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We consider a logistics spot market where the transportation orders from a number of firms are matched with 
two types of carriers through a reverse auction.  In the spot market, local carriers compete with in-transit carriers 
that have lower costs. In order to analyze the effects of implementing a logistics spot market on these three 
parties: firms, local carriers, and in-transit carriers and also the effects of various system parameters, we develop 
a two-stage stochastic model.   We first model the auction in a static setting and determine the expected auction 
price based on the number of carriers engaging in the auction and their cost distributions.  We then develop a 
continuous-time Markov chain model to evaluate the performance of the system in a dynamic setting with 
random arrivals and possible abandonment of orders and carriers.  By combining these two models, we evaluate 
the performance measures such as the expected auction price, price paid to the carriers, distribution of orders 
between local and in-transit carriers, and expected number of carriers and orders waiting at the logistics center in 
the long run.  We present analytical and computational results related to the performance of the system and 
discuss operation of such a logistics spot market in Turkey.  
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1. Introduction 

We consider a logistics spot market where the transportation orders from a number of firms are 

matched with two types of carriers, local carriers and in-transit carriers with lower costs, through a reverse 

auction.  Implementing such a logistics spot market has different effects on the three parties involved: 

firms, local carriers, and in-transit carriers.  Since a reverse auction increases competition among carriers, it 

is expected that firms will realize lower transportation costs.  Similarly, in-transit carriers benefit from the 

spot market since they get more orders with their lower prices.  However, local carriers can be affected 

negatively, since they may lose some of their business to in-transit carriers.  Although it is possible to 

foresee how each party is affected, deciding on implementation of a logistics spot market requires 

quantifying these effects.  In other words, it is important to determine how much and under which conditions 

each party gains or loses.  Our objective in this study is to develop a simplified analytical model that 

captures important characteristics of a logistics spot market.  This model can be used to quantify the 

effects of using an auction-based logistics spot market on firms, local carriers and in-transit carriers and 

also to analyze the effects of system parameters on the performance of the logistics market. 

Different forms of marketplaces, including clearing houses, auction houses, and freight exchanges, are 

used in freight transportation (Nandiraju and  Regan, 2003).  This study is motivated by a logistics spot 
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market, ESO Logistics Center (www.esolojistik.com) established in Eskişehir, Turkey.   With the objective 

of lowering the transportation costs of the firms located in the Organized Industrial Zone, the Eskişehir 

Chamber of Industry (ESO) established a logistics center in 2003.  The location of the ESO logistics 

center and the cities it serves are given Figure 1.  

 

Figure 1. The transportation destinations (major Turkish cities) from Eskişehir 

The logistics center attracts both local carriers and in-transit carriers that have delivered their loads 

and are returning to their bases.  Since these in-transit carriers are often paid for both ways, their prices are 

much lower compared to the local carriers.   

ESO reports that using a reverse auction mechanism to match orders from different firms and carriers 

lowered the transportation costs of the companies in the industrial zone around 30% in a short period.  

Our analysis of the ESO database, which includes detailed information on the auctions that took place 

between December 2003, when the system started its operation, and May 2005, confirms the savings.  A 

summary of the available information in the database is given in Table 9 in the Appendix. 

More specifically, when we compared the prices realized at the ESO Logistics Center with the market 

price and also with the fuel cost of a truck, we observed that the average transportation price that is 

realized in ESO Logistics Center is very close to the fuel price and is much lower than the market price as 

shown in Figure 2.  In this analysis, the market price is the list price of transportation between Eskişehir 

and different destinations.  This list is published by the Eskişehir Carriers’ Cooperation.  We also calculate 

the fuel cost by using the distance between Eskişehir and different destinations and fuel consumption rate 

of a typical truck used in transportation. 

Since ESO expects that the number of firms using the Logistics Center will increase rapidly, a number 

of questions regarding how firms, local carriers, and in-transit carriers will be affected arise.   For example, 

since local carriers have long-term relationship with ESO and also with the firms located in the industrial 

zone, it is important to quantify how much local carriers may lose and how much firms gain when in-

transit carriers are allowed in the logistics center.  It is also of interest to understand how the balance 

between the arrival and abandonment of orders and carriers affects the average transportation prices.  

This study is motivated by the need of developing an analytical model to measure the performance of an 

auction-based logistics spot market with two-types of carriers.  The model developed in this study allows 

us to answer questions similar to the ones given above.  



 

Figure 2. Fuel price, market price and the average transportation price realized  
at the ESO Logistics Center according to distance 

In order to model and analyze the system, we present a general two-stage stochastic model of a 

logistics spot market with two types of carriers.  In the first stage, an auction is analyzed in a static setting 

and the expected auction price is determined based on the number of local carriers and in-transit carriers 

and their cost distributions.  In the second stage, we develop a continuous-time Markov Chain (CTMC) 

model to incorporate random arrivals of orders, local carriers, and in-transit carriers, and also possible 

abandonment of orders and carriers.  By combining these two models, we evaluate performance measures 

such as the expected transportation price, the expected price paid to the carriers, distribution of orders 

between local and in-transit carrier, the expected number of carriers and orders waiting at the logistics 

center in the steady state.   We also provide analytical results that show how the performance measures are 

affected by the system parameters. 

The organization of the remaining part of the paper is as follows: the pertinent literature is reviewed 

in Section 2.  Section 3 presents the general model and its assumptions.  The methodology used in the 

analysis is given in Section 4.  A number of performance measures are derived in Section 5.  Section 6 

presents analytical and numerical results related to the effects of system parameters on the performance 

measures.  Finally, conclusions are given in Section 7. 

2. Literature Review 

In recent years, a number of studies that investigate using auctions in supply chains appeared in the 

literature. We limit our discussion to the papers that discuss auctions in logistics services procurements 

and also performance evaluation of auction-based systems. For a thorough review of auction theory, the 

reader is referred to the review of Klemperer (1999).  Elmaghraby (2000) provides an overview of the 

contract competition and sourcing strategies that are studied in operations research and economics 

literature.  Similarly, Chen et al. (2005) discuss using auctions for supply chain procurement.  In addition 

to matching supply and demand efficiently, auctions can also be used to form a collaborative network 

among a number of truckload carriers (Song and Regan, 2003). 
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In the supply chain literature, there are numerous studies on long term contracts between buyers and 

suppliers.  For example, Ledyard et. al. (2002) discuss an auction used at Sears for a three year truckload 

carrier services contract.  Alp et al. (2003) discuss a contract designed by a manufacturer to outsource its 

transportation requirements through a bidding process between competing carriers. However, our focus is 

on an auction-based logistics market where a short term contract, or a spot contract, is made between firms 

and carriers. 

 In addition to these long-term contracts, marketplaces such as clearing houses, auction houses, and 

freight exchanges facilitate efficient matching of supply and demand between shippers and carriers 

(Nandiraju and  Regan, 2003).  For example, Qi and Pich (2002) present a neutral exchange in the 

container industry that is based on matching bid and ask prices from multiple buyers and multiple sellers. 

