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Abstract

The minimization of general risk functions is becoming more and more important in portfolio choice theory and optimal hedging.
There are two major reasons. Firstly, heavy tails and the lack of symmetry in the returns of many assets provokes that the classical opti

mization of the standard deviation may lead to dominated strategies, from the point of view of the second order stochastic dominance.

Secondly, but not less important, many institutional investors must respect legal capital requirements, which may be more easily studied
if one deals with a risk measure related to capital losses.

This paper proposes a new method to simultaneously minimize several general risk or dispersion measures. The representation the
orems of risk functions are applied to transform the general risk minimization problem in a minimax problem, and later in a linear pro
gramming problem between infinite dimensional Banach spaces. Then, new necessary and sufficient optimality conditions are stated and
a simplex like algorithm is developed. The algorithm solves the dual problem and provides both optimal portfolios and their sensitivities.

The approach is general enough and does not depend on any particular risk measure, but some of the most important cases are spe
cially analyzed. A final real data numerical example illustrates the practical performance of the proposed methodology.
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1. Introduction

Modern risk analysis must face two major drawbacks affecting most of the available securities and many investment
strategies: asymmetric returns and fat tails. They recently caused important capital losses, that were difficult to predict
when agents were using classical risk functions like the standard deviation or sensitivities of the portfolio value with regard
to economic or financial variables. Accordingly, regulators have extended the analysis of the group G-10 and the Basle

Committee on Banking Supervision, that provided a minimal set of capital requirements in 1988. Besides, many practitio-
ners have also extended those methods of J.P. Morgan during the late 1980s, that developed a firm-wide VaR system in

order to predict possible losses under negative scenarios and normal distributions.

Researchers have also focused on this problem and Artzner et al. (1999) published a seminal paper introducing the
notion of ‘‘coherent measure of risk’’. They attempted to establish a minimal set of axioms that a risk measure should sat-
isfy in order to adequately reflect capital requirements, and they derived important properties and representation theorems
from the axioms. Their analysis has been extended or modified by many authors. Important contributions are, amongst
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many others, Rockafellar et al. (2006a,b), where the concepts or ‘‘expectation bounded risk measure’’ and ‘‘deviation risk
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measure’’ are introduced, studied, related and applied to some portfolio choice linked problems, or Ruszczynski and Shap-
iro (2007), where interesting portfolio optimization topics are addressed too.

Another line of research focuses on those risk functions compatible with the second order stochastic dominance. For
instance, Ogryczak and Ruszczynski (1999) point out that the standard deviation does not satisfy this condition if asym-
metric returns are involved, whereas the absolute deviation and semi-deviation really do. This justifies that many authors
consider the absolute deviation in portfolio selection problems. For instance, Konno et al. (2005), who can reduce the opti-
mization problem to a linear one because they consider discrete return distributions (generated from recent samples).

Finally, recent literature has also optimized modern risk functions in order to price and hedge in incomplete or imperfect
markets. Interesting papers are Föllmer and Schied (2002) and Nakano (2004), among others.

The optimization of dispersions or risk functions reflecting capital requirements is often complex. Indeed, as pointed out
by many papers, one frequently must deal with a non-differentiable problem. Though it is usually convex, the subgradient-
linked optimality conditions are not so easily treated in practice. Therefore, authors usually look for an equivalent alter-
native optimization problem. For instance, this is done by Föllmer and Schied (2002) and Nakano (2004). As said above,
Konno et al. (2005) can deal with a linear problem, but they minimize a particular dispersion and involve discrete returns.
Benati (2003) also uses discrete sample-linked returns and gets other linear problem (that he combines with an integer frac-
tional problem) to optimize the ‘‘worst conditional expectation’’, a coherent measure introduced in Artzner et al. (1999).

The present article proposes a linear programming approach that applies for every risk function satisfying quite general
conditions. This is a major difference with respect to the analyses of Benati (2003) or Konno et al. (2005), since their con-
structions only apply for a specific risk measure. On the contrary we can include many coherent risk measures, and every
expectation bounded or deviation measure.

The two crucial keys of our study are the representation theorems of risk measures and the use of Banach spaces to
address those problems with infinitely many constraints. The representation theorems allow us to transform a general port-
folio choice problem into a minimax problem. Minimax problems are usual in finance and often lead to a linear problem
(see, for instance, Young, 1998), but there are cases for which there are no equivalent linear formulations (Barber and Cop-
per, 1998). Here we follow an idea of Balbás and Romera (2007), since these authors transform a minimax problem, pro-
viding hedging strategies against the interest rate risk, into an infinite-dimensional linear programming problem between
Banach spaces.

Our linear programming approach yields new optimality conditions and algorithms. So, the paper outline is as follows.
Section 2 presents the basic notations and assumptions, as well as a general portfolio choice (or hedging) vector optimi-
zation problem that becomes a minimax one. Section 3 transforms the minimax problem into a dual couple of linear ones
between Banach spaces. The involved dual Banach spaces are CðDÞ and MðDÞ, continuous functions and inner regular
Borel measures on the compact space D. Theorem 2, the most important result in this section, provides necessary and suf-
ficient optimality conditions that show important differences with respect to those of previous literature. In fact, rather
than subgradient-linked properties, we draw on the existence of probability measures satisfying appropriate requirements,
in the line of the complementary slackness conditions of linear programming. Section 4 focuses on special optimal hedging
or portfolio choice problems that consider a finite number of available assets in the market. The linear problems become
semi-infinite, which makes it easier to formulate the optimality conditions of Theorem 2. Section 5 characterizes the
extreme points of the dual problem (Theorem 7) and develops a simplex-like algorithm to solve it. The complementary
slackness conditions allow us to obtain the primal solution (optimal portfolio). Thus we have both the optimal portfolio
and its sensitivity with respect to the involved parameters. Section 6 particularizes the theory for several risk functions, with
special focus on some classical ones and those that can be given by distorting functions (Wang, 2000). These risk functions
allow us to construct ‘‘alternative indexes’’, whose combinations with the riskless asset lead to the efficient portfolios in a
new framework such that risk levels are measured taking into account asymmetries and fat tails. Section 7 deals with a real
data numerical example that illustrates the performance of our methods in practice. Despite the linear optimization prob-
lem involves infinite-dimensional spaces, the objective function only depends on a finite-dimensional subspace, so the con-
vergence of the algorithm is really fast. Section 8 concludes the paper.

2. Preliminaries and notations
Let ðX;F; lÞ be a probability space, p 2 [1,1) and q 2 (1,1] such that (1/p) + (1/q) 1, where, as usual, we take the
q q P p
convention (1/1) 0. It is well known that L ¼ L ðX;F; lÞ is the dual space of L . Consider the functions qi : L 7!R,

i 1,2, . . . ,c, given by

qiðyÞ ¼ Sup �E yzð Þ : z 2 Dif g ð1Þ

each Di being a non-void convex and r(Lq, Lp) compact subset of Lq and
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ting the mathematical expectation of every random variable h 2 L1. Notice that Lq 3 z 7!EðyzÞ 2 R is r(Lq,Lp) con-
p
ous for every y 2 L and, therefore, Sup may be replaced by Max in (1).
Many coherent risk measures, in the sense of Artzner et al. (1999), or expectation bounded risk measures, in the sense of
Rockafellar et al. (2006a), satisfy expression (1), as pointed out in Rockafellar et al. (2006a,b). Actually, these authors show
that Di is r(Lq,Lp)-closed because they allow for risk functions whose value may equal +1. However, owing to the Alao-
glu‘s Theorem (see Holmes, 1975), the r(Lq,Lp)-compactness of Di will hold if qi is a continuous R-valued expectation
bounded risk measure (see Section 6 and the Representation Theorems of convex functions in Zalinescu, 2002).

