from
Fig. 2, the smaller neighbourhood (neighbourhood
1) is repeatedly examined for an improving move
and the move is executed if found. When there are
no improving moves left in neighbourhood 1, then
the much larger neighbourhood 2 is examined. If a
move in neighbourhood 2 is used then neighbour-
hood 1 is examined again. This is repeated until
there are no improving moves left in neighbour-
hoods 1 and 2.

Initially, the Variable Neighbourhood Search
was implemented in a steepest descent manner. That
is, for each of the moves in the neighbourhood, we
identified the move or swap that would bring the
most improvement and then performed that move
or swap. The disadvantage in steepest descent is
the extra time required to examine every move
Fig. 2. Pseudo-code of VNS.
and swap, especially in a highly constrained prob-
lem like this in which there are many constraints
to check and penalties to calculate at each move.
This was especially noticeable in the second neigh-
bourhood, which is quite large.

In an attempt to decrease the running time of the
algorithm, a quickest descent form of VNS was
tested. That is, until no more improving moves are
found, examine each move and swap and execute
the move or swap if it decreases the schedule’s over-
all penalty at all.

It was interesting to discover that, for this prob-
lem, using these neighbourhoods, the quickest des-
cent method was not only faster than steepest
descent but it was usually at least as good and some-
times better in comparison. This was an interesting
observation that was initially difficult to under-
stand. On closer investigation, though, a possible
explanation became apparent. The heuristic order-
ing is very effective at satisfying the constraints with
the highest penalties. This means that the soft con-
straint violations that the VNS needs to repair are
often ones with smaller similar sized penalties. If
there is a high probability that all the possible
improving moves will yield a similar sized improve-
ment, it is not efficient to examine all of them to find
the absolute best if it will be only slightly larger than
the average of all available improving moves.

We will briefly explain why the available neigh-
bourhoods are restricted to these two neighbour-
hoods. For example, in [14] a VNS for a nurse
rostering problem is introduced which uses a larger
set of neighbourhoods. If these neighbourhoods are
examined more closely, however, it can be observed
that many of them are already included in our larger
two. Merging many of these neighbourhoods and
searching them exhaustively is now possible due to
the recent increases in hardware technology and
computing power that we have witnessed over the
past few years. Note that the VNS experiments in
[14] were carried out on an IBM RS6000 PowerPC.
Also, some of the other neighbourhoods are used to
add moves which diversify the search and are used

E.K. Burke et al. / European Journal of Operational Research 188 (2008) 330–341 337
regardless of the effect on the schedule’s penalty. So
they are not appropriate for use in a VNS descent.

3.3. Schedule feasibility

After the creation of the initial schedule
described earlier, or the larger movements in the
search space which are described later, the schedule
may be infeasible in that the shift cover may not yet
have been fulfilled. Therefore, during the VNS, if
there are still unassigned shifts, then after a success-
ful move or swap an attempt is made to see if it is
now possible to assign any of the unassigned shifts
without creating hard constraint violations.

3.4. Schedule disruption and repair

Generally, at the end of the VNS phase the sche-
dule not only has a lower penalty than before but
the schedule is also usually now feasible by satisfy-
ing the cover requirements if it was not before.

The heuristic ordering and VNS is capable of
producing high quality schedules in a number of
minutes. However, for most instances it is more
likely that a good local optimum rather than the
global optimum has been found. Some users may
wish to continue the search for a longer time period
to try and produce an even higher quality schedule
e.g. running the search during a lunch break or over
night. Also, as computers get faster and more pow-
erful it is practical to have an approach which can
scale with these increases. A 1 hour search today
may only last 1 minute in 5 years or so.

To extend the search, a heuristic restart mecha-
nism was developed. The idea is to select sections
of the overall schedule which could possibly be
improved and to then attempt to improve them.

This is done by selecting a fixed number of nurses
who have the worst individual schedules (the pen-
alty is calculated just for their individual schedule)
and then unassigning all shifts assigned to this set
of nurses. Using the heuristic ordering method,
these shifts are then reassigned (over all available
nurses) and then the VNS is performed to try and
produce a better schedule. This schedule disruption
and repair cycle is used repeatedly until the user ter-
minates the search.

