DePaul University

From the SelectedWorks of Nezih Altay

2008

Exact and heuristic solution approaches for the

mixed integer setup knapsack problem
Nezih Altay, University of Richmond

Powell E Robinson, Texas A & M University - College Station
Kurt M Bretthauer, Indiana University - Bloomington

Available at: https://works.bepress.com/nezih_altay/8/

B bepress®

http://www.depaul.edu
https://works.bepress.com/nezih_altay/
https://works.bepress.com/nezih_altay/8/

ELSEVIER

Available online at www.sciencedirect.com

ScienceDirect

European Journal of Operational Research 190 (2008) 598-609

EUROPEAN
JOURNAL
OF OPERATIONAL
RESEARCH

www.elsevier.com/locate/ejor

Discrete Optimization

Exact and heuristic solution approaches for the mixed
integer setup knapsack problem

Nezih Altay **, Powell E. Robinson Jr. °, Kurt M. Bretthauer ©

& Management Department, Robins School of Business, University of Richmond, Richmond, VA 23173, United States
> Department of Information and Operations Management, Mays Business School, Texas A&M University,
College Station, TX 77843-4217, United States
¢ Operations and Decision Technologies Department, Kelley School of Business, Indiana University,
Bloomington, IN 47405, United States

Received 13 September 2006; accepted 3 July 2007
Available online 15 August 2007

Abstract

We consider a class of knapsack problems that include setup costs for families of items. An individual item can be
loaded into the knapsack only if a setup cost is incurred for the family to which it belongs. A mixed integer programming
formulation for the problem is provided along with exact and heuristic solution methods. The exact algorithm uses cross
decomposition. The proposed heuristic gives fast and tight bounds. In addition, a Benders decomposition algorithm is pre-
sented to solve the continuous relaxation of the problem. This method for solving the continuous relaxation can be used to
improve the performance of a branch and bound algorithm for solving the integer problem. Computational performance

of the algorithms are reported and compared to CPLEX.

© 2007 Elsevier B.V. All rights reserved.

Keywords: Integer programming; Knapsack; Cross decomposition; Benders decomposition

1. Introduction

Knapsack problems are widely studied due to
their ability to closely represent real world problems
and their frequent appearance as subproblems in
more complex models. Martello and Toth (1990)
and Kellerer et al. (2004) provide extensive reviews
of the major classes of knapsack problems, theore-
tical results, and solution algorithms. Lin (1998)
surveyed well-known non-standard knapsack prob-

" Corresponding author. Tel.: +1 804 289 8259; fax: +1 804 289
8878.
E-mail address: naltay@richmond.edu (N. Altay).

lems and identified the setup knapsack problem
(SKP) as worthy of further investigation. The objec-
tive of the SKP is to select specific items, which
belong to mutually exclusive product family sets,
for placement in a capacitated knapsack while either
maximizing its value or minimizing its cost. How-
ever, an item can only be selected if a setup charge
for placing the family of items in the knapsack is
incurred.

The SKP has been identified as a significant sub-
problem for the solution of capacitated scheduling
problems. Guignard (1993) proposed a Lagrangean
Decomposition scheme for finding a lower bound
on the optimal makespan of a scheduling problem

0377-2217/$ - see front matter © 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.ejor.2007.07.003

N. Altay et al. | European Journal of Operational Research 190 (2008) 598-609 599

with parallel unrelated machines with setups. A ser-
ies of 0—1 programming SKPs, one for each capaci-
tated machine, is solved each iteration of a
subgradient algorithm. Chajakis and Guignard
(1994) presented a dynamic programming algorithm
and two versions of a two-phase enumerative
scheme, which solve the SKP in pseudo-polynomial
time. However, due to the relatively large storage
requirements of dynamic programming, they
emphasized the importance of designing good upper
bounding schemes and heuristics to be embedded in
efficient branch and bound algorithms.

In addition to appearing as a subproblem in
scheduling capacitated machines, SKP by itself can
model a variety of resource allocation problems.
Consider a freight consolidation problem in which
a capacitated transport vehicle can carry several dif-
ferent product families as defined by commodity
type, shipper, or destination. The decision problem
objective is to select the product families and quan-
tities of items to ship in order to maximize the value
of the line haul. However, each family requires a
setup cost (e.g. a pickup or delivery charge, or spe-
cialized freight services such as dunning, refrigera-
tion, or government inspection) before any items
in its family can be included in the shipment.

Product category management, where a supplier
is allocated limited retail shelf capacity and must
determine the mix of product families and items to
stock, provides a second example. Each product
family included in the lineup has a fixed setup cost
for administration, inventory maintenance, and bill-
ing, while associated with each item and stocking
quantity is an expected profit contribution. The
decision is to select the mix of families and items
that maximizes the expected value of the product
category. Other potential applications are in portfo-
lio management where each investment opportunity
is associated with an account setup, subscription or
membership cost and expected return. The objective
is to select the mix of investments and quantity of
each to maximize the expected return of the
portfolio.

Recently, Akinc (2006) developed a variety of
algorithmic components to improve the efficiency
of branch and bound to solve the SKP. The first
component solves the LP relaxation of the problem
by a non-iterative procedure similar to the one
described in Section 4.1. Akinc reported that the
LP relaxation of SKP is very tight, with at most a
1.7% gap. The second component he developed is
geared towards finding good feasible solutions to

accelerate fathoming branch and bound nodes.
One approach mentioned simply involved rounding
the fractional setup variables up or down to obtain
two feasible solutions. Then the better of the two
solutions was used for fathoming. The second
approach Akinc presented reallocated total capacity
by solving a traditional knapsack problem for all
the individual items for which a setup is incurred
in the LP solution. The last component Akinc devel-
oped to improve the efficiency of branch and bound
consists of a set of rules to peg the setup variables to
zero or one. The three approaches described above
reportedly improved the performance of the branch
and bound, although no computational times were
reported.