Besides, Rockafellar et al. (2006a) introduce the notion of deviation measure D and they show that

DðyÞ ¼ RðyÞ þ EðyÞ; 8y 2 Lp; ð2Þ
enoting an expectation bounded risk measure. Obviously, since R satisfies (1) so does D once D is substituted by
i

D � f1g ¼ fz� 1; z 2 D g: ð3Þ
i i
Whence, our analysis may apply for both risk and deviation functions.

ix m 2 N, a set of real numbers fbjgm

j 1 and a set of random variables fqjg
m
j 1 � Lq. We will deal with the vector opti-
mization problem:

Min qðyÞ
EðyqjÞ 6 bj; j ¼ 1; 2; . . . ;m

9>=>: ð4Þ

y 2 Y ;

Lp being an arbitrary convex cone, and q : LP 7!Rc denoting the vector function with components qi, i 1,2, . . . ,c. (4)
be understood as a portfolio selection or an optimal hedging problem such that there is no a clear agreement about the

t convenient way to measure the risk level. Constraints E(yq ) 6 b (or, equivalently, �E(yq ) P �b ) may reflect several
j j j j
practical situations. For example, a maximum amount of money to invest, a minimum required expected pay-off, etc.
Expression (1) points out that q is a convex function and, consequently, for every optimal solution y0 of (4) there exists

a (a1,a2, . . . ,ac) such that a 5 0, a P 0 and y0 solves the scalar optimization problem

Min
Pc
i 1

aiqiðyÞ

EðyqjÞ 6 bj; j ¼ 1; 2; . . . ;m

9>>>=>: ð5Þ
>

y 2 Y

>;
versely, if ai > 0, i 1,2, . . . ,c, then every solution of (5) also solves (4). Thus, by solving problem (5), with a arbitrary,
ill get the whole set of minimal solutions of (4) and, possibly, some more points. All of them compose the so called ‘‘set

eak solutions of (4)’’. Henceforth we will fix a non-null and non-negative arbitrary vector a, so as to obtain those weak

solutions.

3. Minimizing risk measures by linear optimization in Banach spaces: Optimality conditions

In this section we will present several problems whose solution leads to the solution of problem (5). Furthermore, most
of the yielded alternative problems will be linear, which will allow us to characterize their solutions by means of duality
relationships and complementary slackness conditions. The dual variables generate economic interpretations applying in
practical portfolio choice problems. Finally, a future section will provide a simplex-like algorithm permitting us to solve
the dual (and therefore the primal) problem.

Denote by D D1 · D2 · � � �· Dc the usual product of ðDiÞci 1 endowed with the product of the weak*-topologies. Then D
is obviously convex and compact.

Consider problem

Min h

hþ
Pc
i 1

aiEðyziÞP 0; 8z ¼ ðz1; z2; . . . ; zcÞ 2 D

EðyqjÞ 6 bj; j ¼ 1; 2; . . . ;m

9>>>>>=>>>>: ð6Þ
h 2 R; y 2 Y
>;

Þ 2 R� Lp being the decision variable. We have the following result whose proof is very simple and therefore omitted.

3



Proposition 1. Suppose that h0 2 R and y0 2 Y. Then, y0 solves (5) and
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Xc
h0 ¼ aiqiðy0Þ

if

Da

Th
mi

of

In
i

i

k P

in

1

i 1

and only if (h0,y0) solves (6).1
Remark 1. Problem (6) is equivalent to problem

Min h
9>>>
a >=
hþ EðyzÞP 0; 8z 2 D

EðyqjÞ 6 bj; j ¼ 1; 2; . . . ;m

h 2 R; y 2 Y

>>>>;
being the convex and r(Lq,Lp)- compact subset of Lq given by
( )
Da ¼
Xc

aiDi ¼ z 2 Lq; z ¼
Xc

aizi; zi 2 Di; i ¼ 1; 2; . . . ; c :

i 1 i 1
is new formulation would simplify the notation of future analyses, although we will focus on problem (6) because it
ght be complicated to determine Da in practical examples.
Notice that problem (6) is linear and its first constraint is established in the Banach space CðDÞ of real valued and con-
tinuous functions on the compact space D endowed with the supremum norm. According to the Riesz Representation The-
orem, its dual space, denoted by MðDÞ, is composed of the real valued inner regular and r� additive measures on the Borel
r-algebra of D endowed with the norm of the total variation.

The Lagrangian function

L : R� Lp � Rm �MðDÞ7!R
(6) becomes
 Z c m
X X

Lðh; y; k; mÞ ¼ h�

D
ðhþ

i 1

aiEðyziÞÞdmðzÞ þ
j 1

kjðEðyqjÞ � bjÞ
Z� �

¼ hð1� mðDÞÞ �

Xc

i 1

ai
D

EðyziÞdmðzÞ þ
Xm

j 1

kjðEðyqjÞ � bjÞ: ð7Þ

order to simplify some expressions, if convenient we will represent by mi pi(m) the standard projection of m on Di,
1,2, . . . ,c, and it is obvious that
Z Z
D
E yzið ÞdmðzÞ ¼

Di

E yzið ÞdmiðziÞ;
1,2, . . . ,c. Moreover, the integration variables z or zi may be omitted.
According to Anderson and Nash (1987), a couple ðk; mÞ 2 Rm �MðDÞ is dual feasible for Problem (6) if and only if

0, m P 0 and
Inf h 1� m Dð Þð Þ �
Xc

i 1

ai

Z
D

E yzið Þdm

� �
þ
Xm

j 1

kj E yqj

� �
� bj

� �
; h; yð Þ 2 R� Y

( )
> �1;
which case its dual objective value is given by the infimum above. Thus, the dual problem becomes

Among others, Shimizu and Aiyoshy (1980) already introduced a new variable in order to simplify a minimax problem. The proposition above just

applies this idea.
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j 1Pm
j 1

kjE yqj

� �
�
Pc
i 1

ai

R
D E yzið Þdm

� �
P 0; 8y 2 Y

mðDÞ ¼ 1

k; mð Þ 2 Rm �M Dð Þ
k P 0; m P 0

>>>>>>>=>>>>>>>>>>;
: ð8Þ

2 Rm �MðDÞ being the decision variable.
is trivial to see that the inequality
h P �
Xm

j 1

bjkj ð9Þ
s whenever (h,y) and (k,m) are (6) and (8)-feasible respectively.
nce (6) and (8) involve infinite-dimensional spaces the absence of duality gap is not guaranteed. To solve this minor
drawback we will impose the usual Slater Qualification (see Anderson and Nash, 1987). Furthermore, in practical examples
it will not be realistic to assume that the risk level may tend to �1. Thus, we will consider that (6) is bounded.

Assumption 1. There exists y0 2 Y such that E(y0qj) < bj, j 1,2, . . . ,m. Moreover, there exists h* such that h P h*

whenever (h,y) is (6)-feasible.

The latter assumption implies that (6) has a finite infimum value and (8) attains its optimal value, i.e., (8) is solvable. We
will denote by ha the optimal value of both problems.

The second and the last constraints in (8) reveal that (8)-feasible inner regular measures m have to be probabilities. Here-
after we will denote

PðDÞ ¼ m 2MðDÞ; m P 0; mðDÞ ¼ 1f g:
The Alaoglu‘s Theorem easily leads to the compactness of PðDÞ when endowed with the rðMðDÞ;CðDÞÞ-topology (Holmes,
, or Anderson and Nash, 1987). The same notations and comments apply if D is replaced by Di, i 1,2, . . . ,c.
c
Notice that the influence of the m variable in (8) only depends on fmigi 1, in the sense that two probability measures with

similar projections have similar role in this optimization problem. Thus, if convenient, the dual variable m may be substi-
tuted by its projections fmigci 1.