The algorithm was initially implemented to unas-
sign shifts from the current schedule after the VNS.
However, on some occasions, it was observed that
the current schedule could be significantly worse
than the best found so far and it could take a num-
ber of iterations to get the current schedule penalty
back close to the best found. To reduce this effect it
was found to be more efficient to return to the best
found (if the current schedule is worse than the best
found) before the disruption phase.

As stated, the shifts selected for unassigning are
those belonging to a fixed number of nurses with
the worst individual schedules i.e. those with the
highest individual penalties. To prevent cycling
though, one of these nurses is selected randomly
and replaced with another randomly selected nurse
not belonging to this set.

To identify the best number of nurses from which
to unassign shifts, a number of experiments were
conducted on each instance in which this number
ranged between 1 and 14. The results are provided
in Section 4.

3.5. Genetic algorithm

Harmony uses a genetic algorithm to produce
schedules. This existing algorithm provides a bench-
mark upon which to compare the performance of
the algorithm described here.

The genetic algorithm of Harmony is designed to
be robust and effective for a wide variety of roster-
ing problems. To achieve this, like our algorithm,
it does not heavily rely on problem specific knowl-
edge or use detailed knowledge of the problems’
structures. An algorithm designed for a specific
problem which heavily exploits its particular struc-
ture is likely to be more effective but less useful
when other problems are considered. The genetic
algorithm has, however, already performed in a
more than satisfactory manner for a number of
ORTEC’s clients with varying requirements.

The algorithm has a number of phases. Firstly,
the initial population of schedules is created using
a similar heuristic ordering method to the one
described in this paper but ensuring that each indi-
vidual (or schedule) is different enough to introduce
sufficient diversity in the population. Successive gen-
erations are created using roulette wheel parent
selection, two types of crossover and three types
of mutation. The particular crossover and/or muta-
tions used are determined statistically by measuring
their success in previous use between generations.
The genetic algorithm terminates when a minimum
threshold of improvement between generations is
reached. After the genetic algorithm phase, a local
search is performed to further improve the best
schedule found.