The number of studies that focus on the performance evaluation of systems that utilize auctions is 

limited.  Veeramani and Wang (1997) present a queuing network model to evaluate the performance of 

auction-based distributed shop-floor control schemes.  In a similar setting, Nandula and Dutta (2000) use 

Petri nets to evaluate the performance of a manufacturing system that uses auctions as a control strategy. 

The number of studies on the stochastic analysis of the dynamics in an auction-based market is also 

limited.  Our approach is similar to the works of Segev et al. (2001) and Vakrat and Seidmann (2000).  

Segev et al. (2001) model an online auction as a Markov Chain on a state space defined by the current 

price of the item and the number of buyers who are previously eliminated.  By using this Markov Chain 

model, they determine a number of performance measures and validate their findings with real online 

auction data. Vakrat and Seidmann (2000) analyze the implications of the bidder’s arrival process in an 

online auction by using a queueing-based model. On the modeling side, although we use a queueing-based 

approach as in the models of internet auctions, our situation is complicated by multiple carrier types and 

abandonment of orders and carriers in a logistics setting. 

One of the main contributions of this paper is modeling and analysis of an auction-based logistics 

market where a short term contract, i.e. a spot contract, is made between shippers and two types of 

carriers. To our knowledge, this is the first study that models an auction-based logistics spot market with 

multiple types of carriers in a stochastic and dynamic setting.  Furthermore, we show a number of 

structural results related to the effects of system parameters on the performance measures.  More 

specifically, we analytically show how a number of performance measures are affected as the arrival-

departure rates change.  This approach can also be applied to other auctions in a dynamic setting. 

3. Model of  the Logistics Center 

3.1. Problem Description 
We consider a Logistics Center (LC) where multiple firms that want their goods to be transported to 

different destinations use auctions to make short-term contracts with carriers. At the LC there are multiple 

carriers that respond to transportation orders given by the shipper. When the shipper has a transportation 

order, she opens an auction by using an electronic reverse auction platform, i.e. a web-page designed for 



this process. All the carriers that would like to participate in the auction observe the order and submit 

their bids for that order.  The order is given to the carrier who submitted the lowest bid.  If no carriers are 

available or no bids are submitted, the company may cancel its auction, and either sends its goods by a 

logistics service provider or reopens the auction at a later time.  Moreover, carriers who stop at the 

logistics center may abandon after some time if they cannot get an order. 

Our objective is to determine the effects of using this logistics market on three parties involved: 

shippers, local carriers, and in-transit carriers by using an analytical model.  This model also allows us to 

investigate the effects of various system parameters on the performance of the logistics spot market.  

3.2. Model Assumptions  

Orders.  It is assumed that orders arrive randomly to the LC according to a Poisson process with rate l0.   

N0(t) and N0 denote the number of orders available at the LC at time t and in the steady state respectively.  

If there are no carriers available when an order arrives, the order can abandon after waiting some time.  

We assume that this time is exponentially distributed with rate j0. 

The observed order inter-arrival distribution at the ESO logistics center that is depicted in Figure 3 

supports the Poisson assumption for order arrivals.  However, one can argue that the abandonment times 

of orders are not necessarily exponential.  Our simulation experiments show that the first order 

performance measures that are of interest are not sensitive to the distribution of the abandonment times.  

Note that the same CTMC framework can be used to analyze abandonment times that have phase-type 

distributions. 

 

Figure 3.  Inter-arrival time distribution of the orders received by  
the ESO Logistics Center during December 2003-March 2004 

Carriers.  We assume that there are two types of carriers, type 1 refers to local carriers that are based at 

the same region as the LC and type 2 refers to in-transit carriers that stop by the LC while traveling to 

their bases.  Ni(t) and Ni denote the number of Type i carriers at time t and the number of Type i carriers 

in steady state respectively, i=1,2.   

Type i carriers are assumed to arrive randomly to the logistics center according to a Poisson process 

with rate λi, i=1,2  A carrier can abandon the LC after waiting some time for receiving an order.  We 
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assume that this time is an exponentially distributed random variable with rate ji for Type i carriers.  

Figure 4 shows the distribution of the inter-arrival times of the bids placed for the orders received by the 

ESO Logistics Center. 

 

Figure 4.  Inter-arrival time distribution of the bids placed for the orders received by  
the ESO Logistics Center during December 2003-March 2004 

A Type i carrier has a transportation cost of Ci known only to him, which is considered by everyone 

to have been drawn from a distribution with cumulative density function (cdf) of Fi(x),  with 

expectation  for i=1,2.  A transportation cost is determined for a specific destination and for a specific 

carrier.  Therefore Fi incorporates the variability in transportation costs for various destination-carrier 

couples.   

In-transit carriers usually stop at the spot market on their way back to their home city after delivering 

an order and they are already paid for the remaining portion of their trip.  Therefore, they are willing to 

accept much lower prices compared to local carriers to get an additional order that will increase their 

revenue for the same trip.  Accordingly, we consider the case where the transportation costs of type 2 

carriers are always lower than of type 1 carriers, i.e., .  It is possible to use the same methodology 

utilized in this paper to extend the results to overlapping cost distributions. 

The carriers are assumed to be risk-neutral and they all maximize their own expected profit. In 

addition, it is assumed that there is no collusion between carriers. 

Auction.  A single-unit second-price sealed-bid auction, or the Vickrey auction, is used to decide 

which carrier gets an order of transporting one full-truck load.  An order can not be split among different 

carriers.  According to the Vickrey auction, the carrier with the lowest bid among all the bidding carriers at 

the LC gets the order and is paid the second-lowest price.  

Figures 5 and 6 depict the histograms of the bids given to the orders from Eskişehir to Adana and the 

prices that these orders are taken, i.e. the winning bids, at the ESO Logistics Center.  The wide range of 

the transportation prices to the same destination is a result of the operation of the spot market with in-

transit and local carriers.  That is, lower prices are given by in-transit carriers and higher values are realized 

when there are a few carriers at the center.   
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Figure 5.  Distribution of the bids (in Turkish Lira) given to the orders from Eskişehir to Adana  
at the ESO Logistics Center during  December 2003-March 2004 

 

Figure 6.  Distribution of the prices (in Turkish Lira) paid to the orders from Eskişehir to Adana  
at the ESO Logistics Center during  December 2003-March 2004 

The number of carriers engaging in an auction is concealed and all the carriers are assumed to have 

the same belief about the probability distribution of the number of bidders joining an auction and the 

probability that each bidder is a local or an in-transit carrier.  Each bidder makes his bid according to this 

common belief. Since the probability distribution of the number of bidders joining an auction and the 

probability of the type of each bidder are common beliefs, each bidder uses the same probability 

distribution to determine his bid. This distribution is based on the distributions of the costs of carriers, 

and also the number and the type of carriers joining an auction.  Therefore, this is a symmetric auction 

although there are two types of bidders. 