The first constraint of (8) involves the primal variable y 2 Lp. This makes some notations ‘‘rather complex’’, so it is
worthwhile to eliminate y. Notice that

Lp 3 y 7!
Xc

i 1

ai

Z
Di

EðyziÞdmi

� �
2 R
ear and continuous for every m 2MðDÞ. Thus it may be represented by a vector of Lq that we will denote byXc

aið
Z

Eð�ÞdmiÞ:

i 1 Di
n order to remove the y variable from (8) we will draw on the notationXm

qjkj �
Xc

ai

Z
D

E �ð Þdmi

� �
PY 0: ð10Þ
j 1 i 1 i

Then, the dual problem becomes
Max �
Pm
j 1

bjkj

9>>>>>>>
Pm
qjkj �

Pc
ai

R
D E �ð Þdmi

� �
PY 0

>>>=

j 1 i 1

i

mðDÞ ¼ 1

k; mð Þ 2 Rm �M Dð Þ
k P 0; m P 0

>>>>>>>>>>;
ð11Þ

absence of duality gap permits us to characterize primal and dual solutions by means of a system of equations and
alities.

5



Theorem 2. Consider ðh; yÞ 2 R� Lp and ðk; mÞ 2 Rm �PðDÞ. They solve (6) and (11) if and only if they solve the following
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system of complementary slackness conditions

Pm
k E yq
� �

�
Pc

a
R

E yzð Þdm
� �

¼ 0
9>>
j j i Di i i >>

Pr

giv

Fr

Fr

an

fo

an
op
to
j 1 i 1

kj E yqj

� �
� bj

� �
¼ 0; j ¼ 1; 2; . . . ;m

hþ
Pc
i 1

ai

R
Di

E yzið Þdmi

� �
¼ 0

hþ
Pc
i 1

aiE yzið ÞP 0; 8z 2 D

E yqj

� �
6 bj; j ¼ 1; 2; . . . ;mPm

j 1

qjkj �
Pc
i 1

ai

R
Di

E �ð Þdmi

� �
PY 0

y 2 Y ; k P 0

>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>;

ð12Þ

oof. The four inequalities of the system above point out that both (h,z) and (k,m) are feasible. Besides, the first equality
es
�
Xm

kjEðyqjÞ ¼ �
Xc

ai

Z
EðyziÞdmi

� �
:

j 1 i 1 Di
om the second equality,Xm Xc Z� �

�

j 1

kjbj ¼ �
i 1

ai
Di

EðyziÞdmi :
om the third equality,Xm
� k b ¼ h

j 1

j j
d (9) shows that we are facing the solutions of both problems.
Conversely, suppose that (h,y) and (k,m) solve both problems. Then they must be feasible and hence they must satisfy the

ur inequalities. On the other hand, the complementary slackness conditions of linear programming (Anderson and Nash,

1987) lead to the second and third expressions of (12). Finally, (h,y) must minimize the Lagrangian Function (7) on R� Y
(Anderson and Nash, 1987). Since the dual constrains trivially show that the minimal value of (7) is attained at (0,0) and
reaches the value �

Pm
j¼1kjbj, we easily obtain the first equality of (12). h

Remark 2. System (12) provides necessary and sufficient optimality conditions for problems (5) and (6) that do not use the
subgradients of the risk vector measure q. On the contrary, these conditions draw on the existence of inner regular prob-
ability measures fmigci 1 on fDigci 1 whose supports are contained on the zeros of

hþ
Xc

i 1

aiEðyziÞ;
d multipliers fkjgm
j 1 such that (10) holds. This fact may be an interesting alternative to solve many portfolio choice or

timal hedging problems in practice, although it will not be easy to achieve the explicit solution of System (12).2 However,
deal with the system becomes far easier if the dual solution may be computed by means of alternative procedures. This is
the reason why in Section 5 we will develop a simplex-like method for the dual problem that applies for those cases such
that the convex cone Y is generated by a finite set of available securities.

2 Recall that dealing with subgradients may also generate significant problems in practice. See Rockafellar et al. (2006a) or Ruszczynski and Shapiro
(2007) for complementary analyses.
6



4. Semi-infinite problems
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In this section we will consider n ¼ r þ s 2 N available assets whose pay-offs are fyhg
n
h 1 � Lp. Strategies will be repre-

sented by x 2 Rn, and the closed convex cone

X ¼ x ¼ ðxhÞrþs
h 1 2 Rrþs; xh P 0; h ¼ r þ 1; r þ 2; . . . ; r þ s

� 	

wil

It i

ðh;
in (
exi

for

(Ho

and

LX

for

for

if eX
our
l reflect that short-sales of some securities are not allowed.3
The set Y (of reachable pay-offs) will be given by
Y ¼ y 2 Lp; y ¼
Xn

xhyh; x ¼ xhð Þnh 1 2 X

( )
:

h 1
s easy to verify that Y is a convex cone.
Problem (6) becomes
Min h Pn Pc
9>>>>>>>
hþ ð aiEðyhziÞÞxh P 0; 8z 2 D >>
h 1 i 1Pn
h 1

EðyhqjÞxh 6 bj; j ¼ 1; 2; . . . ;m

h 2 R; xh P 0 h ¼ r þ 1; . . . ; r þ s

=>>>>>>>>>;
: ð13Þ

xÞ 2 R1þn being the decision variable. Notice that linear constraints with the form
Pn

h 1lhxh 6 L are easily incorporated
13). Indeed, take ~q 2 Lq such that Eðyh~qÞ ¼ lh, h 1,2, . . . ,n, and apply the second constraint in (13). Furthermore, the
stence of ~q holds under weak conditions like the linear independence of fy gn . In order to prevent the existence of
h h 1
duality gaps we will still assume the fulfillment of the Slater Qualification along with the existence of primal lower bounds
(Assumption 1).

In order to adapt the dual problem (11) we need to analyze the constraint (10). Manipulating we have

Xn

h 1

E
Xm

j 1

qjkj

 !
yh

" #
xh P

Xn

h 1

Xc

i 1

ai

Z
Di

E yhzið Þdmi

� �" #
xh
every x 2 X. Then, (11) obviously becomes
3 The cone X above may be replaced by a more general convex closed cone eX � Rn. Then, the Representation Theorem of closed convex subsets of Rn
lmes, 1975) shows that eX L þ C ;, L being the vector space.
~X ~X ~X

LX x 2 Rn; xþ eX eXn o
;

CX being the closed pointed convex cone (or recession cone)

CX x 2 Rn; xþ eX \ LX

� �
� eX \ LX

n o
;

representing the orthogonal subspace of LX . In the most important cases one has that

LX Rn and CX 0f geX Rn and

LX 0f g and CX Rn
þeX Rn

þ. More generally,

LX 0f g and CX
eX

is pointed. By using the above representation of eX and applying the procedure proposed in Balbás and Romera (2007), we can adapt the variables of
problem so that a X like cone can play the role of eX .
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j 1Pm
j 1