7
8

9
10

11
12

13
14

37
66

37
66

37
66

37
66

37
66

37
66

37
66

37
66

23
90

23
90

23
90

23
90

23
90

23
90

23
90

23
90

43
01

46
87

46
87

46
87

46
87

46
87

46
87

46
87

11
86

10
35

11
91

11
76

13
66

13
66

13
66

13
66

65
75

63
50

65
75

65
75

65
75

62
97

65
75

65
75

28
,8

26
28

,8
21

29
,8

57
28

,9
41

32
,1

41
32

,1
71

29
,9

25
29

,8
74

18
,3

25
21

,0
55

16
,3

48
15

,4
37

16
,4

55
19

,4
80

18
,5

51
22

,3
53

22
,9

91
22

,8
22

23
,9

26
23

,8
51

23
,7

16
23

,9
26

24
,7

17
24

,6
63

23
,3

94
23

,3
34

24
,2

97
24

,2
97

24
,2

97
24

,2
97

24
,2

97
24

,2
97

In
fe

as
ib

le
In

fe
as

ib
le

In
fe

as
ib

le
In

fe
as

ib
le

In
fe

as
ib

le
In

fe
as

ib
le

In
fe

as
ib

le
In

fe
as

ib
le

45
46

45
46

45
46

45
46

45
46

45
46

45
46

45
46

86
2

99
6

95
1

99
6

99
6

99
6

99
6

99
6

17
70

50
26

39
51

50
26

50
26

50
26

50
26

50
26

65
0

79
0

80
0

80
0

80
0

80
0

80
0

80
0

16
10

16
26

16
26

16
26

16
26

16
26

16
26

16
,1

21
16

,9
91

18
,8

73
16

,0
52

18
,8

73
18

,8
73

11
.1

4.
5

5.
1

4.
9

2.
2

1.
6

1.
9

0.
9

338 E.K. Burke et al. / European Journal of Operational Research 188 (2008) 330–341
4. Results

To develop this algorithm, the workforce man-
agement and planning software ORTEC Harmony
[31] was used. Employing Harmony provided a
number of advantages from a research point of
view. The software has a highly developed user
interface with which a large number and wide vari-
ety of nurse rostering problems can be defined and
created. All data structures and methods for manip-
ulating the problem instances themselves already
exist with many hours of work already performed
to increase their access and use. This meant we were
able to concentrate on creating, testing and improv-
ing an efficient algorithm for a wide variety of nurse
rostering problems. The software also provides a
clear visual display of the schedules and with precise
breakdowns of why each employee receives the pen-
alty they have. It was also particularly useful to
have an existing commercial strength algorithm
with which to compare against our work.

The experiments were performed using a PC with
a P4 2.4 GHz processor.
T
ab

le
4

H
yb

ri
d

V
N

S
re

su
lt

s

N
u

m
b

er
o

f
n

u
rs

es
se

le
ct

ed
fo

r
u

n
as

si
gn

m
en

t

In
st

an
ce

N
u

rs
es

G
en

et
ic

al
go

ri
th

m

P
en

al
ty

af
te

r

fi
rs

t
V

N
S

1
2

3
4

5
6

1
30

36
26

37
66

37
66

37
21

37
46

37
51

37
66

37
51

2
30

23
81

23
90

23
75

23
30

22
85

22
85

22
95

23
90

3
28

43
25

46
87

45
57

44
76

46
87

46
87

46
87

46
87

4
26

13
01

13
66

13
11

12
46

12
31

12
16

11
51

10
81

5
24

52
30

65
75

64
50

53
40

52
91

65
45

54
65

65
75

6
24

25
,4

06
32

,1
71

31
,9

86
31

,8
96

31
,9

71
27

,0
38

29
,9

31
28

,8
26

7
22

15
,6

61
22

,6
02

22
,6

02
21

,4
76

15
,5

50
16

,6
01

21
,7

56
15

,2
76

8
22

22
,8

77
25

,8
29

25
,8

24
23

,6
94

24
,8

08
23

,6
78

24
,7

99
24

,8
43

9
20

22
,4

78
24

,2
97

24
,2

77
24

,1
74

24
,2

28
24

,1
63

23
,2

98
24

,2
84

10
18

In
fe

as
ib

le
In

fe
as

ib
le

In
fe

as
ib

le
In

fe
as

ib
le

15
,7

06
15

,6
96

In
fe

as
ib

le
In

fe
as

ib
le

11
18

45
25

45
46

45
46

45
30

44
60

45
06

45
46

45
46

12
16

77
5

99
6

90
5

83
1

76
0

69
0

80
5

83
0

13
14

17
57

50
26

49
51

27
41

15
96

15
91

15
97

17
40

14
14

76
0

80
0

75
5

59
1

55
6

64
5

62
1

70
0

15
13

15
00

16
26

13
45

12
75

13
65

14
01

13
41

15
50

16
12

18
,2

02
18

,8
73

18
,8

73
14

,7
46

18
,8

22
15

,8
67

11
,8

50
13

,0
00

A
ve

ra
ge

im
p

ro
ve

m
en

t
in

p
en

al
ty

o
n

sc
h

ed
u

le
fo

u
n

d

af
te

r
fi

rs
t

V
N

S
(%

)

2.
7

11
.4

13
.6

13
.9

13
.7

12
.4
4.1. Effects of varying the number of nurses to

unassign shifts from

Table 4 presents the results of varying the num-
ber of nurses from which to unassign shifts in the
disruption and repair phase. The ‘penalty after first
VNS’ column is the penalty of the schedule after the
VNS is first applied to the initial schedule. The col-
umns ‘1–14’ show the penalty of the best schedule
found after the search has been applied for 1 hour
when that number of nurses were selected for shift
unassignment during the disruption.