An auction is opened at the instant when an order arrives and there are carriers waiting to bid.  Since 

the probability that two orders arrive exactly at the same time is very small, only one auction is opened at a 

time.  The auction duration is very short compared to the time scale of order and carrier arrivals and 

therefore it is taken to be instantaneous. 
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If there are no carriers at the LC, the order is registered by the system and stays there until the order is 

cancelled by the shipper or given to the carrier that arrives first at the designated market price which is 

assumed to be equal to .  Note that a shipper can abandon the LC if it does not want to pay the market 

price.  In the ESO case, the market price is listed for various destinations by the carriers’ cooperation and 

shown in Figure 2. 

In this setting, the assumptions of the auction and carriers guarantee that the optimal strategy for a 

carrier is to bid her actual cost (Vickrey, 1961) to maximize her expected gain.  For an extensive review of 

auction theory, the reader is referred to (Klemperer, 1999).  Pitfalls for bidders, equivalences among 

auction institutions and comparison of auctions are summarized in (Milgrom, 1989). 

4. Analysis of  the Model 

We analyze the system in two stages.  First we analyze the auction part based on the given number of 

carriers that bid for an order.  Since the carriers bid their actual costs to maximize their expected gain in 

the Vickrey auction, we determine the expected auction price and the expected profit of the carrier that 

receives the order by using order statistics.  In the second part of the analysis, we model the random order 

and carrier arrival-departure processes and determine the steady-state probability distribution of the 

number of carriers in the logistics center.  Finally, by combining the results of these two parts, we 

determine various metrics that measure the average performance of the system in the long run. 

4.1. Analysis of an Auction 
 Expected Price. Let p(n0, n1, n2) denote the expected price when n0 orders, n1 type 1, and n2  type 2 

carriers are at the logistics center just before an order is matched with a carrier.  Note that when there are 

no carriers available at the logistics center, a waiting order is matched with an arriving carrier at the market 

price, i.e.,    

 p(n0, 0, 0) = , n0≥1.   

Similarly, when there is only one carrier available, an arriving order is priced at .  That is, 

 p(0, 1, 0) = p(0, 0, 1)= .   

When there are N1(t) + N2(t)= n1+ n2, n1+ n2≥2 carriers at time t, an auction is conducted as soon as a 

new order arrives.  Let be the order statistics defined on the actual costs of n1+ n2 

carriers.  Since carriers bid their actual costs and they are paid at the second lowest bid, the expected 

auction price is the expected value of the second minimum of the bidders’ costs:   

 , n1+ n2≥2.  (1) 

Since the distributions of the costs of type 1 and type 2 carriers are different, we consider different 

cases to determine the expectations of order statistics based on the cost distributions.  Proposition 1 gives 

the expected auction price following standard results in order statistics. 
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Proposition 1: The expected price when there are n0 orders, n1 type 1, and n2 type 2 carriers at the logistics 

center, p(n0, n1, n2), is: 

 . (2) 

We next show how the expected price changes when the number of carriers and orders change in a 

given auction.   

Lemma 1: The expected price, p(n0, n1, n2), is non-increasing in n1 and n2. 

Proof. The proof of Lemma 1 is given in the Appendix. 

 Figure 7 shows the realized average auction price according to the number of bidders joining the 

auction for orders from Eskişehir to Adana at the ESO center.  As the figure depicts, the realized average 

auction price at ESO decreases with the increasing number of bids as Lemma 1 predicts. 

 

Figure 7. Number of bids and the average auction prices for orders from Eskişehir to Adana 

Expected Profit of the Winner.  The profit of the winner is the difference between the price and her 

actual cost.  The expected profit when there are n0 orders, n1 type 1, and n2 type 2 carriers in the LC is 

denoted with q(n0, n1, n2).  

When there are waiting orders and no carriers, the profit depends on the type of the winning carrier.  

If the winner is of Type i, then q(n0, 0, 0)= - , n0≥1.  Similarly, q(0, 1, 0) = -  and q(0, 0, 1) = - . 

If there are n1+n2≥2 carriers, the winning carrier’s cost is the lowest among all the bidders.  Therefore, 
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If there are no orders or carriers available, there will be no auction and we set p(0, 0, 0) = q(0, 0, 0) = 0. 

 Based on the distributions of carriers’ costs, Proposition 2 gives the expected profit of the winner. 

Proposition 2: The expected profit of the winner, q(n0, n1, n2), when there are there are n0 orders, n1 type 

1, and n2 type 2 carriers in the LC is: 

   (4) 

4.2. Analysis of the Order-Carrier Arrival-Departure Processes 
In the preceding analysis, we determined the auction price and the profit depending on the number of 

carriers of each type and the number of orders.  Since the number of carriers and orders change 

dynamically with random arrivals and abandonment of orders and carriers, we next analyze the dynamics 

of the system to determine the steady-state distribution of the number of carriers of each type and the 

number of orders at the logistics center. 

Let the state of the system at time t be S(t) = (N0(t), N1(t), N2(t)).  Since the interarrival and 

abandonment times of carriers and orders are exponential random variables, the process {S(t), t≥0} is a 

continuous-time Markov Chain.  The process is ergodic and a stationary distribution exists. The steady-

state probabilities are defined as 

 .  (5) 

All the relevant steady-state performance measures are determined based on the steady-state probabilities. 

Since an auction is conducted instantaneously, it is not possible to observe N0(t) +N1(t)≥1 when N0(t) ≥1. 

As a result, when n0≥1 and n1+n2≥1.    

In order to analyze the performance of this system numerically, the state-transition equations are 

derived and the steady-state probabilities are calculated by truncating the state space at state (K0, K1, K2).  

K1 and K2 can also be considered as the maximum number of type 1 and type 2 carriers the LC can 

accommodate and K0 can be considered as the maximum number of orders that can be accepted by the 

system.  There are a total of K0 +(K1+1)(K2+1) states in the resulting state space S(t)= (N0(t), N1(t), N2(t)).   

 State-Transition Equations 
The state transition diagram of the logistics center is shown in Figure 8 for a specific system with 

K0=K1=K2=5.  Since we assume , the transition from one state to another when an order comes, 
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depends on the number of type 2 carriers.  In addition, some of the orders and carriers are rejected due to 

the capacity constraints.  Accordingly, we analyze the internal and boundary transitions separately 

depending on the number of carriers of each type. 

 

Figure 8. State transition diagram of a logistics spot market with K0=K1=K2=5. 