E qjyh

� �
kj ¼

Pc
i 1

ai

R
Di

EðyhziÞdmi

� �
; h ¼ 1; 2; . . . ; r

Pm
j 1

E qjyh

� �
kj P

Pc
i 1

ai

R
Di

EðyhziÞdmi

� �
; h ¼ r þ 1; . . . ; r þ s

ðk; mÞ 2 Rm �PðDÞ
k P 0

>>>>>>>>>=>>>>>>>>>>>>>;
: ð14Þ

; mÞ 2 Rm �PðDÞ being the decision variable.
According to Theorem 2, the complementary slackness conditions (12) are necessary and sufficient optimality condi-
tions. In our case they arePm
j 1

kjE yhqj

� �
�
Pc
i 1

ai

R
Di

E yhzið Þdmi

� �
¼ 0; h ¼ 1; 2; . . . ; r

9>>>>>>>
Pm
j 1

kjE yhqj

� �
�
Pc
i 1

ai

R
Di

E yhzið Þdmi

� �" #
xh ¼ 0; h ¼ r þ 1; . . . ; r þ s

kj
Pn
h 1

E yhqj

� �
xh � bj


 �
¼ 0; j ¼ 1; 2; . . . ;m

hþ
Pn
h 1

Pc
i 1

ai

R
Di

E yhzið Þdmi

� �
 �
xh ¼ 0

>>>>>>=>>>>>>>>>>>>>;
ð15Þ

ng with the constraints of both problems. As already said, it may be difficult in practice to solve the system above in the
knowns h , x, k and m. However, if k and m are known, then (15) becomes" #
 9
Pm

j 1

kjE yhqj

� �
�
Pc
i 1

ai

R
Di

E yhzið Þdmi

� �
xh ¼ 0; h ¼ r þ 1; . . . ; r þ s

>>>>>>>>
Pn
h 1

E yhqj

� �
xh ¼ bj; j ¼ 1; 2; . . . ;m; kj 6¼ 0

hþ
Pn
h 1

Pc
i 1

ai

R
Di

E yhzið Þdmi

� �
 �
xh ¼ 0

=>>>>>>>>;
; ð16Þ

ich is a simple linear system in h and x.

The simplex-like algorithm
This section is devoted to present a simplex-like algorithm so as to solve the semi-infinite linear programming problem
(14). Then, (16) will generate the primal solution too.

First of all we will introduce the slackness variables ðnhÞrþs
h rþ1 in order to get equality constraints. Thus, consider the

equivalent problem

Max�
Pm
j 1

bjkj

Pm
E q y
� �

kj �
Pc

ai

R
E y zið Þdmi

� �
¼ 0; h ¼ 1; 2; . . . ; r

9>>>>>>>>>>>>

j 1

j h
i 1

Di hPm
j 1

E qjyh

� �
kj � nh �

Pc
i 1

ai

R
Di

E yhzið Þdmi

� �
¼ 0; h ¼ r þ 1; . . . ; r þ s

k; n; mð Þ 2 Rm � Rs �P Dð Þ
k P 0; n P 0

=>>>>>>>>>>>>;
: ð17Þ

said above, PðDÞ is convex and rðMðDÞ;CðDÞÞ-compact. Besides, given z 2 D we will denote by dz 2 PðDÞ the usual
rac delta that concentrates the mass on {z}, i.e., dz({z}) 1 and dz(Dn{z}) 0. It is known that the set of extreme points
PðDÞ is given by
extðPðDÞÞ ¼ fdz; z 2 Dg;
though we will not have to draw on this result. Similar properties hold if D is substituted by Di, i 1,2, . . . ,c.

8



Lemma 3. Denote by A the feasible set of (17) and by
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A0 ¼ k; nð Þ 2 Rm � Rs; there exists m 2 PðDÞ with ðk; n; mÞ 2Af g:

Then

We m
agglo

Co d
APm

It is
(Hol
Thus

L

4 Gi
then t
Howe
, A0 is convex and closed.
Proof. It is easy to see that A0 is convex, so let us prove that it is closed. Indeed, take the sequence fðkk; nkÞg1k 1 �A0 and
suppose that

lim
k 7!1

kk; nkð Þ ¼ k; nð Þ:
ust prove that ðk; nÞ 2A0. Take fðmkÞg1k 1 � PðDÞ such that ðkk; nk; mkÞ 2A. Since PðDÞ is compact there exists m,
meration point of fðmkÞg1 . Therefore, (k,n,m) is an agglomeration point of fðkk; nk; mkÞg1 . Since the points of this
k 1 k 1
sequence are in A and A is closed, (k,n,m) is in A too. Hence, ðk; nÞ 2A0. h

Lemma 4. Consider the sets A0 and A above and their extreme sets, extðA0Þ and extðAÞ. Then, there exists
ðk; n; mÞ 2 extðAÞ such that �

Pm
j 1bjkj ¼ ha, i.e., there exist ðk; n; mÞ 2 extðAÞ solving (17). Moreover, ðk; nÞ 2 extðA0Þ.4

Proof. The previous lemma shows that A0 is convex and closed. Consequently, the Representation Theorem of closed con-
vex subsets apply (Holmes, 1975). Since A0 is included in the non-negative cone of Rm � IRs it does not contain any affine
manifold, and therefore

A0 ¼ Co extðA0Þ½ � þ RcðA0Þ; ð18Þ
enoting convex hulls and Rc denoting recession cones.

ssumption 1 guarantees that (17) is solvable, and, accordingly, (18) ensures the existence of ðk; nÞ 2 extðA0Þ such that
� j¼1bjkj ¼ ha. Fix (k,n) and set

A1 ¼ m 2 P Dð Þ; k; n; mð Þ 2Af g:
easy to check that A1 is closed, and therefore compact because it is included in PðDÞ. The Krein Milman Theorem

mes, 1975, or Anderson and Nash, 1987) ensures that A1 is the rðMðDÞ;CðDÞÞ-closed convex hull of its extreme set.

, there exists m 2 extðA Þ, and (k,n,m) is the required element of extðAÞ. h
1

Lemma 5. Let be N 2 N and C � RN a convex compact set. Let c0 be a extreme point of C. Then, there exists a linear map

L : RN 7!R with L(c0) > L(c) for every c 2 Cn{c0}.

Proof. Let us apply the induction method on the dimension of C, Dim(C) (i.e., the dimension of the minimal affine
manifold containing C ). The result is clear if Dim(C) equals zero or one. Suppose that it also holds for dimensions
1,2, . . . ,Dim(C) � 1. Without loss of generality we can assume that Dim(C) N. The Separation Theorems for convex
sets (Holmes, 1975) point out the existence of a non-null linear map L0 : IRN 7!R with L 0(c0) P L 0(c) for every c 2 C.
Obviously,

Dim c 2 C; L0ðcÞ ¼ L0ðc0Þf g 6 N � 1

(this set is included in a (N-1)-dimensional affine manifold). Due to the induction hypothesis it is easy to establish the exis-
tence of L00 : RN 7!R with L00(c0) P L

0 0
(c) for every c 2 C and L00(c0) > L00(c) whenever c 2 C and L 0(c0) L 0(c). Obviously,
L 0 + L00 is the required linear map. h
Lemma 6. Let be N 2 N and f : D7!RN a r(Lq,Lp)-continuous function. Then, for every m 2 PðDÞ there exist a finite subset

z1; z2; . . . ; zK
� 	

� D

and a linear convex combination

K K
X X

tkdzk t1; t2; . . . ; tK P 0; tk ¼ 1
k 1 k 1
ven a linear programming problem between infinite dimensional Banach spaces, if the feasible set is weakly compact and the problem is bounded,
here exists a extreme point of the feasible set where the objective function is as close as desired to the optimal value (Anderson and Nash, 1987).
ver, since our objective does not depend on the infinite dimensional variable m, we can prove much more.
9



such that  !
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Z
f dm ¼

Z
f d

XK

tkdzk :
P

/
f

S

h

co

It
u
R

T

po
D D k 1

roof. Since f is continuous then f(D) is connected and compact. Consider the function
Z

M Dð Þ 3 m! /f mð Þ ¼

D
f dm 2 RN :
f is clearly linear and rðMðDÞ;CðDÞÞ-continuous and therefore /f ðPðDÞÞ is convex and compact. Furthermore,
ðzÞ ¼

R
D f ddz implies that
f ðDÞ � /f P Dð Þð Þ: ð19Þ

We will present the complete proof in two steps.