The results show the best number of nurses to use
is between three and five. Using these settings, the
final schedule is, on average, 14% lower than the
schedule found after the first VNS. Using two
nurses can also generate some improvement but
using one nurse alone is generally ineffective and
does not provide sufficient diversification in the
search. Using six and seven nurses can also provide
some good results but, above seven, the perfor-
mance deteriorates with eleven to fourteen provid-
ing little improvement and suggesting too much
diversification.

There does not seem to be any correlation
between the size of the instance in terms of the num-
ber of nurses and the optimal number of nurses to

SET MoveMade to TRUE

WHILE MoveMade is TRUE

 SET MoveMade to FALSE

 FOR each move in neighbourhood one

 IF an improving move THEN
 make this move

 END IF

 END LOOP

 FOR each move in neighbourhood two

 IF an improving move THEN
 make this move
 SET MoveMade to TRUE

 END IF

END LOOP

 ENDWHILE

Fig. 3. Comparison of the algorithms’ progress.

E.K. Burke et al. / European Journal of Operational Research 188 (2008) 330–341 339
use for unassignment. Three to five is the best range
for instances with varying sizes.

The success of the disruption and repair also var-
ies between instances. For example, on instance 13,
using three, four or five nurses provides almost 70%
improvement on the schedule after one VNS
whereas, on instance one, the final improvement is
less than 1%.

4.2. Comparison of the hybrid VNS with the

genetic algorithm

If the number of nurses selected in the disruption
phase is three or four then the hybrid VNS outper-
forms the genetic algorithm on 9 of the 16 instances.
Interestingly, the hybrid VNS is more effective on
the instances with less than 20 nurses. For example,
in the experiments in which four nurses are selected,
all the schedules found for instances with less than
20 nurses have lower penalties than the genetic algo-
rithm. If three are selected, the hybrid VNS outper-
forms on all but one.

It can also be seen that using the VNS phase
alone is not sufficient to outperform the genetic
algorithm. For all instances, after the first VNS iter-
ation the schedule is worse than the final schedule
produced by the genetic algorithm. The disruption
and repair phases are required to further improve
the schedule.

Fig. 3 shows the progress of the two algorithms in
finding schedules for instance 12. The graph shows
the penalty for the best schedule found so far for
each algorithm after x minutes. For the genetic algo-
rithm, a steady decrease in penalty can be seen over
the 60 minutes as, after each generation, a new best
schedule is often found as a result of the crossover
and repair operations. A drop of over 1000 in pen-
alty in under a couple of minutes is most likely due
to one of the constraints with a weight of 1000 being
satisfied as well as other small improvements being
made. The relatively steep (as all the soft constraints
with weight 1000 have now been satisfied) decrease
in penalty in the last 2 minutes for the genetic algo-
rithm is due to the final local search phase.

For the hybrid VNS, it can be seen that within
four minutes (after a couple of iterations of the
algorithm) the best schedule already has a penalty
close to that produced finally by the genetic algo-
rithm at the end of the 60 minutes. Between the
4th and 60th minute, an additional better schedule
is found as a result of the schedule disruption, repair
and VNS. From observing the algorithm when
applied to the other scheduling periods, within the
first 60 minutes there are usually three or four
improvements in the best solution found between
the 4th and 60th minute.

4.3. Experimentation with longer computation times

As can be seen, the hybrid VNS algorithm is
more likely to find a better solution the more time
it is given. However, in most hospitals, schedules
can be produced a long time in advance of when
they are required. This observation motivated our
experiments with granting the algorithm more com-
putation time than just 1 hour.

The hybrid VNS was granted 12 hours of compu-
tation time for one of the instances (instance 12) on
which a lot of testing using the genetic algorithm
had been previously performed by ORTEC. For this
instance, the best schedule ever found by an
extended run of the genetic algorithm (for a period
of about 24 hours) had a penalty of 681. The best
schedule previously known for this period had a
penalty of 587. This was produced over a long time
period through an iterative process of using the
genetic algorithm and then making some manual
changes to a solution before reapplying the genetic
algorithm and so on.