In this paper, we focus on a variant of the SKP
where fractions of individual items are allowed to
load into the knapsack. This mixed-integer setup
knapsack problem (MISKP) is equivalent to a con-
tinuous relaxation of the binary constraints on items
in the SKP of Chajakis and Guignard (1994). How-
ever, MISKP allows multiple units of each item to
be included in the knapsack and they are continu-
ously divisible (e.g. dollars in an investment fund,
weight/volume in assignment to a transportation
vehicle, units in a production schedule). Another
difference is that in MISKP, family setups do not
consume any of the limited resource. The problem
appears as a subproblem of the capacitated coordi-
nated replenishment problem (Robinson and Law-
rence, 2004). MISKP plays a critical role in
developing efficient solution approaches to the
capacitated coordinated replenishment problem
but has not received much attention in the litera-
ture. With this paper we provide the first compre-
hensive study of this problem.

The contribution of the paper is threefold. First,
we present a mixed-integer programming model and
investigate the potential of using an exact solution
algorithm based on Van Roy’s (1983) cross decom-
position procedure. Secondly, we propose an effi-
cient upper bounding heuristic and develop a
Benders decomposition based approach to obtain
the lower bound as an alternative to the method
described in Akinc (2006). The development of effi-
cient exact solution approaches to MISKP makes
solving large problems possible. Good heuristics to
generate tight bounds and efficient methods to solve
the LP-relaxation of the problem promotes the
development of algorithms for more complex deci-
sion problems that utilize MISKP as subproblems.
Lastly, the contributions of the paper draw from

600 N. Altay et al. | European Journal of Operational Research 190 (2008) 598-609

better understanding of the problem. We designed
an experiment to investigate what makes the prob-
lem difficult to solve, and how effective is the
state-of-the-art commercially available software.

In the next section, we define the notation and
formulate the problem. In Section 3 we describe
the cross decomposition algorithm. Section 4
focuses on generating upper and lower bounds. Sec-
tion 5 discusses experimental design and presents
the results of the computational experiments. Sec-
tion 6 concludes the manuscript.

2. Problem formulation

We formulate MISKP as a minimization prob-
lem. For notational simplicity in presentation of
the solution algorithms, and without compromising
the generality of the model, it is assumed that each
family has exactly 7 unique items. Modifications to
allow different numbers of items in each family are
straightforward. For each k € {1,2,....K} and 7 €
{1,2,...,T} define:

Crt value of including item ¢ in family k in the
knapsack. Cy, takes a negative value to con-
form to the objective of the minimization
problem. Thus, any C, > 0 can a priori
be dropped from further consideration.

Dy, resources consumed if item ¢ in family k is
included in the knapsack; Dy, = 0.

Sk setup cost to include family k in the knap-
sack; S; = 0.

P capacity of the knapsack.

Y. binary decision variable to setup family & in
the knapsack.

Xt the fraction of item ¢ that is included in the
knapsack.

The MISKP formulation is

(MISKP)
K K T
Mil’l ZSkYk+Z chtht’ (1)
k=1 k=1 =1
Subject to:
K T
Z DX < P, (2)
k=1 =1
Xu <Y, Vk,t, (3)
Xy =0 Vit (4)
Y, €{0,1} Vk. (5)

We formulate MISKP using the “tight” fractional
representation of the continuous decision variables
(see Denizel et al. (1996) for convex envelop and
strong formulation results on the general class of
mixed integer programs). The first term in the objec-
tive function represents family setup costs. The sec-
ond term collects the contribution value of
including specific items in the knapsack where a neg-
ative value of C, indicates positive value in the min-
imization objective function. Constraint (2) is the
resource capacity constraint. Constraints (3) are var-
iable upper bound (VUB) constraints that prevent
an item from entering the knapsack unless the fixed
setup cost is paid. Constraints (4) and (5) are the
nonnegativity and binary variable conditions.

3. Cross decomposition algorithm

Cross decomposition, developed by Van Roy
(1983) and successfully applied to capacitated facil-
ity location (Van Roy, 1986), unifies Benders
decomposition and Lagrangean relaxation into a
single framework for solving mixed-integer pro-
gramming problems. It exploits MISKP’s special
mathematical structure. In MISKP, the Benders
decomposition procedure iteratively fixes the values
of the complicating Y, decision variables thereby
providing an easily solved continuous knapsack
problem. The Lagrangean relaxation side of the
algorithm dualizes the VUB constraints also yield-
ing a continuous knapsack problem.

While cross decomposition breaks down complex
problems into easier to solve subproblems, its major
drawback relates to solving an unstructured master
problem to guarantee convergence to optimality.
Van Roy (1983) showed that when the Lagrangean
relaxation has a nonzero duality gap, cycling may
occur with a solution repeating itself every four iter-
ations. Hence, the master problem should be solved
every fifth iteration to ensure convergence.

The cross decomposition algorithm proposed
here utilizes only a primal master problem to guar-
antee convergence. Holmberg (1990) suggested this
strategy for mixed-integer programming problems
since the procedure converges to optimality in a
finite number of steps, as is the case in Benders
Decomposition. If instead, only the dual master
problem (generated using Dantzig-Wolfe’s column
generation) is solved, the gap between lower and
upper bounds would need to be closed using
an exact procedure such as a branch and bound
algorithm. Following these guidelines, the cross

N. Altay et al. | European Journal of Operational Research 190 (2008) 598-609 601

decomposition algorithm developed for MISKP
contains primal and dual subproblems, a primal
master problem, and a primal convergence test that
is applied after solving the dual subproblem. Details
of the algorithm follow.