Step 1. The result holds for N 1 with K 1. Indeed, in such a case take
m ¼Min f ðzÞ; z 2 Df g 6Max f ðzÞ; z 2 Df g ¼ M :
ince f(D) is connected we have that
f ðDÞ ¼ ½m;M �: ð20Þ
Moreover
 Z Z Z

m ¼

D
mdm 6

D
f dm 6

D
M dm ¼ M
R

olds for every m2 PðDÞ, from where (20) leads to the existence of zm 2 D with f ðzmÞ ¼ D f dm for every m2 PðDÞ.

Step 2. The result holds for every N 2 N. Indeed, since /f ðPðDÞÞ is convex and compact we have that
� �� �

/f P Dð Þð Þ ¼ Co ext /f P Dð Þð Þ :

Thus, for each m 2 PðDÞ there exists a finite set fu1; u2; . . . ; uKg � extð/f ðPðDÞÞÞ generating
R

D f dm as a linear convex

mbination
Z K
D
f dm ¼

X
h 1

thuh:
is sufficient to see that every element in the set {u1,u2, . . . ,uK} above takes the form uk f(zk), zk 2 D, so fix
2 extð/f ðPðDÞÞÞ and let us prove the latter expression. From the previous lemma there exists a linear function L:
N 7!R with
LðuÞ > LðwÞ ð21Þ
for every w 2 /f ðPðDÞÞ; w 5 u. Obviously,Z Z� �
D
L � fð Þdm ¼ L

D
f dm
for every m 2 PðDÞ, so
Z
D

L � fð Þdmu ¼ LðuÞR

for those mu 2 PðDÞ with D f dmu ¼ u (whose existence follows from u 2 /f ðPðDÞÞ). According to the results stated in Step 1
there exists z 2 D with
L f ðzÞð Þ ¼ L � fð ÞðzÞ ¼
Z

L � fð Þdmu ¼ LðuÞ

D

from where, bearing in mind that f ðzÞ 2 f ðDÞ � /f ðPðDÞÞ (see (19) and (21)), we have that f(z) u. h
heorem 7. With the notations above let (k,n) be a extreme point of A0 and let (k,n,m) be a solution of (17) and a extreme

int of A. Then, there exist {z1, z2, . . . , zK} � D and a linear convex combination
10



XK

tkdzk t1; t2; . . . ; tK P 0;
XK

tk ¼ 1

such

h 1

extre

Now
Fi

If on
solut
the s

whos
elem

5
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k 1 k 1

that ðk; n;
PK

k 1tkdzk Þ also solves (17) and is a extreme point of A. Furthermore, if K* is the number of strictly positive
*
components of (k,n) then K + K 6 r + s + 1.

Proof. The existence of (k,n,m) follows from Lemma 4, and Lemma 6 guarantees the existence of
PK

k 1tkdzk withXc

ai

Z
E yhzið Þdmi

� �
¼
Xc

ai

Z
E yhzið Þd

XK

tkdzk

 ! !
;

i 1 Di i 1 Di k 1

,2, . . . ,n. Thus, ðk; n;
PK

k 1tkdzk Þ 2A and we can assume that tk 5 0, k 1,2, . . . ,K. If ðk; n;
PK

k 1tkdzk Þ is not a

me point of A then
PK t d k can be replaced by a new linear convex combination

PK s d k such that ðs ÞK is a
k 1 k z k 1 k z k k 1

extreme point of the set composed of those ð~skÞKk 1 with non-negative components,
PK

k 1sk ¼ 1 andXc

ai

Z
E yhzið Þdmi

� �
¼
Xc

ai

Z
E yhzið Þd

XK

~skdzk

 ! !
:

i 1 Di i 1 Di k 1

it is easy to see that ðk; n;
PK

k 1skdzk Þ is a extreme point of A.
nally, it only remains to see that K* + K 6 n + 1 (we still denote by K the number of nun-null components of ðskÞKk¼1).P
Since ðk; n; K
k¼1skdzk Þ 2A one has

Pm
j 1

E qjyh

� �
kj �

PK
k 1

sk

R
D

Pc
i 1

aiE yhzð Þ
� �
 �

ddzk ¼ 0; h ¼ 1; 2; . . . ; r
9>>>>>
>>
Pm

j 1

E qjyh

� �
kj � nh �

PK
k 1

sk

R
D

Pc
i 1

aiE yhzð Þ
� �
 �

ddzk ¼ 0; h ¼ r þ 1; . . . ; r þ s

PK
k 1

sk ¼ 1

k P 0; n P 0; s P 0

>>>=>>>>>>>>>>;
: ð22Þ

e fixes the whole set of parameters in the system above except (k,n) and s ¼ ðskÞKk 1 we already know that there is a
ion in the unknown (k,n,s ). Moreover, since our concrete (k,n,s) is a extreme point of A it is also a extreme point of
et of solutions of the system above. Hence, (k,n,s) is a Basic Feasible Solution (Anderson and Nash, 1987) and whence
it cannot have more than n + 1 (number of equations) strictly positive components. h

Remark 3. Notice that the necessary and sufficient optimality conditions (15) may be simplified by using the latter theorem.

Remark 4 (Simplex-like Algorithm). Anderson and Nash (1987) presented a simplex-like algorithm that solves some semi-
infinite linear optimization problems. Since their approach does not exactly fit our problem (17), we will adapt the method.
However, we will just present the algorithm without proofs, because they are quite similar to those provided by the authors
above.

Step 1. Fix a initial Basic Feasible Solution (extreme point) ðk; n;
PK

k¼1tkdzk Þ satisfying the conditions stated in Theorem
7. In order to find this first Basic Feasible Solution (BFS) one can follow those procedures indicated in Anderson and Nash
(1987).5

Consider the matrix of System (22) above

E yhqj

� �� �h r;j m

h 1;j 1
0ð Þr�s �

R
D

Pc
i 1

aiE yhzð Þ
� �
 �

ddzk

� �h r;k K

h 1;k 1� �
 �� �h rþs;k K

0BBB
1CCC
A ¼ � �� � R PcB C;

E yhqj

h rþs;j m

h rþ1;j 1
�Is�s � D

i 1

aiE yhzð Þ ddzk

h rþ1;k 1

0ð Þ1�m 0ð Þ1�s 1; 1; . . . ; 1ð Þ1�K

BB@ CCA
e dimensions equal (n + 1) · (m + s + K). Consider a sub-matrix B taking the columns of A associated with non-null
ents of ðk; n;

PK
k 1tkdzk Þ. Theorem 7 guarantees that B has less than (n + 1) columns or exactly (n + 1) columns. In the
For instance, there exists a two phases like method.
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first case this BFS is said to be degenerated and non-degenerated in the second one. If we were facing degeneration then we

614 A. Balbás et al. / European Journal of Operational Research 192 (2009) 603 620
would add some columns of A so as to reach a square and regular B. Consider finally the row matrix

c ¼ �b1;�b2; . . . ;�bm; 0; :0; . . . ; 0ð Þ

wi

It
seq

W

ind

rel
um

or
giv
so
th (m + s + K) columns and the row matrix cBwith (n + 1) columns that is obtained taking from c those elements asso-

ciated with the columns of A composing B (henceforth, basic columns).

Step 2. Compute the matrices

B�1A and cBB�1A� c:

1
is trivial to show that those columns of B A associated with the basic columns generate the identity matrix and, con-

uently, those elements of cBB 1A-c associated with the basic columns must vanish. In particular, all of the elements

associated with

PK
k 1tkdzk must vanish.