After 12 hours, the hybrid VNS had found a
schedule with penalty 541. It is important to note
that our approach is producing the best known
solution (produced either automatically or manu-
ally) on this real world problem instance. Moreover,
it is producing it within a period (overnight) which
is quite appropriate for this kind of problem. The

Table 5
Experimentation with longer computation times

Algorithm Penalty

Hybrid VNS after 30 minutes 736
Hybrid VNS after 60 minutes 706
Best ever genetic algorithm (24 hours) 681
Previous best known (made using manual

improvements)
587

Hybrid VNS after 12 hours 541

340 E.K. Burke et al. / European Journal of Operational Research 188 (2008) 330–341
results are summarised in Table 5. As can be seen, if
more computation time is given, the schedule can be
significantly improved.
5. Conclusions

The hybrid VNS algorithm described has been
shown to be a relatively straightforward but highly
effective approach for this problem. It is particularly
effective on medium and small sized instances with
less than twenty nurses. It is a viable alternative to
the existing genetic algorithm for the commercial
workforce management and planning software Har-
mony and has been added alongside the genetic
algorithm in the latest versions.

For instances with less than twenty nurses, the
VNS algorithm has been shown to regularly find
superior schedules when compared against the
genetic algorithm that is currently in use. For these
sized instances, the VNS algorithm represents a sig-
nificant improvement over a commercially success-
ful methodology. It has also found best known
schedules for some of the scheduling periods (by
running the algorithm for 12 hours).

On instances with more than twenty instances,
the VNS algorithm is competitive with the genetic
algorithm and outperforms it on some instances.
However, on average, the genetic algorithm is more
successful on these larger instances.

The shift unassignment and repair using heuristic
ordering method has been shown to be an efficient
and effective method of exploring the search space
and when it is combined with the VNS, schedules
of high quality can be found. It was also discovered
that back-tracking was very useful in finding better
solutions more quickly by reducing the exploration
of paths which only led to poor quality solutions.
6. Further research

Even though the results produced by this algo-
rithm are strong, there are areas in which it could
possibly be improved and which need exploring,
especially if it were being designed to be run over a
longer time period than 1 hour. For example, after
the VNS, when selecting the area of the schedule to
un-assign shifts from, a simple method is used: Unas-
sign the shifts belonging to a fixed number of nurses
with the worst individual schedules. This is an obvi-
ous heuristic and has been shown to work well. How-
ever, it is possible that there is a more effective
method of selecting which, and how many, shifts to
unassign and reassign using the heuristic ordering.

It may also be interesting to try replacing the
VNS phase with tabu search or simulated annealing.
A preliminary investigation revealed that a tabu
search over a 1 hour period was not as effective as
the genetic algorithm but if a longer time period is
used it may be possible to achieve similar results
using tabu search, especially if combined with the
schedule disruption and repair method.
Acknowledgements

This work was supported by EPSRC grant GR/
S31 150/01. We thank the anonymous referees for
their helpful comments and suggestions.
References

[1] U. Aickelin, K.A. Dowsland, Exploiting problem structure
in a genetic algorithm approach to a nurse rostering
problem, Journal of Scheduling 3 (3) (2000) 139–153.

[2] U. Aickelin, J. Li, A Bayesian optimization algorithm for the
nurse scheduling problem, in: Proceedings of 2003 Congress
on Evolutionary Computation (CEC2003), IEEE Press,
Canberra, Australia, 2003, pp. 2149–2156.

[3] U. Aickelin, J. Li, The application of Bayesian optimization
and classifier systems in nurse scheduling, in: Proceedings of
the 8th International Conference on Parallel Problem Solv-
ing from Nature (PPSN VIII)Springer Lecture Notes in
Computer Science, vol. 3242, Springer, Birmingham, UK,
2004, pp. 581–590.