3.1. Primal subproblem SP

The primal subproblem SP is obtained by fixing
the values of the setup variables, Y to either 0 or 1.
This is the same subproblem that would be obtained
if Benders decomposition were applied to MISKP.
Fixing the setup variable values converts the second
component of the objective function below into a
constant and VUB constraints (8) into simple upper
bounds. The result is a continuous knapsack prob-
lem given by:

(SP)
K T K
Min Z Z CuXp + Zsk7k7 (6)
=1 =1 =1
Subject to:
K T
> D DuXu<P (7)
k=18 =1
th < ?k Vka t7 (8)
X =0 Vk,t 9)

SP is solved using the procedure proposed by Dant-
zig (1957). The procedure starts by sorting the X,
variables in non-decreasing order of the contribu-
tion value per unit of resource consumed, C;/D;,
according to index ;j as indicted by Xj where
j=12,..., KT. Since the order of the X; variables
is constant, this sort is performed only once. Permis-
sible items are loaded into the knapsack following
this ordering until a critical item r is found for which
its resource consumption exceeds the available
resources. The optimal solution X is:

Xi=1 forj=1,....r—1, (10)
P—S""\D; .

X/:T:” for j=r (11)

X;=0 forj=r+1,...,KT. (12)

The time complexity is O(n), plus O(n log n) for the
initial sorting (Martello and Toth, 1990). Next, we
generate the values of the dual variables o and f;,
which are required input for the dual subproblem
SD. The dual variable associated with the capacity
constraint, o = —C,/D, associated with the critical
item r. The values of the dual variables, [, for

constraints (8) are given by f, = Max{0,—C;,—
Dy,o}. This is derived from Eq. (20) of DSP in Sec-
tion 3.3, and the complementary slackness condi-
tion (13). For any feasible solution of «, f;, can be
set at its lowest feasible value and leave the objective
function of DSP (19) unchanged. The values of f;
are then used in solving the dual sub problem
explained in the following section.

(?k — th)(MaX{O, —th — DktOC}> =0 (13)

3.2. Dual subproblem SD

The dual subproblem is the Lagrangean relaxa-
tion of MISKP with respect to constraints (3). For
specified dual variable values, the solution of SD
provides a lower bound on MISKP. The formula-
tion of SD is given below, where f3;, is the value of
Pi: provided by the most recent solution of SP and
constraint set (16) is used to guarantee feasibility.

(SD)

Min Z (Sk - Z Bkt) Yy

K T
+ Z (Cu + i) X (14)
=1 =
Subject to:
K T
>N DuXu<Pp (15)
k=1 =1
Xu <1 Vit (16)
Xu >0 Vit (17)
Y, €{0,1} Vk (18)

The solution procedure for the dual subproblem sets
Yi=1forall k=1.2,..., K with S, — >." B, <0,
and Y, =0 otherwise; and then applies Dantzig’s
(1957) continuous knapsack algorithm to find the
optimal values of the Xj,. In order to account for
potential updates in the values of the f, the X,
variables are sorted each time before the dual sub-
problem is solved. The Y} values found as the solu-
tion will be input into the primal subproblem.

3.3. Primal master problem MP

MISKP is a relatively easy to solve continuous
knapsack problem when the primal variables Y
are fixed. The solutions to the primal subproblem
are used to generate cuts for a Benders master

602 N. Altay et al. | European Journal of Operational Research 190 (2008) 598-609

problem. When the dual variables [, are fixed, SD
decomposes into two subproblems since the integer
setup variables and the continuous loading variables
become independent from each other. The solution
approach for the former was described above. The
latter is a continuous knapsack problem. Conse-
quently, one could construct a feasible primal solu-
tion and iterate between the two subproblems using
the solution of one as input for the other to poten-
tially solve the problem to optimality. These steps
iteratively provide upper and lower bounds on the
optimal solution, but cannot guarantee a monotonic
improvement in bounds or convergence to optima-
lity. Consequently, cycling may occur with a solu-
tion repeating itself every four iterations (Van
Roy, 1983). Hence, every fifth iteration or whenever
an improvement in the bounds ceases to improve, a
Benders master problem is solved to obtain a new
set of Y, variables and restart the iterative process.
Van Roy (1986) describes using the dual of the pri-
mal subproblem, DSP given below, to construct the
primal master problem.

(DSP)
K T
Max Z (Sk - Z ﬁkt> Y, — aP, (19)
=1 =1
Subject to:
— P — D < Ci ki 8, (20)
B =0 Vk,t, (21)
o = 0. (22)

Since the optimum of DSP is bounded, reformulat-
ing it provides the primal or Benders master prob-
lem MP given below. MP is a mixed-integer
programming problem with a single continuous var-
iable, p, and given by:

(MP)
Min p, (23)
Subject to:
K T
> (Sk - Zﬁ,ﬁ,) Yi—a'P<p VIEL, (24)
k=1 t=1
Y, €{0,1} Vk, (25)
p unrestricted. (26)

where / € L, are extreme points of the feasible
region of DSP. If all the extreme point constraints
are included in (24), the problem is equivalent to
the original MISKP. However, the objective is to
find the optimal solution by generating only a subset

Ls, C L, of the extreme points. One extreme point,
called a primal cut, is generated every time the dual
subproblem, SD, is solved. Benders (1962) showed
the algorithm is finite and converges to an optimal
solution.