Consider the function

R
D

Pc
aiE yhzð Þ

� �
 �
ddz

� �h r
0B 1C
i 1B C

D 3 z 7!U zð Þ ¼ cBB�1

h 1R
D

Pc
i 1

aiE yhzð Þ
� �
 �

ddz

� �h n

h rþ1

1

BBBB@
CCCCA 2 R ð23Þ

e can extend the matrix B 1A by adding a new row and a two new columns. We obtain the simplex tableau

�1
Pm0 1
cBB A� c: �
j 1

bjkj0 1BBB CCC

jlð Þjl

hlð Þhl

zklð Þkl

0B@
1CA B�1A; B�1

0

:

:

1

BBB@ CCCA
BBBBB@

CCCCCA
ð24Þ

icating those variables that are basic (first column), their values (last column) and the objective level.
Optimality criterion. If there are no negative elements in cBB 1A-c and
U zð ÞP 0 ð25Þ
for every z 2 D then ðk; n;

PK
k 1tkdzk Þ solves (17). The algorithm ends here. Otherwise we must go to Step 3.

1
Step 3. Scenario 1. Assume that cBB A-c contains a negative element. It is associated with a non-basic column of A,� �� �0 1

E yhqj

h r;j m

h 1;j 1

E yhqj

� �� �h rþs;j m

h rþ1;j 1

BBB CCC

:

:

:

0

BBBBBB@
CCCCCCA

or 0; . . . ; 0; 0; . . . ;�1; . . . ; 0; 0ð Þt

ated to a non-basic variable kj0
or nh0

that will become basic in a new iteration of the algorithm. Denote by A0 the col-
n above and compute the column matrix (which is a column of B 1A)

g ; g ; . . . ; g
� �t ¼ B�1A0: ð26Þ
1 2 nþ1
It may be easily proved that if there were no positive elements in B 1A0 then problem (17) would be unbounded, and (9)
would imply that (13) should be unfeasible. Suppose that B 1A0 contains positive elements and take
kjl

� 

nhl

� 

tkl

� 
� 


g ¼Min

gl
; gl > 0 [

gl
; gl > 0 [

gl
; gl > 0 ; ð27Þ

with the obvious notations (ððkjl
Þ; ðnhl

Þ; ðtklÞÞ ¼ B�1ð0; 0; . . . ; 1Þt is in the last column of (24) and represents here the ‘‘old’’

non-optimal basic feasible solution). The minimum value is attained at the element representing the variable that will
e up being basic in the next iteration. Therefore we have modified the set a basic variables, and we can solve System (22)
as to obtain a new BFS. The objective value has been improved in the new BFS and we have to go back to Step 1.
12



However, some computations can be accelerated if one proceeds as follows: Call ‘‘pivot’’ P to that element of B 1A in
1
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the position where the minimum (27) above is reached. Update the row of B A and Tableau (24) containing the pivot by
dividing the whole row by P (one will obtain the new value 1 instead of P). Update cBB 1A-c and the remaining rows of
B 1A and (24) by subtracting from the old one the new row containing the pivot multiplied by Pl, element in the
corresponding row and in the same column as the pivot. Modify the subscripts included in the first column of (24) so as to
reflect the new basic variables. We can now go back to Step 2 and we have already updated ðk; n;

PK
k¼1tkdzk Þ, B 1A, cBB 1A-

c and (24).
Step 3. Scenario 2. Assume that cBB 1A-c does not contain any negative element but there exists ~z 2 D with Uð~zÞ < 0.

Obviously, ~z does not belong to the set {z1,z2, . . . ,zK}. If possible, choose ~z so as to solve

Min U zð Þ; z 2 Df g: ð28Þ
Othe
varia

comp
obta

1

Fina
choo
good

T

rwise choose an arbitrary ~z making negative the value of U. ~z will belong to the next BFS and we have to determine to
ble to leave the basis. In order to do that we follow the same way as in the previous scenario. Thus, let
R
D

Pc
aiE yh~zð Þ

� �
 �
ddz

� �h r0B 1C

i 1 h 1B C
A0 ¼ R
D

Pc
i 1

aiE yh~zð Þ
� �
 �

ddz

� �h n

h rþ1

1

BBBB@
CCCCA

ute (26), and the value g of (27) will indicate the variable to stop being basic. Now we can solve System (22) so as to
in a new BFS and we have to go back to Step 1. We can simplify some computations if we update ðk; n;

PK
k 1tkdzk Þ,
1 1 1
B A, cBB A-c and (24) by proceeding as in the previous case. If so, it is worth to extend ‘‘the old B A, cBB A-c
and (24)’’ before the computations by adding the new column

U ~zð ÞR Pc� �
 �� �h r0 10BB
1CC
aiE y ~zð Þ ddzB C
B�1

D
i 1

h
h 1R

D

Pc
i 1

aiE yh~zð Þ
� �
 �

ddz

� �h n

h rþ1

1

BBBBBB@
CCCCCCA

BBBBB@
CCCCCA
:

l Note. If the optimality criterion of Step 2 does not hold and we go to the second scenario of Step 3 then we should
se ~z 2 D such that Uð~zÞ were as small (negative) as possible (we should even solve problem (28), in order to achieve a
convergence of the algorithm to the solution). Thus, this pivotal step might be important, but U being linear in the z
variable (see (23)) one can check the value of U in the extreme points of D in order to get an element ~z as close as possible to
the solution of (28) Anyway, it is worth to recall that the objective function does not directly depend on the m variable,
whose unique effect is on the constraints of the problem. In practice, as will be said in Section 7, the convergence of
the algorithm is very fast.

6. Some significant risk functions
his section will be devoted to illustrate several examples of risk functions satisfying (1) i.e., such that the developed

methodology applies. All the examples here presented have been already treated in the literature, so our unique purpose
is to show how general our methods may be. Thus, we will not be exhaustive and will only summarize the most important
properties of some significant risk functions.

All the examples are positively homogeneous and convex functions. Thus, if we maximize a generalized Sharpe ratio
(GSR), quotient between the expected risk premium and the risk excess with respect to the risk-free security, then we will
obtain a special strategy that composes the efficient portfolios in a ‘‘new risk/return framework’’. Indeed, once we fix the
risk function, we can outperform every feasible portfolio by adequately combining the riskless asset and the strategy max-
imizing the GSR. This property is similar to that well known in the CAPM model, where the risk function is the standard
deviation and efficiency is achieved if and only if one diversifies between the riskless security and the Market Portfolio.
Obviously, the maximization of the GSR is equivalent to the minimization of the risk level under an appropriate linear
constraint on the expected risk premium, i.e., the here proposed methodology applies. In some sense one can interpret that
we are constructing a ‘‘new index’’ that solves those problems generated by asymmetries and heavy tails.

13



Example 1 (Standard Deviation). The standard deviation r2 is the dispersion measure used in classical Portfolio Selection
2

616 A. Balbás et al. / European Journal of Operational Research 192 (2009) 603 620
Theory and the Equilibrium Models CAPM and APT. It is defined over the Banach space L . According to the results of
Rockafellar et al. (2006a), expression (1) holds if (see (2) and (3))

~Dr2 ¼ Dr2 � f1g ¼ z 2 L2; E zð Þ ¼ 1; z� 1k k2 6 1
� 	

� f1g ¼ z 2 L2; E zð Þ ¼ 0; zk k2 6 1
� 	

;

wh
isfi

Sin
r(

It
th
(R

l0

ma
ð1

Ex

ne
ich is a r(L2,L2)-compact set because it is bounded (recall the Alaoglu‘s Theorem). The related risk measure also sat-
es (1) if we take the compact space Dr2 . Since, for a general probability space ðX;F; lÞ, Dr2 contains non-positive ran-
dom variables, the risk measure is not decreasing, and therefore it is not coherent in the sense of Artzner et al. (1999) (see
Rockafellar et al., 2006a). This is a shortcoming because risk measures try to represent capital requirements, and higher
pay-offs might lead to higher initial capital reserves. As already said, the deviation measure r 2 is not compatible with
the second order stochastic dominance (SOSD) if asymmetric returns are involved Ogryczak and Ruszczynski (1999).