When the LC is empty, the state changes only with the arrivals of carriers or orders.  That is, 

 . 
   (6) 

When there are no carriers but waiting orders and the order capacity is still available to accept new orders, 

the states change with an arrival of carriers, arrival of orders, or with possible abandonment of waiting 

orders: 

 , 
   n0=1,…,K0-1. (7) 

If there are no carriers and the capacity limit of orders is reached so that no additional order can be 

accepted to the logistics center,  

 .  (8) 

When there is at least one type 2 carrier and there are no type 1 carriers at LC, the order is taken by one of 

type 2 carriers: 
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  n2=1,...,K2-1. (9) 

When the system capacity for type 2 carriers is reached and there are no type 1 carriers: 

 .  (10) 

Similarly, when there is at least one type 1 carrier and there are no type 2 carriers at LC, the order is taken 

by one of the type 1 carriers: 

 
,

  n1=1,...,K1-1. (11) 
In this setting, when the system capacity for type 1 carriers is reached and there are no type 2 carriers: 

 .  (12) 

When at least one carrier of each type is at the logistics center and the capacity limits are not reached, the 

state changes with the arrival of carriers, orders and also with the abandonment of carriers:   

   

    ,  

  n1=1,...,K1-1; n2=1,...,K2-1. (13) 

When the capacity for type 1 carriers is full and there is at least one type 2 carrier, the state changes with 

the arrival of type 2 carriers and orders, and possible abandonment of both type 1 and type 2 carriers.  

Then, 

,

  n2=1,...,K2-1. (14) 

Similarly, when there is no available space for type 2 carriers and only type 1 carriers can be accepted, 

   

  n1=1,…,K1-1. (15) 

Finally, when the capacity limits of carriers of both types are reached, then 

 .  (16) 

The solution of the state transition equations (6)-(16) with the normalization condition 

   (17) 

yields the steady-state probabilities.   
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5. Performance Measures 

Once the steady-state probabilities are determined, a number of performance measures related to the 

carriers, shippers, and the Logistics Center can be determined.  In order to determine the effects of the 

logistics center, we use the average expected price given for an order and the average expected auction 

price when at least two carriers compete to get an order as the main performance measures.  

In order to study the effects of the logistics center on the carriers, we determine the average profit of 

a carrier that receives an order, the fraction of type i carriers that are awarded with an order, and the 

proportion of the number of type i carriers in the total number of carriers awarded with an order.  The 

performance of the logistics center is also evaluated by determining the average number of carriers and 

orders. 

 Average Expected Price.  Let  be the average expected price paid for an order.  Since          

p(n0, n1, n2) is calculated by conditioning on the number of carriers and orders,  is determined by using 

the steady state probability distribution of the number of carriers and the number of orders present at the 

logistics center just before an order is matched with a carrier. Note that an auction is conducted if there 

are at least two carriers available at the logistics center.  Otherwise, the market price is paid.  Let h0, h1, 

and h2 denote the number of orders, type 1 and type 2 carriers available at the logistics center when an 

order is matched with a carrier in the steady state.   

     (18) 

The steady-state distribution of h0, h1, and h2 can be determined from the steady-state distribution of N0, 

N1, and N2 as 

  and  (19) 

   (20) 

where  is the expected number of carriers that are matched with an order per unit time in the long run 

and given in Equation (24).  Then  is evaluated as 

 .  (21) 

 Average Expected Auction Price.  Let be the average expected auction price when there are 

at least two carriers at the logistics center.  Therefore, the average expected auction price is 
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 . (22) 

 The Proportion of Carriers that Take an Order.  Not all the arriving carriers are awarded with 

an order.  In our model, the arriving carriers can abandon the system after waiting some time and a few of 

them are rejected due to the capacity constraint.  All the carriers that are accepted by the system and wait 

without abandoning the system are awarded with an order.   Let fi  be the proportion of type i carriers that 

take an order to the total number of arriving carriers of the same type for i=1,2.  Then fi can be calculated 

as the ratio of the order arrivals that are not rejected due to the capacity constraint and wait without 

abandoning the system in the total arrivals:  

 ,   

    (23) 

Then the expected number of carriers that are matched with an order per unit time in the long run can 

be written in term of f1 and f2 as 

 .  (24) 

As a result, the fraction of carriers that are awarded with an order in the total number of arriving carriers is 

.   Similarly, since the total order arrival rate is λ0 , λA /λ0 of the arriving orders are matched with 

a carrier, while the remaining 1- λA /λ0 of them either abandon the system or are rejected due to the order 

capacity constraint of the logistics center. 

Distribution of Orders between Type 1 and Type 2 Carriers.  Let di be the proportion of the 

number of type i carriers that are awarded with an order to the total number of carriers awarded with an 

order.   Then 

 , i=1,2.   (25) 

 Average Expected Profit of Carriers.   Let us define  as the average expected profit of a type i 

carrier that is awarded with an order i=1,2.  Note that if there is at least one type 2 bidder, then the winner 

will be of type 2.  Equivalently, the winner is of type 1 only when there are no type 2 bidders.  Then,  
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  and  (26) 

 .   (27) 

Let  be the average expected profit of a carrier (type 1 or type 2) that is awarded with an order.  

Since (1-fi) of all the arriving carriers leave the system with a profit of zero and fi of them make a profit 

of on the average, for an arriving carrier, the average profit is fi , i=1,2,.  Accordingly, the average 

profit for a carrier that is awarded with an order is 

 .  (28) 

 Average Number of Carriers and Orders.  The average number of orders and carriers of type i 

available at the logistics center in steady state are denoted by and , i=1,2.  The steady state 

distribution of the number of carriers and orders yield the average number of carriers and orders directly:  

  and ,  i=1,2.  (29) 

6. Performance Evaluation 

In this section we evaluate the performance of the logistics market numerically and analytically.  We 

first summarize the results of our numerical experiments and then present our analytical results regarding 

the effects of system parameters on the average expected auction price. 

6.1 Numerical Results 
Setting.  In our numerical experiments, we consider a specific logistics market where the cost 

distributions of local and in-transit carriers are uniform.  Accordingly,  

, i=1,2. 

Note that it is also possible to handle other distributions since Equations (2) and (4) can be evaluated 

for given cost distributions.  For uniformly distributed costs, p(n0, n1, n2) and q(n0, n1, n2) can be written in 

closed form as 
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  . 

Parameterization.  In order to analyze the system for different parameter sets, we first set the 

average cost and the arrival rate of local carriers to one without loss of generality, i.e.,  =1 and λ1=1.  

Furthermore, we assume that the cost distribution is defined in the range .  That is,  

and .  We set the average cost of the in-transit carriers as =(1-k)  and  and 

.  In this parameterization, the cost distributions are not overlapping if .  Finally, 

since in-transit carriers are more likely to abandon earlier than the local carriers, we set φ1= 2 φ2.  Then we 

evaluate the performance of the system for different values of λ1, λ2, φ0, φ1, k, and D.  Table 1 reports the 

parameter values used in the numerical experiments. 

Parameter Values Parameter Values 
λ0 {0.25, 0.5, 1, 1.5, 2} k {0.5, 0.6, 0.7, 0.8} 
λ1 1 D {0.1, 0.2, 0.3} 
λ2 { 0, 0.5, 1, 1.5, 2} c1 1-D. 
φ0 {0.2, 0.4, 0.6, 0.8, 1}  1+D. 
φ1 {0.2, 0.4,  0.6, 0.8, 1} c2 (1-k)( 1-D.) 
φ2 ½φ1  (1-k)( 1+D.) 