Since the Benders problem lacks favorable math-
ematical structure, it is solved only when the solu-
tions of the subproblems stop improving. This is
identified by the primal convergence tests which
check if the Y variables obtained from SD can
improve upon the incumbent upper bound. The pri-
mal convergence test PCT is:

K

T
> (Sk -3 ﬂﬁd> Y. —o'P < UB VielLs, (27)
t=1

k=1

where Lg,, is the set of primal cuts generated up to
this stage of the solution process and UB indicates
the incumbent upper bound. If the convergence test
fails, the algorithm solves the Benders master prob-
lem using Lg, to obtain a new set of setup variables
and a new lower bound on MISKP.

To make more use of the subproblem phase, the
first time cross decomposition calls for MP its con-
tinuous relaxation is solved to optimality rather
than stepping into branch and bound. This
approach originally suggested by McDaniel and
Devine (1977) is used to obtain a quick lower
bound. This provides a weaker lower bound, but
cycles the procedure back to the primal subproblem
faster. After this first call for the master problem, a
rudimentary, depth-first, last-in-first-out branch
and bound algorithm is employed to solve MP each
time it is called. Nodes are fathomed if the node
solution exceeds the incumbent upper bound, or
contains all integer Y, values. Branching is per-
formed lexicographically.

To highlight the effect of the cross decomposition
algorithm we did not attempt to accelerate the
branch and bound by applying any cut generation
heuristics. Thus, the master problem is expected to
take most of the solution time in cross decomposi-
tion. The primal and dual subproblems are simple
continuous knapsack problems that are very easy
to solve. However, if the lower bound produced by
SD is not strong enough the primal subproblem will
not be able to make use of it and the convergence test
would fail. This would force the algorithm to enter
the master problem phase to obtain a better lower
bound and go through branch and bound.

Hence, if our computational study indicates that
cross decomposition is a competitive alternative for

N. Altay et al. | European Journal of Operational Research 190 (2008) 598-609 603

solving the MISKP, faster solutions can be gener-
ated by accelerating the Benders decomposition or
by increasing the efficiency of the branch and
bound. Magnanti and Wong (1981) suggest acceler-
ating Benders decomposition by generating strong
or Pareto-optimal cuts from the alternate optima
of the subproblem. Van Roy (1986) implemented a
similar approach solving the capacitated location
problem but did not report on the resulted improve-
ment. Geoffrion and Graves (1974) emphasized that
the exact solution of the master problem contains
little information and therefore it is not necessary
to solve the master problem optimally. Balas and
Martin (1980) suggested solving the master problem
only heuristically. Wentges (1996) implemented
these suggestions along with Van Roy’s cut genera-
tion approach on the capacitated facility location
problem and found solving the master problems at
the beginning only heuristically advantageous.

3.4. Cross decomposition algorithm statement

The cross decomposition algorithm for MISKP is
summarized below. As proven by Holmberg (1990)
the cross decomposition algorithm using a Benders
master problem is guaranteed to converge in a finite
number of iterations.

Step 1: Set LB = —oo. Get Y, and UB from the ini-
tialization heuristic (see Section 4.1).
Step 2: Solve SP with Y for o and fj,.
UB = Min{v(SP), UB}
Step 3: If UB = LB then: Stop
Else: Solve SD with f, for Y.
LB = Max{v(SD),LB}.
Step 4. Check PCT.
If TRUE then: go to Step 2
Else: Solve MP for Y.
LB = Max{v(MP),LB}.
Step 5: If UB = LB then: Stop
Else: go to Step 2.

The advantage of this algorithm is in the use of
the subproblems. For MISKP both subproblems
are trivial and can be solved very efficiently. How-
ever, similar to the case of Benders decomposition
the master problem is the handicap of cross decom-
position. Strong lower and upper bounds become
critical in generating strong cuts for the master
problem. Section 5 provides a computational experi-
ment testing the ability of cross decomposition and
compares it to off-the-shelf optimization software.

4. Generating upper and lower bounds
4.1. Upper bounding heuristic

Next, we present a two-phase heuristic procedure
for finding a good initial upper bound solution.
Phase-one solves an integer knapsack problem
assuming that each family of items must be loaded
into the knapsack as a whole, or not at all. The total
value contribution, 7Cy, and total resource con-
sumption, 7Dy, for each family k, are calculated
using the following formulas.

T

TC, =S — > Cu (28)

t=1

T
D = Dy (29)
=1

Phase-one follows Dantzig’s approach where the
families are sorted in non-decreasing order by
TC,/TD, and indexed by j where Y, for
j=12,..., K. The families are sequentially loaded
into the knapsack beginning with j =1 until a fam-
ily j = f'is found which cannot completely fit in the
knapsack. All families with j < f'are loaded into the
knapsack by setting ¥, = 1, and X}, = 1 for all z. All
other decision variables are set equal to zero.
Capacity remaining to be allocated at the conclu-
sion of phase-one, P’, is:

7-1
P'=P-> 1D, (30)
k=1

Phase-two allocates the remaining capacity follow-
ing a three-step process.

Step 1. Solve a continuous knapsack problem with
capacity P’ considering only the items in
family fand calculate the total value contri-
bution of the added items.

Step 2: If (S; — value contribution of the added
items) > 0, go to step 3. Otherwise, set
Y,Z =1 and X values following Egs. (10)-
(12) and Stop.

Step 3: 1f f=|K], stop, otherwise set f=f+ 1 and
go to step 1.

The combined solution of these two-phases pro-
vides the heuristic solution. This set of Y} values will
be used in the primal subproblem to start cross
decomposition. The quality of this upper bound is
critical since the branch and bound algorithm in

604 N. Altay et al. | European Journal of Operational Research 190 (2008) 598-609

the master problem will use the upper bound for
fathoming.