Example 2 (Usual dispersions). The p-deviation is given by Lp 3 y 7!rpðyÞ ¼ kðy � EðyÞÞkp ¼ ½Ejy � EðyÞjp�1=p 2 R, where
p 2 ½1;1Þ. Since k:kq is the dual norm of k:kp we have that kykp ¼ SupfEðyzÞ; z 2 Lq; kzkq 6 1g holds for every y 2 Lp.
Hence,

rp yð Þ ¼ y � EðyÞð Þk kp ¼ Sup E y � EðyÞð Þz½ �; z 2 Lq; zk kq 6 1
n o

¼ Sup EðyzÞ � EðyÞEðzÞ; z 2 Lq; zk kq 6 1
n o

n o n o

¼ Sup E y z� EðzÞð Þ½ �; z 2 Lq; zk kq 6 1 ¼ Sup E yð�zÞð Þ; z ¼ Eðz0Þ � z0; z0 2 Lq; z0k kq 6 1

¼ Sup E yð�zÞð Þ; z 2 ~Drp
� 	

:

ce Lq 3 z7!EðzÞ � z 2 Lq is r(Lq,Lp)-continuous and the unit ball of Lq is r (Lq,Lp)-compact (Alaoglu‘s Theorem), ~Drp is
Lq,Lp)-compact, i.e, expression (1) and the theory developed in this paper applies.
As in the previous example, Drp ¼ ~Drp þ f1g contains non-positive random variables and, therefore, the associated
expectation bounded risk measure is non-decreasing and non-coherent in general.

The absolute deviation r1(y) E|y � E(y)|, y 2 L1, presents a significant property. Indeed, it is always compatible with
the SOSD (Ogryczak and Ruszczynski, 1999). Moreover, if we introduce a minor distortion and use r1ðyÞ

2
rather than r1(y),

then the associated risk measure r1ðyÞ
2
� EðyÞ becomes coherent (Rockafellar et al., 2006a).

The p-semi-deviation is given by Lp 3 y 7!rpðyÞ ¼ kðy � EðyÞÞ�kp 2 R where

y � EðyÞð Þ� ¼
0 if y P EðyÞ
EðyÞ � y otherwise

�
:

is an interesting dispersion measure in portfolio choice theory because it only considers those deviations with respect to
e expected pay-off with negative effect on the investor final wealth. Once again it may be represented by expression (1)
ockafellar et al., 2006a) and the associated risk measure is expectation bounded and coherent (Rockafellar et al., 2006a),
and for p 1 or p 2 it is compatible with the SOSD (Ogryczak and Ruszczynski, 1999).

Example 3 (Conditional Value at Risk). The conditional value at risk (CVaR or CVaRl0
), defined on L1, is becoming a very

important risk measure, quite analyzed in theoretical studies and quite used by traders in practice. It is coherent and
Rockafellar et al. (2006a) stated that it is expectation bounded and can be represented with

DCVaR ¼ z 2 L1; 0 6 z 6
1

l0

;E zð Þ ¼ 1

� 

� L1

CVaR 1 1 CVaR
2 (0,1) being the level of confidence. D is convex and r(L ,L )-compact. The extreme set of D is important to

ke it easier to deal with Condition (25) and problem (28). It is composed of those random variables taking the form
=l0ÞvX0

, X0 2F; l (X0) l0. The deviation associated with CVaR can also be treated with our methodology since it

is represented by the convex compact set

~DCVaR ¼ z 2 L1;�1 6 z 6
1

l0

� 1;E zð Þ ¼ 0

� 

� L1:

Despite its growing importance, CVaR is not compatible with the SOSD, as we will see in Example 5.
ample 4 (Value at Risk). It is well-known that the value at risk (VaR) is also very important in practice, despite it is
ither coherent nor expectation bounded, and it does not respect the SOSD. Since VaR cannot be represented according
to (1), our methodology does not apply either. However, it is worth to point out that, under appropriate assumptions, some
modifications of problem (5) would provide a linear vector optimization problem in Banach spaces equivalent to problem
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(4). Hence, the methodology here presented may be adapted so as to address minimum VaR related topics (linear program-
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ming vector problems in general Banach spaces are analyzed, for instance, in (Balbás and Heras, 1993)).

Example 5 (Distortion Functions). Let us analyze some risk functions satisfying a collection of ‘‘suitable properties’’
(coherent and expectation bounded risk measures satisfying (1) and such that they and their deviations are compatible with
the SOSD).

Wang (2000) considers a non-decreasing function g : ½0; 1�7!½0; 1� with g(0) 0 and g(1) 1, and a general risk measure
with the ‘‘heuristic form’’

RgðyÞ ¼
Z 1

VaRtðyÞdgðtÞ;
wher
and

A

that
illust

Dg is
An i

the s
Dg is

pact
0

e VaRt(y) stands for Value at Risk of the random variable y with t as the confidence level. If g is continuous in [0,1]
piecewise differentiable in (0,1) then the expression above gives
RgðyÞ ¼
Z 1

0

VaRtðyÞg0ðtÞdt: ð29Þ
special important case is�

gðtÞ ¼

1=l0ð Þt; t 6 l0
1; t P l0
leads to CVaRl0
. Wang justifies his proposal by several reasons. Among them, he shows simple numerical examples

rating that CVaR might present some drawbacks in particular practical problems. The intuitive idea of Wang is for-

malized in Whirch and Hardy (2001) where it is established that Rg is compatible with the SOSD if and only if g is strictly
concave, case in which Rg is also coherent.

There are many risk measures given by (29) satisfying a set of desirable conditions for which our methodology applies.
For example, suppose that g is two times continuously differentiable in [0,1] and with strictly negative second derivative in
(0,1). Then Rg is defined in L1, compatible with the SOSD, and it may be stated that (1) holds if Dg is the weakly*-closed
convex hull of

0f g [ z 2 L1; zðxÞ ¼ g0 l y 6 y xð Þð Þ½ �; y 2 L1
� 	

:

Since g 0 is non-negative and bounded from above Rg is coherent (Rockafellar et al., 2006a) and expectation bounded, and

r(L1,L1)-compact, that is, Rg satisfies the whole set of ‘‘ideal properties’’ and the methodology of this paper applies.

mportant example in Actuarial Sciences is the ‘‘Dual Power Transform’’, generated by
g,ðtÞ ¼ 1� ð1� tÞ,; , P 2:

Wang also proposed the distorting function g(t) W( a + W 1(t)), with a > 0 and W denoting the cumulative function of
2
tandard normal distribution. Then Rg is defined in L , compatible with the SOSD, and it may be stated that (1) holds if

the weakly closed convex hull of
0f g [ z 2 L2; zðxÞ ¼ g0 l y 6 y xð Þð Þ½ �; y 2 L2
� 	

:

Since g 0 is non-negative and belongs to L2[0,1] (when [0,1] is endowed with the Measure of Lebesgue), Dg is r(L2,L2)-com-

and (according to (Rockafellar et al., 2006a)) Rg is coherent and expectation bounded.
7. Numerical example

Let us present a numerical example illustrating the performance of the proposed methodology in practice. We will con-
sider a real database containing weekly prices from June 27th, 2003 to September 22nd 2006.6 There are eight involved
securities: A riskless asset and seven risky ones. They are IE (international equity), SE (Equity, small companies), EE

(Equity, emerging regions), FI (Fixed Income), EFI (Fixed Income, emerging regions and High Yield), a Hedge Fund
denoted R1, and a final portfolio COM reflecting a combination of commodity-linked future contracts.