Table 1. Parameter values for numerical experiments 

The capacities for orders and carriers, K0, K1, and K2, are set to 30.  For the above parameter values, 

the rejection probabilities for orders and carriers are less than 10-13 and therefore the results are not 

affected by truncating the state space.   

With this parameter set, we evaluate the performance of the logistics market for 7500 different cases. 

Cases with λ2=0 correspond to a logistics market with only local carriers and therefore they allow us to 

evaluate the effect of allowing in-transit carriers on local carriers and firms. 

 We summarize our findings below.  In all of the tables, two parameters are changed at a time.  Then 

the average values of performance measures in all the cases with the specific values of these parameters 

are reported.  We focus on the effects of the arrival rates of local and in-transit carriers and also the 

difference between the average costs and the variability around these averages. 

Effect on Firms.  Without a logistics spot market, a firm pays the market price to a carrier.  The 

logistics center is expected to lower the price paid by the firms.  Table 2 shows the percentage reduction in 
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the price paid by the firms with respect to the market price  for different type 2 carrier arrival 

rates, order arrival rates, abandonment rates, and cost distributions. 

 

                     

      

Table 2. Percentage Reduction in the Average Expected Price 

 

Table 2 indicates that the benefit of the logistics spot market on lowering the price paid by the firms 

will be limited when in-transit carriers are not utilized.  In this case, the percentage reduction will be 

between 8% and 1% depending on the order arrival rate.  As the order arrival rate increases, the number 

of carriers participating in the auctions decreases and as a result the price paid by the carriers will not 

decrease substantially.  When in-transit carriers are allowed, the prices decrease quickly as their arrival rate 

increases.  Since waiting orders are matched with an arriving carrier at the market price, the order 

abandonment rate does not affect the expected average price.  However, keeping the in-transit carriers 

longer at the logistics market by decreasing their abandonment rate decreases the price substantially. 

The difference between the average costs of local and in-transit carriers and the variability of the cost 

distributions have limited effect on the prices.  This is due to using a second price auction.  As long as the 

second minimum bid is submitted by a local carrier, the difference in average costs will not have any effect 

on the price paid by a carrier.  Similarly, the variability around the mean will be effective only when the 

auction is conducted among the same type carriers. 

Effect on Local Carriers.  Table 2 shows that allowing in-transit carriers will be effective in lowering 

the prices paid by the firms.  However, the local carriers will be affected negatively since they will lose 

some of the orders to in-transit carriers.  Table 3 quantifies the percentage of local carriers receiving an 

order and the proportion of local carriers in all the carriers awarded with an order depending on the local 

and in-transit arrival rates and cost distributions. 

We observe that when there are no in-transit carriers and the order arrival rate is less than half of the 

local carrier arrival rate, more than 50% of the local carriers abandon without an order.   Moreover, when 

the ratio of order arrival and carrier arrival rates, i.e., λ0/( λ1+ λ2), is greater than 60%, more than half of 

the local carriers receive an order although most of the orders are received by in-transit carriers as the in-

transit arrival rate increases.  Since a second-price auction is used, the difference in cost distribution 

averages and the variability around the averages do not affect f1 and d1.  Their average values for the range 

of parameters for different values of D and k are 44% and 54% respectively.  

 

1MP c ¢=

   
λ0 

λ2 0.25 0.50 1.00 1.50 2.00 
0.00 8% 6% 3% 2% 1% 
0.50 15% 13% 8% 5% 3% 

  1.00 25% 22% 16% 11% 7% 
1.50 34% 31% 24% 18% 13% 
2.00 42% 38% 32% 26% 20% 

 
φ2 

φ0 0.40 0.80 1.20 1.60 2.00 
0.20 30% 19% 13% 10% 7% 
0.40 31% 20% 14% 10% 8% 
0.60 31% 20% 14% 11% 8% 
0.80 32% 21% 15% 11% 8% 
1.00 32% 21% 15% 11% 9% 

 
k 

D 0.5 0.6 0.7 0.8 
0.1 12% 13% 15% 16% 
0.2 15% 16% 18% 19% 
0.3 17% 19% 20% 21% 
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Table 3. Percentage of local carriers receiving an order and the fraction  
of local carriers in all the carriers awarded with an order 

Table 4 analyzes the effect of carrier arrival rates and cost distributions on the average profits of local 

carriers. Since a second-price auction is used, a local carrier can win an auction only when there are no in-

transit carriers in the auction.  Therefore, given that a local carrier is awarded with an order, its expected 

profit is not affected substantially by the in-transit carriers as shown in Table 4. 

 

 

 

 

 

 
Table 4. Expected profit of local carriers 

 Effect on In-Transit Carriers.  Although in-transit carriers have an advantage due to their lower 

costs, an auction may not be opened during the time they stay at the logistics market.  Since their 

abandonment rates are higher than the local carriers, some of the orders are received by the local carriers 

that stay longer at the logistics market.  Table 5 shows that when λ0/( λ1+ λ2) is less than 40%, more than 

half of the arriving in-transit carriers leave the logistics market without an order.  However when the in-

transit arrival rate reaches and exceeds the local carrier arrival rate, most of the orders are awarded to in-

transit carriers. 

 
 

 

 

 

 
 

Table 5. Percentage of in-transit carriers receiving an order and the fraction  
of in-transit carriers in all the carriers awarded with an order 

The expected profits of in-transit carriers depend heavily on the ratio of in-transit and local carrier 

arrival rates.  As the in-transit carrier arrival rate increases, the price will decrease by the bids of competing 

in-transit carriers.  Therefore, the expected profit of in-transit carriers is higher when their arrival rate is 

lower.  Since the price is determined by a second price auction, their expected profit increases with the 

f1 λ0 
λ2 0.25 0.50 1.00 1.50 2.00 

0.00 22% 42% 70% 85% 93% 
0.50 14% 29% 56% 75% 86% 
1.00 9% 20% 43% 63% 77% 
1.50 6% 14% 32% 51% 67% 
2.00 4% 10% 24% 40% 56% 

d1 λ0 
λ2 0.25 0.50 1.00 1.50 2.00 

0.00 100% 100% 100% 100% 100% 
0.50 60% 63% 66% 67% 67% 
1.00 38% 42% 47% 49% 50% 
1.50 26% 29% 34% 37% 39% 
2.00 18% 20% 25% 28% 31% 

 λ0 
λ2 0.25 0.50 1.00 1.50 2.00 

0.00 0.153 0.164 0.181 0.190 0.195 
0.50 0.147 0.156 0.171 0.183 0.191 
1.00 0.144 0.150 0.163 0.175 0.185 
1.50 0.142 0.147 0.157 0.168 0.178 
2.00 0.141 0.144 0.153 0.162 0.171 

 k 
D 0.50 0.60 0.70 0.80 

0.10 0.082 0.082 0.082 0.082 
0.20 0.164 0.164 0.164 0.164 
0.30 0.247 0.247 0.247 0.247 

f2 λ0 
λ2 0.25 0.50 1.00 1.50 2.00 

0.00 0.000 0.000 0.000 0.000 0.000 
0.50 0.189 0.338 0.567 0.734 0.845 
1.00 0.150 0.277 0.484 0.646 0.770 
1.50 0.122 0.232 0.418 0.571 0.696 
2.00 0.102 0.197 0.365 0.507 0.629 

d2 λ0 
λ2 0.25 0.50 1.00 1.50 2.00 

0.00 0% 0% 0% 0% 0% 
0.50 40% 37% 34% 33% 33% 
1.00 62% 58% 53% 51% 50% 
1.50 74% 71% 66% 63% 61% 
2.00 82% 80% 75% 72% 69% 

1Q
1Q



difference between the average costs of local and in-transit carriers.  Similarly, f2 and d2 are not affected by 

D and k and their average values are 35% and 46% respectively. 