[4] J.F. Bard, H.W. Purnomo, A column generation-based
approach to solve the preference scheduling problem for
nurses with downgrading, Socio-Economic Planning Sci-
ences 39 (3) (2005) 193–213.

[5] J.F. Bard, H.W. Purnomo, Preference scheduling for nurses
using column generation, European Journal of Operational
Research 164 (2) (2005) 510–534.

[6] J.F. Bard, H.W. Purnomo, Cyclic preference scheduling of
nurses using a Lagrangian-based heuristic, Journal of
Scheduling 10 (1) (2007) 5–23.

[7] G.R. Beddoe, S. Petrovic, Combining case-based reasoning
with tabu search for personnel rostering problems, Technical
Report, Automated Scheduling Optimisation and Planning
Research Group, School of Computer Science and Informa-
tion Technology, University of Nottingham, 2004.

E.K. Burke et al. / European Journal of Operational Research 188 (2008) 330–341 341
[8] G.R. Beddoe, S. Petrovic, Selecting and weighting features
using a genetic algorithm in a case-based reasoning approach
to personnel rostering, European Journal of Operational
Research 175 (2) (2006) 649–671.

[9] F. Bellanti, G. Carello, F.D. Croce, R. Tadei, A greedy-
based neighborhood search approach to a nurse rostering
problem, European Journal of Operational Research 153
(2004) 28–40.

[10] I. Berrada, J.A. Ferland, P. Michelon, A multi-objective
approach to nurse scheduling with both hard and soft
constraints, Socio-Economic Planning Sciences 30 (3) (1996)
183–193.

[11] E.K. Burke, P. De Causmaecker, S. Petrovic, G. Vanden
Berghe, Metaheuristics for handling time interval coverage
constraints in nurse scheduling, Applied Artificial Intelli-
gence 20 (3) (2006).

[12] E.K. Burke, P. Cowling, P. De Causmaecker, G. Vanden
Berghe, A memetic approach to the nurse rostering problem,
Applied Intelligence 15 (3) (2001) 199–214.

[13] E.K. Burke, P. De Causmaecker, S. Petrovic, G. Vanden
Berghe, Fitness evaluation for nurse scheduling problems, in:
Proceedings of the Congress on Evolutionary Computation
(CEC2001), IEEE Press, Seoul, Korea, 2001, pp. 1139–1146.

[14] E.K. Burke, P. De Causmaecker, S. Petrovic, G. Vanden
Berghe, Variable neighborhood search for nurse rostering
problems, in: M.G.C. Resende, J.P. de Sousa (Eds.),
Metaheuristics: Computer Decision-Making, Kluwer, 2004,
pp. 153–172.

[15] E.K. Burke, P. De Causmaecker, G. Vanden Berghe, A
hybrid tabu search algorithm for the nurse rostering prob-
lem, in: B. McKay et al. (Eds.), Simulated Evolution and
Learning, Selected Papers from the 2nd Asia-Pacific Con-
ference on Simulated Evolution and Learning, SEAL 98,
Springer Lecture Notes in Artificial Intelligence, vol. 1585,
Springer, 1999, pp. 187–194.

[16] E.K. Burke, P. De Causmaecker, G. Vanden Berghe, Novel
Meta-heuristic Approaches to Nurse Rostering Problems in
Belgian Hospitals, in: J. Leung (Ed.), Handbook of Sched-
uling: Algorithms, Models and Performance Analysis, CRC
Press, 2004.

[17] E.K. Burke, P. De Causmaecker, G. Vanden Berghe, H. Van
Landeghem, The State of the Art of Nurse Rostering,
Journal of Scheduling 7 (6) (2004) 441–499.

[18] K.A. Dowsland, Nurse scheduling with tabu search and
strategic oscillation, European Journal of Operational
Research 106 (2) (1998) 393–407.

[19] A.T. Ernst, H. Jiang, M. Krishnamoorthy, B. Owens, D.
Sier, An Annotated Bibliography of Personnel Scheduling
and Rostering, Annals of Operations Research 127 (2004)
21–144.