We will deal with a Portfolio Choice problem and the risk level will be given by the Wang measure and the Conditional
Value at Risk, respectively. As said above, CVaR is becoming very used by practitioners, despite it is not compatible with
the SOSD. Furthermore, the literature has shown that it may be quite complex to optimize CVaR in practice, mainly for
some kind of securities (see, amongst many others, Alexander et al., 2006). On the other hand, as far as we know, there are

6 The authors thank ‘‘Welzia Management SGIIC SA’’ for the database.
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no empirical papers optimizing the Wang measure, despite it is coherent, expectation bounded and compatible with the
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SOSD.
Consider problem

Min qðuÞ
)

ð30Þ
wh
su

Th

St

Be

is

St

7

EðyqjÞ 6 bj j ¼ 1; 2

ere q equals CVaR (we will provide the value of l0) or the Wang measure (a 1.65, according to the (Wang, 2000),

ggestion). The first constraint is related to the portfolio expected return that must outperform the weekly return
r 0.001. Thus q1 (�1, . . . ,�1) and b1 �(1 + r) �1.001, so the restriction becomes E(�y) 6 �(1 + r). The second
constraint imposes that we will not invest more than one Euro, and so this restriction becomes E(yq2) 6 1 (b2 1), q2

denoting the Stochastic Discount Factor (see (Cochrane, 2001), for further details on this concept). By standard financial
arguments it is easy to show that the absence of arbitrage implies that problem (30) is bounded (Cochrane, 2001). More-
over, the Slater Qualification of Assumption 1 also holds since r is small and there are several securities whose expected
weekly returns are larger than r.

We have been drawing on the presented simplex-like algorithm under different assumptions. For the sake of simplicity
we will just report the numerical solutions (optimal portfolios) since there is nothing significant related to the application of
the algorithm. Despite the linear optimization problem involves infinite-dimensional spaces, the objective function only
depends on the finite-dimensional dual variable k (see problem (17)), so the convergence of the algorithm is really fast.
We just developed a Math-Lab code and the computation time was never longer than 6 min.7

Strategy 1.1. We do not incorporate the riskless asset and impose xk P 0, k 1, . . . , 7. We have to adapt (30) so as to
obtain an expression similar to (13). Then,if q is the measure of Wang we solve (17) and get

k1 ¼ 2:739488; k2 ¼ 1:7130599
n1 ¼ 0:0004; n5 ¼ 0:0016; nk ¼ 0;
k ¼ 2; 3; 4; 6; 7

t1 ¼ 0:1628; t2 ¼ 0:1886; t3 ¼ 0:6486

e Complementary Slackness Conditions (16) and the constraints of (13) lead to

h ¼ �0:993920023
x2 ¼ 0:0500; x3 ¼ 0:0100; x4 ¼ 0:1062; x5 ¼ 0:8000; x6 ¼ 0:0338
xk ¼ 0; k ¼ 1; 7

rategy 1.2. Under the conditions above, if q CVaR0.03 (i.e., l0 0.03 is the level of confidence) we get

k1 ¼ 2:686958046; k2 ¼ 1:680211521
n1 ¼ 0:0076; n3 ¼ 0:0047; n5 ¼ 0:0113; nk ¼ 0; k ¼ 2; 4; 6; 7
t ¼ 0:2540; t ¼ 0:2677; t ¼ 0:4783:
1 2 3

sides

h ¼ �0:995607081
x2 ¼ 0:0500; x4 ¼ 0:1500; x6 ¼ 0:7442; x7 ¼ 0:0558
xk ¼ 0; k ¼ 1; 3; 5
the primal solution.

rategy 1.3. Under the conditions above, if q CVaR0.0592 ( i.e., l0 0.0592 5.92% is the level of confidence)
k1 ¼ 4:463566171; k2 ¼ 3:7728751

n1 ¼ 0:0008; n5 ¼ 0:0006; nk ¼ 0; k ¼ 2; 3; 4; 6; 7

t1 ¼ 0:0581; t2 ¼ 0:2692; t3 ¼ 0:1682; t4 ¼ 0:5045
Recall that we are testing the performance of the Simplex like algorithm, rather than the performance of the selected risk functions.
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The primal solution becomes

A. Balbás et al. / European Journal of Operational Research 192 (2009) 603 620 619
h ¼ �0:997226608
Strat

plify

and

Strat

and

8. Co

C

x2 ¼ 0:0500; x3 ¼ 0:0199; x4 ¼ 0:3000; x6 ¼ 0:6301

xk ¼ 0; k ¼ 1; 5; 7

egy 2.1. Let us consider the assets S1 EE, S2 FI, S3 R1, S4 COM, and the riskless asset S5. In order to sim-

take a null risk-free rate. Impose x P 0, k 1, . . . , 5. For the Wang measure we get
k

k1 ¼ 2:68386099; k2 ¼ 1:67825611

n ¼ 0:0099; n ¼ 0; k 6¼ 5
5 k

t1 ¼ 0:3950; t2 ¼ 0:4469; t3 ¼ 0:1581
h ¼ �0:991837854

x1 ¼ 0:0168; x2 ¼ 0:1500; x3 ¼ 0:7332; x4 ¼ 0:100; x5 ¼ 0
egy 2.2. Under the assumptions of the latter strategy, q CVaR0.03 leads to
k1 ¼ 2:685878; k2 ¼ 1:6795367
n3 ¼ 0:0024; n4 ¼ 0:0006
t1 ¼ 0:3610; t2 ¼ 0:6390

h ¼ �0:995584188
x1 ¼ 0:0528; x2 ¼ 0:4000; x3 ¼ 0:5472; xk ¼ 0; k ¼ 4; 5
nclusions
apital requirements of Financial Institutions, fat-tailed return distributions and asymmetric returns have provoked a

growing interest in modern risk analysis. Researchers, regulators and practitioners are sharing in the development of new
methods measuring risk levels of investment strategies.

Portfolio optimization and optimal hedging are complex in practice when general risk functions are involved. These
functions are usually non-differentiable and it is also complex to apply the properties of Convex (or convex-like) Program-
ming. Thus, the development of appropriate optimality conditions and algorithms is becoming an important topic.

Due to the Representation Theorems of Risk Measures we have transformed a (vector) Risk Minimization problem of
Portfolio Choice Theory into a Minimax problem, and consequently, into a dual pair of Linear Programming problems
between infinite-dimensional Banach spaces of continuous functions and inner regular r-additive measures. Accordingly,
necessary and sufficient optimality conditions have been established. They do not draw on the concept of subgradient, and
some probability measures are involved as multipliers.

With respect to previous studies transforming portfolio choice problems into linear ones the present approach seems to
reflect an important contribution. Indeed, the methodology is general enough and includes every expectation bounded or
dispersion risk measure, as well as most of the coherent risk measures.

The dual problem usually becomes semi-infinite, allowing for a simplex-like algorithm leading to both primal and dual
solutions. Thus, one has a practical method to obtain optimal strategies and their sensitivities. Furthermore, in the semi-
infinite case the dual solution is achieved at a convex combination of Dirac deltas, allowing for new versions and interpre-
tations of the optimality conditions. Despite the dual optimization problem involves infinite-dimensional spaces, the objec-
tive function only depends on a finite-dimensional subspace, so the practical convergence of the algorithm is really fast.

As said above, the theory applies for many coherent, expectation bounded and deviation risk measures and, therefore, it
can be particularized to address those special cases we may be interested in.
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