 

 

 

 

 

 

 
Table 6. Expected profit of in-transit carriers 

Effect on Logistics Market.  The interaction between carrier and order arrival and abandonment 

rates affects the expected number of carriers and orders that will be present at the logistics market in the 

long run.  Tables 7 and 8 show the effects of in-transit and order arrival rates and also the effects of order 

and in-transit carrier abandonment rates on the total expected number of carriers, , and 

on the expected number of orders.   

As we expected, when λ0/( λ1+ λ2) is low, the expected number of carriers increases and when this 

ratio is high, the expected number of orders increases.  Similarly, as the in-transit carriers abandon more 

frequently, decreases while  increases and as the orders abandon more, increases while  

decreases.  Cost distributions do not affect the expected carrier and order values. 

 

 λ0 
λ2 0.25 0.50 1.00 1.50 2.00 
0.00 1.755 1.288 0.625 0.287 0.135 
0.50 2.430 1.996 1.218 0.672 0.353 
1.00 3.060 2.672 1.888 1.211 0.721 
1.50 3.662 3.310 2.567 1.841 1.226 
2.00 4.250 3.921 3.225 2.503 1.823 

 

Table 7. Expected number of carriers and orders for different values  
of arrival rates of in-transit carriers and orders 

 
 φ2 

φ0 0.40 0.80 1.20 1.60 2.00 
0.20 4.126 2.050 1.366 1.026 0.823 
0.40 4.190 2.102 1.410 1.065 0.857 
0.60 4.228 2.135 1.439 1.091 0.881 
0.80 4.255 2.159 1.461 1.110 0.898 
1.00 4.275 2.177 1.477 1.125 0.912 

1 2TN N N= +

TN 0N TN 0N

TN

TN

 λ0 
λ2 0.25 0.50 1.00 1.50 2.00 

0.00 0.000 0.000 0.000 0.000 0.000 
0.50 0.557 0.596 0.673 0.739 0.785 
1.00 0.451 0.490 0.569 0.648 0.715 
1.50 0.366 0.401 0.475 0.553 0.630 
2.00 0.299 0.329 0.394 0.466 0.543 

 k 
D 0.50 0.60 0.70 0.80 

0.10 0.314 0.369 0.424 0.479 
0.20 0.347 0.400 0.454 0.508 
0.30 0.379 0.431 0.484 0.536 

 λ0 
λ2 0.25 0.50 1.00 1.50 2.00 
0.00 0.051 0.161 0.625 1.410 2.398 
0.50 0.026 0.078 0.315 0.800 1.543 
1.00 0.014 0.043 0.169 0.449 0.943 
1.50 0.009 0.025 0.097 0.259 0.568 
2.00 0.005 0.015 0.058 0.155 0.346 

2Q 2Q

0N



 

Table 8. Expected number of carriers and orders for 
different values  

of arrival rates of in-transit carriers and orders 
 

 Summary of Observations.   We now summarize our observations and recommendations for the 

logistics market as follows:  

- In order to provide benefit for the firms by decreasing the transportation prices, the logistics market 

should attract in-transit carriers.  However, in order not to hurt the local carriers, a balance between 

order arrival rate and the total local and in-transit carrier arrival rates should be maintained.  It is 

observed empirically that when λ0/( λ1+ λ2) is greater than 60%, more than half of the local carriers 

receive an order and their expected profit stays at the same level.   

- If the logistics market attracts more orders without increasing the carrier arrival rate, firms will not 

benefit substantially.   

- Another way of increasing competition is through keeping in-transit carriers longer at the logistics 

market by decreasing their abandonment rate.  Note that this can be achieved through service 

improvements at the logistics center.   

- Finally, a possible way of covering the expenses of the logistics market and also controlling the arrival 

rates of local and in-transit carriers is charging entry fees for arriving carriers.  By charging different 

fees for local and in-transit carriers, a proper balance between order and carrier arrival rates can be 

sustained.  

6.2. Analytical Results  
In the previous section, we investigated the effects of system parameters on the performance of the 

logistics market numerically to determine how much each performance measure is affected.  In this section, 

we give our analytical findings related to the structural properties of the model.  Specifically, we use 

stochastic comparisons to prove that as the arrival rates of carriers or the abandonment rate of orders 

increase, the expected average auction price decreases. Similarly we show that as the order arrival rate or 

the carrier abandonment rates increase, the expected average auction price increases. 

We prove this structural result in two parts.  First we show how the random variables for the number 

of carriers and orders in the steady state are affected by the changes in arrival and abandonment rates.  

Then, we prove that when the random variables for the number of carriers and orders in the steady state 

change in a particular way, the average expected auction price obtained by the steady-state distributions of 

these random variables changes accordingly.  We only provide the proofs for the effect of an increasing 

type 1 arrival rate.  The other cases can be proven in a similar way. 

Lemma 2: 

- N0 is stochastically increasing, N1 is stochastically decreasing, and N2 is stochastically decreasing in l0. 

- N0 is stochastically decreasing, N1 is stochastically increasing, and N2 is stochastically increasing in l1. 

 φ2 
φ0 0.40 0.80 1.20 1.60 2.00 
0.20 0.643 0.740 0.803 0.848 0.881 
0.40 0.359 0.433 0.484 0.520 0.549 
0.60 0.254 0.316 0.359 0.390 0.415 
0.80 0.199 0.252 0.289 0.317 0.339 
1.00 0.164 0.210 0.244 0.269 0.288 

0N



- N0 is stochastically decreasing, N1 is stochastically increasing, and N2 is stochastically increasing in l2. 

- N0 is stochastically decreasing, N1 is stochastically increasing, and N2 is stochastically increasing in φ0. 

- N0 is stochastically increasing, N1 is stochastically decreasing, and N2 is stochastically decreasing in φ1. 

- N0 is stochastically increasing, N1 is stochastically decreasing, and N2 is stochastically decreasing in φ2. 