4.2. Benders decomposition to solve the LP relaxation
of MISKP

As mentioned earlier, the first pass through the
master problem phase in the cross decomposition
algorithm contains no branching and bounding
(the integrality requirement is relaxed) to get a quick
lower bound. If the algorithm is forced to iterate
between the primal subproblem and this integrality
relaxed master problem the resulting lower bound
would be equal to the LP-relaxation of MISKP.
Since Akinc (2006) already showed that LP-MISKP
provides a tight lower bound developing an efficient
algorithm for this variant of the problem provides
an advantage in developing new solution algorithms
for MISKP.

The Benders decomposition based procedure to
solve LP-MISKP is summarized below:

Step 1: Set LB = —oo. Get Y, and UB from the ini-
tialization heuristic.
Step 2: Solve SP with Y for o and },. Add primal
cut PCT
UB = Min{v(SP), UB}
Step 3. If UB = LB then: Stop
Else: Solve MP for Y,.
LB = Max{v(MP), LB}.
Step 4: 1f UB = LB then: Stop
Else go to Step 2.

We expect this procedure to be very efficient
since the primal subproblem is very easy to solve
and the master problem should only use a handful
primal cuts (Benders, 1962). That means the size
of the master problem would be relatively small
and could be efficiently solved using the simplex
method.

5. Computational experiments

We conducted two experiments in this study. The
first experiment compared the performance of the
cross decomposition algorithm for solving MISKP
with CPLEX Linear Optimizer Version 6.6, a
general-purpose software package. The second
experiment studied the application of Benders
Decomposition to solve the LP-relaxation of
MISKP. In addition, performance of the upper
bounding heuristic was also analyzed.

5.1. Experimental factors

Balas and Zemel (1980) suggested that a larger
gap between the optimal solution and the LP-relax-
ation would make knapsack problems difficult to
solve. Martello and Toth (1990) found that knap-
sack problems with correlated value and resource
consumption parameters are more difficult to solve
for both exact and heuristic algorithms. Further-
more, we anticipate that problems with higher
capacity utilization will be more difficult to solve.
Capacity utilization is defined as the ratio of the
total potential resources to the knapsack capacity.
If capacity utilization is less than or equal to one
then all product families with justifiable setup costs
are loaded into the knapsack.

EQZLDM

Large numbers of binary variables increases the
number of different combinations of possible family
loadings in the knapsack. We expect efficiency to de-
crease with increasing number of binary variables.
In the experiments, we tested the number of binary
variables at three levels with the ratio of binary to
continuous variables held constant at 0.1 in all test
problems.

Setup cost level can also impact algorithm effi-
ciency. A higher setup cost makes it more difficult
to justify family inclusion, while lower setup costs
will cause more families to be eligible for loading.
We expect problems with lower setup costs to be
more difficult to solve. Based on these expectations,
we utilized a full factorial experimental design of
four problem characteristics: capacity utilization
(1.5/2.0/2.5), number of product families (50/100/
200), setup cost (low/high), and the correlation of
item contribution value and resource consumption
(low/medium/high), resulting in 54 different combi-
nations of environmental parameters. For each
combination, 10 problem instances were randomly
generated using the data in Table 1. The demand
and setup cost data were drawn from uniform prob-
ability distributions.

Capacity Utilization =

5.2. Performance of the cross decomposition
procedure

The first experiment tested the performances of
CPLEX and cross decomposition on MISKP. We
made two separate runs with CPLEX. CPLEX uti-
lizes multiple cut generation techniques as well as

N. Altay et al. | European Journal of Operational Research 190 (2008) 598-609 605

Table 1
Experimental data
Factor Levels
Low Medium High
Capacity utilization 1.5 2.0 2.5
Binary variables 50 100 200
Continuous variables 500 1000 2000
Data correlation Dy, =[1,10] Dy =[1,10] Dy, =[1,10]
Ci = —[1,10] Cyi = —[Dy — 2, Dy + 2] Ciy = —[Dy +2]
Fixed cost Sk = [40,60] S =1[60,80]
Table 2

CPLEX system parameter settings

Preprocessing presolve no
Simplex pgradient 1

Mip strategy covers 2

Mip strategy rootheuristic —1
Mip strategy variableselect 3

Mip strategy order 1

Mip strategy bbinterval 2

Mip strategy nodeselect 2

Mip tolerances uppercutoft 0.0

heuristics to improve the efficiency of branch and
bound. The software allows the user to design cus-
tom solution strategies by modifying the settings
of these generators and heuristics to enhance com-
putation efficiency. For the first set of runs, we
“fine-tuned” several system settings for solving the
MISKP to make CPLEX run faster than its default
settings. This fine-tuning reduced standard solution
times by 50-67%. All settings that were altered from
their defaults are listed in Table 2.

With the second set of runs we aimed to compare
cross decomposition to a standard branch and
bound and “‘stripped” CPLEX from all of its cut
generators and pruning heuristics. For the sake of
simplicity we will refer to CPLEX in the first set
of experiments as the “fine-tuned” version, and in
the second set as the ““stripped” version. The default
setting of the software then falls in between the
“fine-tuned” and the “‘stripped” version. Interested
readers should consult the CPLEX Manual (1999)
for additional information. In the experiments,
CPLEX was called from AMPL, a front-end prob-
lem generator. The Pre-solver option of AMPL
was turned off so as not to disturb the experimental
results.