[20] A.T. Ernst, H. Jiang, M. Krishnamoorthy, D. Sier, Staff
scheduling and rostering: A review of applications, methods
and models, European Journal of Operational Research 153
(1) (2004) 3–27.
[21] P. Hansen, N. Mladenović, An introduction to variable
neighborhood search, in: S. Voss et al. (Eds.), Meta-heuris-
tics: Advances and trends in local searchs paradigms for
optimization, Kluwer Academic Publishers, 1999, pp. 433–
458.

[22] A. Jaszkiewicz, A metaheuristic approach to multiple objec-
tive nurse scheduling, Foundations of Computing and
Decision Sciences 22 (3) (1997) 169–183.

[23] H. Li, A. Lim, B. Rodrigues, A hybrid AI approach for
nurse rostering problem, in: Proceedings of the 2003 ACM
symposium on Applied computing, 2003, pp. 730–735.

[24] A. Meisels, E. Gudes, G. Solotorevsky, Employee timet-
abling, constraint networks and knowledge-based rules: a
mixed approach, in: E. Burke, P. Ross (Eds.), Selected
papers from the First International Conference on Practice
and Theory of Automated Timetabling, Springer Lecture
Notes in Computer Science, vol. 1154, Springer, 1995, pp.
93–105.

[25] A. Meisels, A. Schaerf, Modelling and solving employee
timetabling problems, Annals of Mathematics and Artificial
Intelligence 39 (2003) 41–59.

[26] H. Meyer auf’m Hofe, ConPlan/SIEDAplan: Personnel
assignment as a problem of hierarchical constraint satisfac-
tion, in: PACT-97: Proceedings of the Third International
Conference on the Practical Application of Constraint
Technology, 1997, pp. 257–272.

[27] H. Meyer auf’m Hofe, Solving rostering tasks as constraint
optimization, in: E. Burke, W. Erben (Eds.), Selected papers
from the Third International Conference on Practice and
Theory of Automated Timetabling, Springer Lecture Notes
in Computer Science, vol. 2079, Springer, 2000, pp. 191–212.

[28] N. Mladenović, P. Hansen, Variable neighborhood search,
Computers and Operations Research 24 (11) (1997) 1097–
1100.

[29] S. Petrovic, G.R. Beddoe, G. Vanden Berghe, Case-based
reasoning in employee rostering: learning repair strategies
from domain experts, Technical Report, Automated Sched-
uling Optimisation and Planning Research Group, School of
Computer Science and Information Technology, University
of Nottingham, 2002.

[30] S. Petrovic, G.R. Beddoe, G. Vanden Berghe, Storing and
adapting repair experiences in employee rostering, in: E.K.
Burke, P. De (Eds.), Selected Papers from the 4th Interna-
tional Conference on the Practice and Theory of Automated
Timetabling (PATAT 2002), Springer Lecture Notes in
Computer Science, Springer, 2003, pp. 149–166.

[31] G. Post, B. Veltman, Harmonious Personnel Scheduling, in:
E.K. Burke, M. Trick (Eds.), Proceedings of the 5th
International Conference on the Practice and Automated
Timetabling (PATAT 2004), Pittsburgh, PA, USA, 2004, pp.
557–559.

[32] C. Valouxis, E. Housos, Hybrid optimization techniques for
the workshift and rest assignment of nursing personnel,
Artificial Intelligence in Medicine 20 (2000) 155–175.

	A hybrid heuristic ordering and variable neighbourhood search for the nurse rostering problem
	Introduction
	Problem description
	Shifts and shift demand
	Hard constraints
	Soft constraints
	Evaluation function

	The hybrid variable neighbourhood search algorithm
	Initialisation
	Variable neighbourhood search
	Schedule feasibility
	Schedule disruption and repair
	Genetic algorithm

	Results
	Effects of varying the number of nurses to unassign shifts from
	Comparison of the hybrid VNS with thegenetic algorithm
	Experimentation with longer computation times

	Conclusions
	Further research
	Acknowledgements
	References