Proof.  Proof is given in the Appendix 

 

The above lemma proves that the random variables for the number of carriers and orders that are 

present at the logistics center in the long run are affected by the changes in the order and carrier arrival 

and abandonment rates.  We next show how the average expected auction price changes with the arrival 

and abandonment rates. 

Lemma 3: 

 is decreasing in l0, l1, and in φ0 and increasing in l0, φ1, and φ2. 

 

Proof.  Let us compare two systems where system 1 has arrival rate and system 2 has arrival rate  

where > .     Then Equation (22) gives 

. 

 Lemma 2 yields , , and 

.  Since p(n0, n1, n2) is a decreasing function in n1 and n2 as shown 

in Lemma 1, 

, 

, and 

.  As a result . ▫ 

These structural results on the monotonicity of the expected auction price as a function of the arrival 

and departure rates of the system may be of interest in other settings such as internet auctions or 

procurement auctions where the number of participants varies randomly over time.  
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7. Conclusions 

In this paper, a logistics spot market, referred to as a logistics center, where the orders from a number 

of shippers with goods to transport to various destinations are matched with two types of carriers through 

a reverse auction, is analyzed. The paper is motivated by a logistics auction market in Turkey, ESO 

Logistics Center, where a reverse auction is used to match carriers with shippers. An interesting 

characteristic of this market is that local carriers compete with in-transit carriers who may be returning to 

their bases empty after unloading at a previous stop. The main contribution of this study is to develop an 

analytical model of the logistics market to analyze the effects of implementing such a logistics spot market 

on three parties involved: firms, local carriers, and in-transit carriers, and also the effects of various system 

parameters, such as order and carrier arrival and abandonment rates on the performance of the system.   

Our analysis show that the effects of cost distributions, arrival rates, and abandonment rates on local 

and in-transit carriers are quite intricate and one needs to evaluate the performance of the system for 

possible values of system parameters.  This type of analysis is valuable since ESO Logistics Center has 

been established relatively recently and is certain to observe growth in traffic volumes in the future. Our 

analysis may then yield useful insights on future strategic and tactical decisions. Continuing the on-going 

collaboration with the ESO Logistics Center, the performance evaluation tool should be useful in further 

development of the auction market and in its management.   

In addition, even though our motivation stems from an application in a logistics auction, our 

modeling approach and results can be applied to repeated auctions in other contexts such as internet 

auctions or procurement auctions where the number of participants varies randomly over time. As such, 

our results on the monotonicity of the expected auction price as a function of the arrival and departure 

rates of the system may be of interest in other settings. 
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Appendix 

Summary of the Information Available in the ESO Database: 
The data set received from ESO Logistics Center includes detailed information about orders and bids 

received between December 2003 and May 2005.  During this period, 1717 transportation orders that 

were opened by shippers for transportation from Eskişehir to 44 different cities and 1549 of these orders 

received bids from carriers and 168 orders were cancelled (abandoned).   Table 9 reports all the orders and 

bids. 

City 
 

Average 
price (YTL) 

Average bid  
(YTL) 

Total 
number of 

orders 

Total 
number of 
realized 
orders 

Total number of 
orders that carriers 

give bids 

Total 
number of 

bids 

Average 
number of 

bids for each 
demand Distance (km) 

1 354 357 185 97 130 302 2.32 688 
3 128 135 11 6 8 10 1.25 144 
5 340 365 52 26 38 42 1.11 569 
6 185 211 51 6 11 23 2.09 233 
7 400 466 69 2 12 6 0.50 428 
9 390 482 18 2 7 5 0.71 487 
11 50 76 11 1 3 3 1.00 80 
15 354 354 1 1 1 1 1.00 306 
16 103 160 27 4 10 17 1.70 149 
17 311 311 10 3 4 5 1.25 421 
25 1150 1785 10 1 2 5 2.50 1109 
26 95 146 2 2 2 4 2.00 0 
27 504 544 80 32 49 85 1.73 894 
34 216 227 257 78 108 4 0.04 330 
35 238 255 90 49 60 119 1.98 412 
41 181 185 393 176 223 306 1.37 219 
42 345 375 22 3 3 9 3.00 338 
43 90 95 4 1 2 2 1.00 78 
44 675 775 16 1 5 4 0.80 883 
45 225 233 13 6 7 15 2.14 394 
48 415 565 64 1 12 11 0.92 506 
59 283 301 28 14 19 48 2.53 462 
63 700 700 1 1 1 2 2.00 1031 
64 192 196 59 29 34 52 1.53 219 
81 190 206 75 27 35 46 1.31 251 

Overall 324.56 380.20 1549 569 786 1126 1.51 425.24 

Table 9. Summary information of ESO auction database 



Proof of Lemma 1: 
Let us consider the first order difference of the expected auction price p(n0, n1, n2) in n2:  

p(n0, n1, n2)- p(n0, n1, n2+1).    First, let us consider the case n2>1.  Equation (2) gives 

  . 

Let us now consider the case n1>0, n2=1.  In this case, the type 2 carrier gets the order and he is paid 

at a price which is the lowest cost among the costs of n1 type 1 carriers.  When there is one additional type 

2 carrier, i.e, n1>0, n2=2, then one of the type 2 carriers that has a lower cost gets the order and he is paid 

at the second lowest bid which is the cost of the other type 2 carrier.  Since the cost distributions of type 1 

and type 2 carriers are disjoint and , then p(0, n1, 1) > p(0, n1, 2), n1≥0.  

When n1=0 and n2=1, p(0, 0, 1)= .  If n1=0 and n2=2, then p(0, 0,2) is the expected minimum of the 

costs of two type 2 carriers.  Since , p(0, 0,1) ≥p(0, 0, 2).  Similarly p(0, 1, 0)=  and p(0, 1, 

1) is equal to the cost of the type 2 carrier.  Since , p(0, 1, 0, 0) ≥ p(0, 1, 1, 0).  Finally, when 

n1>1 and n2=0, 

 

As a result, p(n0, n1, n2)- p(n0, n1, n2+1)>0 and p(l, b, s) is non-increasing in n2. 

 Similarly, let us consider the first order difference of the expected auction price p(n0, n1, n2) in n1:                  

p(n0, n1, n2) - p(n0, n1+1, n2).   When n2>1, p(0, n1, n2) - p(0, n1+1, n2)=0.  In words, if there are at least two 

type 2 carriers, the number of type 1 carriers does not affect the average expected auction price.  When 

n2=1 and n1>0, Equation (2) yields 

. 

When n2=0 and n1>1, it can be shown by using Equation (2) that 

. 

Note that p(0,1,0)=  and p(0,2,0) is the expected minimum of the costs of two type 1 carriers.  Since 

 for all x, p(0, 1, 0) ≥ p(0, 2, 0).  Similarly, p(0, 0, 1)=  and p(0, 1, 1) is equal to the cost of the 

type 2 carrier.  Since  for all x, p(0, 0, 1) ≥ p(0, 1, 1).  