Performance metrics included solution time,
solution gaps, and the number of nodes solved in
the branch and bound tree. Table 3 summarizes
the results of the first experiment. Since cross
decomposition may visit the master problem several
times, the number of nodes reported is the total
number of nodes solved. Columns labeled “UB

Gap” and “LB Gap” present average gaps between
the optimal and initial upper and lower bounds,
respectively. Here the initial lower bound is the
LB produced by the first run of the master problem
rather than the first time the dual subproblem is
solved. “MP time” is the average CPU time spent
in the master problem phase. “Time” indicates the
average CPU time to find and verify an optimal
solution. “Root time” is the average CPU time
CPLEX uses at Node 0 to find an initial lower
bound.

Table 3 indicates that the cross decomposition
procedure (CD) is faster than the “stripped” version
of CPLEX in all cases except one (utilization = 2.5
with low correlation). In addition, problems with
50 product families were solved faster than both ver-
sions of CPLEX in all scenarios. When capacity uti-
lization is low (i.e. 1.5) CD solves problems with low
to medium parameter correlation and high setup
costs solved faster.

The heuristic procedure developed in this paper
provides tight upper bounds. The initial upper
bound - optimal solution gap found through the
heuristic is on average 50.6% tighter than the initial
upper bound the ‘“fine-tuned” CPLEX utilizes and
about the same (2.01% tighter to be exact) with
the initial upper bound of the “stripped” version.
The heuristic upper bound was optimal for prob-
lems with capacity utilization equal to 1.5 and low
to medium parameter correlation as well as when
setup costs were high. In these cases cross decompo-
sition seems to verify optimality by the time CPLEX
obtains a node 0 solution.

As problem size increases the upper bound gap
shrinks. This result also holds for the lower bound
used by CPLEX (LP relaxation of the problem).
Hence, this becomes a major advantage for generic
optimization approaches. One explanation for the
decreasing optimality gaps is that with more candi-
date families, it is relatively easier or more likely to

Table 3

Results of the cross decomposition experiment

Utilization 1.5 Cross decomposition CPLEX with cuts & heuristics CPLEX without cuts & heuristics
Initial MP- Time® Nodes Node 0 Performance Time Nodes Node 0 Performance Time Nodes
e
UB Gap® LB Gap® Ume UB Gap LB Gap Root time® UB Gap LB Gap Root time

Families 50 0.09 0.28 0.41 042 21720 0.29 0.12 0.11 0.69 62.47 0.11 0.14 0.09 2.16 330.93
100 0.06 0.18 5.01 5.02 988.10 0.17 0.05 0.24 401 178.88 0.06 0.06 0.25 39.12 293337
200 0.02 0.14 79.21 79.23 4046.53 0.10 0.02 0.80 32,60 613.12 0.02 0.03 0.83 240.65 6516.72

Correlation Low 0.00 0.07 0.20 0.21 27.67 0.01 0.03 0.31 1.05 17.77 0.01 0.03 0.29 1.20 34.97
Med 0.00 0.17 4.08 4.09 245.87 0.06 0.06 0.40 5.59 127.10 0.02 0.07 0.43 26.58 1024.23
High 0.17 0.35 80.35 80.37 4978.30 0.50 0.10 0.45 30.66 709.60 0.16 0.14 0.45 254.15 8721.82

Setup cost Low 0.12 0.33 5431 5432 336291 0.14 0.09 0.41 21.17 470.07 0.11 0.10 0.42 157.78 5427.27
High 0.00 0.07 2.12 212 13831 0.24 0.04 0.36 3.69 99.58 0.02 0.06 0.36 30.18 1093.41

Utilization 2

Families 50 0.18 1.00 0.79 0.80 545.30 0.56 0.28 0.13 1.18 14298 0.21 0.26 0.12 2.10 361.75
100 0.12 0.96 1391 13.93 3572.37 0.27 0.09 0.32 7.70 483.77 0.17 0.08 0.32 21.68 1692.57
200 0.07 0.79 99.81 99.84 6284.77 0.11 0.03 1.18 3550 914.97 0.09 0.03 1.17 54729 12784.40

Correlation Low 0.03 1.04 1.33 1.35 130.53 0.01 0.03 0.40 0.89 12.13 0.09 0.06 0.41 1.52 53.22
Med 0.05 0.86 8.73 8.74 1118.00 0.14 0.12 0.56 5.87 228.03 0.12 0.08 0.55 31.54 1270.67
High 0.29 0.84 104.46 104.48 9153.90 0.79 0.24 0.67 37.61 1301.55 0.27 0.24 0.65 538.00 13514.83

Setup cost Low 0.18 1.62 54.55 5458 4965.64 0.24 0.15 0.56 1572 561.07 0.26 0.13 0.55 240.14 6970.92
High 0.07 0.21 21.79 21.80 1969.31 0.38 0.12 0.53 13.87 466.74 0.06 0.12 0.52 140.56 2921.56

Utilization 2.5

Families 50 0.44 1.69 0.99 1.00 89830 0.74 0.29 0.15 1.30 182.13 0.39 0.39 0.14 1.86 335.75
100 0.21 1.44 7.59 7.61 2413.60 0.27 0.10 0.39 479 308.75 0.21 0.11 0.40 22.66 1820.05
200 0.13 1.48 9497 95.00 8671.17 0.17 0.03 1.12 2096 813.10 0.10 0.04 1.08 153.89 4889.63

Correlation Low 0.16 1.81 6.82 6.84 653.23 0.01 0.03 0.44 0.63 3.87 0.16 0.06 0.43 0.97 34.38
Med 0.11 1.56 10.98 10.99 1735.14 0.17 0.14 0.44 298 14453 0.15 0.20 0.44 19.03 909.58
High 0.50 1.24 8576 85.78 9594.70 1.01 0.25 0.78 23.44 115558 0.38 0.28 0.75 158.42 6101.47

Setup cost Low 0.41 2.73 47.07 47.09 515840 0.34 0.15 0.56 9.93 572.87 0.36 0.21 0.55 72.18 329343
High 0.10 0.34 21.97 2198 283031 0.45 0.13 0.55 8.10 296.46 0.10 0.15 0.53 46.77 1403.52

[(UB-Optimal)/Optimal] x 100.

® [(Optimal-LB)/Optimal] x 100.
¢ In CPU seconds.

909

609-86S (800Z) 061 Y240asay jpuonnadQ) fo puinor uvadoang | v 12 Avjjy ‘N

N. Altay et al. | European Journal of Operational Research 190 (2008) 598-609 607

find a family of which the setup cost can be justified
by its individual items. On the other hand, the upper
bound gap increases with increasing capacity utili-
zation and problem parameter correlation.

During our experiment whenever the initial
upper bound was optimal cross decomposition
solved the problem faster than both versions of
CPLEX. This is due to the quality of the primal
cut generated by the initial solution. Once the algo-
rithm goes through the subproblems and enters the
master problem phase this strong cut allows the
master problem to quickly confirm optimality. This
is a notable advantage of cross decomposition.

The disadvantage of cross decomposition lies,
not surprisingly in the primal master problem. On
average the master problem is responsible for
99.96% of the total solution time. This becomes a
handicap with larger problems. Additionally, the
initial lower bound provided by the dual subprob-
lem when it is first called is quite weak for cross
decomposition. This forces the algorithm to enter
the master problem phase very early to get a better
lower bound. We solved this problem by solving the
LP-relaxation of the master problem and returning
to the subproblem phases as soon as possible.

5.3. Performance of the Benders method to solve the
LP-relaxation of MISKP

Computational tests with CPLEX revealed, as
confirmed by Akinc (2006), that the LP-relaxation
of the MISKP provides a very tight lower bound.
Thus, finding an efficient method to solve the
LP-relaxation is very important. We conducted a
second set of experiments to test a Benders decom-
position based approach to solve LP-MISKP.
Table 4 presents the results of these experiments.
Since the LP-MISKP behaves similarly to MISKP
under the experimental conditions considered here,
for the sake of brevity we only present the results
for the hardest problem scenarios, namely, prob-
lems with high capacity utilization, high parameter

correlation, and low setup costs. We run experi-
ments for 200, 500, and 1000 families with 10 ran-
domly generated test problems for each
combination of experimental factors. Each test
problem contains 10 items in each family, thus
resulting in 10,000 continuous variables in the larg-
est cases.

The Benders decomposition approach solves LP—
MISKP to optimality on average in 0.517 CPU sec-
onds suggesting a potential computational improve-
ment is associated with using this algorithm instead
of the simplex method when obtaining a LB solu-
tion within a branch and bound procedure. The
Benders decomposition approach solves LP-
MISKP on average eight times faster than CPLEX.

Table 4 also displays the performance of the solu-
tion approach Akinc (2006) suggests for solving the
LP-MISKP. His algorithm, a non-iterative proce-
dure, takes advantage of a property of the optimal
solution of the LP relaxation. The complexity of
his algorithm is dominated by the sorting of the set-
ups in order of their cost/resource ratio similar to the
procedure described in Section 3.1. The result is a
very efficient procedure as indicated by the solution
times displayed in Table 4. Akinc’s approach solves
the LP-relaxation of MISKP in 0.013 CPU seconds.

5.4. Factors affecting problem difficulty

Balas and Zemel (1980) argue that as the prob-
lem size increases the gap between the integer opti-
mal solution and the LP-relaxation solution of
knapsack problems tend to decrease. Results of
our experiments confirm this theory. However, this
tightening LB gap does not necessarily mean that
the problem becomes easier to solve. Table 3 shows
that problem difficulty increases with increasing
problem size. When capacity utilization is of con-
cern, problem difficulty peaks with capacity utiliza-
tion 2.0 and decreases when utilization reaches 2.5.
Contrary to most capacitated mixed-integer pro-
gramming problems, this behavior signals that the

Table 4

Results of the Benders decomposition experiment

Families UB Gap UB time BD iter BD time CPLEX time Akinc time
200 0.383 0.011 33 0.067 0.502 0.000

500 0.118 0.032 3.4 0.306 2.980 0.000

1000 0.054 0.083 3.4 1.178 9.050 0.038
Average 0.185 0.042 3.37 0.517 4.177 0.013

* Columns four and five show results for Benders decomposition.

608 N. Altay et al. | European Journal of Operational Research 190 (2008) 598-609

Table 5

Effects of parameter correlation and cost ratio on problem difficulty

Correlation Setup Ratio CPLEX with cuts & heuristics CPLEX without cuts & heuristics CD time
UB Gap LB Gap Time UB Gap LB Gap Time

Correlation effect

1 1 1.1 0.01 0.06 1.33 0.17 0.09 2.08 5.59

2 1 1.1 0.24 0.21 9.14 0.19 0.24 50.94 15.88

1 2 0.78 0.00 0.00 0.39 0.00 0.00 0.38 0.00

2 2 0.78 0.00 0.00 0.48 0.00 0.00 0.49 0.00

Cost ratio effect

2 2 0.78 0.00 0.00 0.48 0.00 0.00 0.49 0.00

2 1 1.1 0.24 0.21 9.14 0.19 0.24 50.94 15.88

3 2 1.14 1.07 0.29 24.79 0.17 0.33 216.64 45.90

3 1 1.6 0.46 0.11 36.35 0.37 0.10 417.08 134.52

problem may be easier to solve with higher levels of
capacity utilization.