As a result, p(n0, n1, n2)- p(n0, n1+1, n2)≥0 and p(n0, n1, n2) is non-increasing in n1 .▫ 

 

Proof of Lemma 2:  
We use a standard sample-path coupling argument (see Shaked and Shanthikumar (1994) for 

example). As usual, a uniformization of the continuous-time process facilitates the comparisons. To this 

end, let g=l0+l1+l2+ K0j0+K1j1+K2j2. In the uniformized chain a transition takes place at exponentially 
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distributed intervals with rate g, but some of these transitions may be fictitious and may not change the 

system state.  

Let us compare two systems where system 1 has arrival rate and system 2 has arrival rate  

where > . Assume that we compare systems 1 and 2 starting from an empty state: 

= = (0,0,0), and let us also assume that at the time 

of the nth transition =(z,x,y) and =(z’,x’,y’) 

where x≥x’, y≥y’, and z≤z’.  We then argue that, the next transition will preserve the same order for each 

component. In order to do that, we look at the effect of each transition in both systems.  

i. A type 1 – arrival: This event can lead to three different states starting from the state (z,x,y). Let us 

number the different transition types as follows: 

1. to state (z , x+1, y) if x< K1 and z=0 

2. to state (z , x, y)  if x= K1 and z=0 

3. to state (z-1, 0, 0)  if x=0, y=0, and z≥1 

In order to establish the comparison between the two systems, we need to argue that all possible 

transition pairs in systems 1 and 2 preserve the orders. This requires checking 9 (3 by 3) possible transition 

pairs. Fortunately, most of the pairs are trivially verified. To outline the procedure let us take a type 1 

transition for both systems. Then the next state for the two systems are respectively: (z, x+1, y) and        

(z’, x’+1, y’), verifying the required inequality: x+1≥x’+1, y≥y’, and z≤z’. A more interesting comparison 

occurs when system 1 makes a type 2 transition and system 2 makes a type 1 transition. The next states are 

respectively: (z, x, y) and (z’, x’+1, y’) but recall that a type 2 transition only occurs when x= K1 . This 

implies that x’+1 cannot exceed x with this transition. Another non-trivial comparison is that of a 

transition 3 in system 1 versus a transition 1 in system 2. A transition 3 in system 1 implies that x=0 and 

y=0, and z≥0.  By the induction assumption, this in turn requires that x’=0 and y’=0, and z’>z, therefore a 

type 1 transition is impossible in system 2.  We summarize the results in the below table, whose entries (i,j) 

display how the induction hypothesis is preserved for transition i in system 1 and transition j in system 2. 

System 1 \ System 2 Transition 1 Transition 2 Transition 3 
Transition 1 Follows directly Follows directly Follows directly 
Transition 2 Verified Follows directly Follows directly 
Transition 3 Impossible Impossible Follows directly 
 

Finally, note that due to coupling, and to the fact that >  there may be cases where a type 1 – 

arrival to system is a real arrival to system 1 but only a fictitious arrival to system 2. In this case, system 2 

does not change state whereas system 1 can go to either state (z , x+1, y) or to state (z-1, 0, 0) preserving 

the required inequality in both cases. 

ii. A type 2 arrival: This event takes system 1 to three different states. Let us number the different 

transition types as follows: 

1. to state (z , x, y+1) if y< K2 and z=0 
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2. to state (z , x, y) if y=K2 and z=0  

3. to state (z-1, 0, 0) if x=0, y=0, and z≥1 

This case is very similar to case i. The results can be summarized in the below table: 

System 1 \ System 2 Transition 1 Transition 2 Transition 3 
Transition 1 Follows directly Follows directly Follows directly 
Transition 2 Verified Follows directly Follows directly 
Transition 3 Impossible Impossible Follows directly 

 

iii. An order arrival: This event takes system 1 to four different states. Let us number the different 

transition types as follows: 

1. to state (z , x,y-1) if y>0 and z=0  

2. to state (z , x-1, y) if x>0, y= 0, and z=0 

3. to state (z+1, 0, 0) if x=0, y=0, and z<K0 

4. to state (z, 0, 0) if x=0, y=0, and z=K0 

We summarize the results in the following table. A non-trivial comparison occurs when system 1 

makes transition 1 and system 2 makes transition 2. However, this transition implies y>y’ and hence at the 

next transition y-1≥y’. 

System 1 \ System 2 Transition 1 Transition 2 Transition 3 Transition 4 
Transition 1 Follows directly Verified Follows directly Follows directly 
Transition 2 Impossible Follows directly Follows directly Follows directly 
Transition 3 Impossible Impossible Follows directly Follows directly 
Transition 4 Impossible Impossible Impossible Follows directly 

 

iv. A Type 1 abandonment: This event takes system 1 to two different states. Let us number the 

different transition types as follows: 

1. to state (z , x-1,y) if x>0 and z=0 

2. to state (z , x, y) if x=0 and z= 0 

This event is somewhat different than the first three events considered since the actual transition rates 

are state dependent. According to our coupling argument, a real transition (abandonment) at state (z ,x,y) 

in system 1 may correspond to a fictitious transition for system 2 at state (z’, x’, y’) (when x>x’) (in fact, 

this happens with probability x/x’) whereas a real transition (abandonment) at state (z’, x’, y’) in system 2 

always corresponds to a real transition  at state (z, x, y) in system 1 (where x’>x and x’>0). Now let us 

consider the different pairs of transitions in systems 1 and 2. A real transition in system 1 leads to the state            

(z, x-1, y) or (z , x, y) but the corresponding transition in system 2 can be fictitious only if x>x’ which 

ensures that x-1≥x’. Otherwise checking the pairs we find that transition 2 in system 1 and transition 1 in 

system 2 is impossible since x≥x’ by the induction assumption. The other combinations are easily verified. 

v. A Type 2 abandonment: This event takes the system 1 to two different states. Let us number the 

different transition types as follows: 

1. to state (z , x, y-1) if y>0 and z=0 

2. to state (z , x, y) if y =0 and z=0 



This case is very similar to case 4 and parallel arguments apply. 

vi. An order abandonment: This event takes the system 1 to two different states. Let us number the 

different transition types as follows: 

1. to state (z-1,x, y) if z>0 

2. to state (z, x, y) if z = 0 

Using the coupling argument, since z’≥z, there may be actual transitions (order abandonments) in 

system 2 with corresponding fictitious transitions in system 1. This does not oppose the induction 

assumption since this can happen only when z’>z which implies that after the state transition we still have 

z’-1≥z. The other pairs of transitions are also directly verified.  

We have hence proven that for the coupled system ,  and 

 and  for all transition times tn. Now passing to the corresponding stationary random 

variables , , ,  we immediately obtain the desired stochastic comparison: 

 

or equivalently, . ▫  

(1) ( 2 )
0 0( ) ( )n nN t N t£ (1) ( 2 )

1 1( ) ( )n nN t N t³

(1) ( 2 )
2 2( ) ( )n nN t N t³

(1) ( 2 )
0 0,N N (1) ( 2 )

1 1,N N (1) ( 2 )
2 2,N N
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