Our results also confirm the argument that the
higher the correlation between value and resource
consumption parameters the harder the problem.
To isolate the correlation effect the expected “total
cost to setup cost ratio” for each family was calcu-
lated. For example, the expected value of low setup
cost is 50 (based on a Uniform distribution between
40 and 60) and the expected value of low correlation
is 5.5 (based on a Uniform distribution between 1
and 10). With 10 items in each family, the total cost
to setup cost ratio for low correlation and low setup
cost would be 10(5.5)/50 = 1.10. Table 5 lists these
ratios and displays performances of CPLEX and
cross decomposition (as indicated by “CD time”)
for various ratios.

The first four rows of Table 5 demonstrate the
effect of correlation on problem difficulty. When
the total cost to setup cost ratio is kept constant,
increasing parameter correlation increases the opti-
mality gap as well as solution times. On the other
hand, when correlation is kept constant solution
times still increase with increasing cost ratio as indi-
cated in the last four rows.

6. Conclusion

We presented two variants of the Setup Knapsack
Problem, namely the Mixed Integer Setup Knapsack
Problem and its LP-relaxation, which have impor-
tant implications for solving capacitated scheduling
problems, as well as potential applications in freight
consolidation and portfolio management. A cross
decomposition based exact algorithm was developed
and its performance compared against CPLEX linear
optimization software. Computational experiments

indicate that the proposed algorithm has great poten-
tial in solving the MISKP. A major factor limiting
the algorithm’s computational efficiency is solving
the primal master problem. Improvements on the
solution algorithm for the master problem could
improve overall solution times significantly.

Our computational results also showed that the
proposed upper bounding heuristic is effective and
provides a higher quality upper bound than the
one associated with CPLEX for every experimental
factor setting. We also developed a Benders Decom-
position based procedure to solve the LP-relaxation
of MISKP. This procedure was, on average, eight
times faster than CPLEX, offering an improved
lower bounding procedure for LP relaxation based
branch and bound methods.

Finally, the experimental design and analysis pro-
vides a comprehensive set of test problems that iden-
tify the factors driving problem difficulty from both
a heuristic and optimization perspective. Both opti-
mization approaches experience significant challenge
solving problems with higher numbers of families,
demand/cost correlation, and lower setup costs.
When applying cross decomposition and CPLEX
as heuristics, higher levels of capacity utilization
and demand/cost correlation and lower levels of
product families and setup cost result in lower qual-
ity lower and upper bounds. These results suggest
the need for additional heuristic and optimization-
based research on this important problem class.

Acknowledgement

We would like to thank Professor Umit Akinc
for the feedback he has provided concerning
his algorithm during the preparation of the
experiments.

N. Altay et al. | European Journal of Operational Research 190 (2008) 598-609 609

References

Akinc, U., 2006. Approximate and exact algorithms for the fixed-
charge knapsack problem. European Journal of Operational
Research 170, 363-375.

Balas, E., Martin, C.H., 1980. Pivot and complement — a heuristic
for 0-1 programming. Management Science 26, 86-96.

Balas, E., Zemel, E., 1980. An algorithm for large zero-one
knapsack problems. Operations Research 28, 1130-1154.

Benders, J.F., 1962. Partitioning procedures for solving mixed
variables programming problems. Numerische Mathematik 4,
238-252.

Chajakis, E.D., Guignard, M., 1994. Exact Algorithms for the
Setup Knapsack Problem. INFOR 32, 124-142.

Dantzig, G.B., 1957. Discrete variable extremum problems.
Operations Research 5, 266-277.

Denizel, M., Erenguc, S., Sherali, H.D., 1996. Convex envelope
results and strong formulations for a class of mixed-integer
programs. Naval Research Logistics 43, 503-518.

Geoffrion, A.M., Graves, G.W., 1974. Multicommodity distribu-
tion system design by Benders decomposition. Management
Science 20, 822-844.

Guignard, M., 1993. Solving makespan minimization problems
with Lagrangean Decomposition. Discrete Applied Mathe-
matics 42, 17-29.

Holmberg, K., 1990. On the convergence of cross decomposition.
Mathematical Programming 47, 269-296.

ILOG CPLEX User’s Manual, 1999. Version 6.5., ILOG, Incline
Village, Nevada.

Kellerer, H., Pferschy, U., Pisinger, D., 2004. Knapsack prob-
lems. Springer, Berlin.

Lin, E.Y., 1998. A bibliographical survey on some well-known
non-standard knapsack problems. INFOR 36, 274-317.

Magnanti, T.L., Wong, R.T., 1981. Accelerating Benders decom-
position: algorithmic enhancement and model selection crite-
ria. Operations Research 29, 464-484.

Martello, S., Toth, P., 1990. Knapsack problems: Algorithms and
computer implementations. John Wiley and Sons, Chichester,
England.

McDaniel, D., Devine, M., 1977. A modified Benders’ partition-
ing algorithm for mixed integer programming. Management
Science 24, 312-319.

Robinson, E.P., Lawrence, F.B., 2004. Coordinated capacitated
lot-sizing problem with dynamic demand: A Lagrangean
heuristic. Decision Sciences 35, 25-53.

Van Roy, T.J., 1983. Cross decomposition for mixed-integer
programming. Mathematical Programming 25, 46-63.

Van Roy, T.J., 1986. A cross decomposition algorithm for
capacitated facility location. Operations Research 34, 145—
163.

Wentges, P., 1996. Accelerating Benders decomposition for the
capacitated facility location problem. Mathematical Methods
of Operations Research 44, 267-290.

	DePaul University
	From the SelectedWorks of Nezih Altay
	2008

	Exact and heuristic solution approaches for the mixed integer setup knapsack problem
	tmpKNvx4E.pdf

