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Abstract: 
 
Cognitive/causal maps have been widely used as a powerful way of capturing decision-
makers’ perceptions about a problem, representing it as a causes-effects discourse. 
Several ways of making causal inferences from this type of model have been proposed in 
the Operational Research and Artificial Intelligence literatures, but none, as far as we are 
aware, has attempted to use a causal map structure to perform a multi-criteria evaluation 
of decision alternatives. Recently, we have proposed a new multi-criteria method, 
denominated as a Reasoning Map, which permits the use of decision-makers’ reasoning, 
structured as a network of means-and-ends (a particular type of causal map) to perform 
such an evaluation. In this manner, the model resembles the way that people talk and 
think about decisions in practice. The method also pays explicit attention to the cognitive 
limitations of decision-makers in providing preference information. Thus it employs 
qualitative assessment of preferences, utilises aggregation operators for qualitative data 
and provides also qualitative outputs. In this paper we discuss and evaluate possible ways 
of aggregating qualitative performance information in Reasoning Maps.  
 
Key words: cognitive maps, multi-criteria analysis, qualitative decision analysis, ordinal 
operators. 
 
 

"rea·son (n.) 
 

   1. The basis or motive for an action, decision, or conviction.  
   2. A declaration made to explain or justify action, decision, or conviction. 
   3. An underlying fact or cause that provides logical sense for a premise or occurrence. 
   4. The capacity for logical, rational, and analytic thought; intelligence." 

 
The American Heritage Dictionary of the English Language, Fourth Edition. 

 

1 Introduction 
Causal/cognitive maps (CMs) have been widely employed in Operational Research 

(OR) for supporting decision making (Mingers and Rosenhead, 2004). They are a 

powerful way of displaying links between causes and effects as a network, thus can be 

used to help decision-makers in identifying possible actions that lead to greater positive 

effects (Eden, 2004; Montibeller and Belton, 2006).  

A significant strength of CMs is that the modelling is close to natural language, which 
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reflects the way decision-makers are used to talking and thinking about decisions. This 

feature facilitates their use in practice and may help in building confidence in the 

recommendations derived from analysis of the maps (Eden, 1988). 

However, causal maps permit only limited forms of causal inference – the analysis of 

the effects that a given cause would generate. Montibeller and Belton (2006) provide an 

overview of approaches that have been suggested as means of extending their capacity for 

causal inference on the basis of constructed causal maps.  One of these approaches, 

coming from the field of Artificial Intelligence (AI), is that of fuzzy cognitive maps 

(FCMs), which extend CMs in two important directions: i) identifying which causes 

generate stronger effects (Kosko, 1986); or ii) assessing the dynamic effects if a given 

cause happened (Kosko, 1992). Another approach stemming from the AI community 

considers causal maps as Qualitative Probabilistic Networks, in which each link denotes a 

probabilistic dependence and impacts are propagated across the map (Wellman, 1994). In 

the OR literature, it has been proposed that one could use a Bayesian network to draw 

inferences in causal maps (Nadkarni and Shenoy, 2001; 2004); and also a procedure for 

deriving an influence diagram from a CM (Buede and Ferrell, 1993), which could then be 

analysed using standard decision analysis tools (see also Costa and Buede, 2000). 

Nevertheless, although increasing the power of causal inference, none of these approaches 

were designed for performing a multi-criteria analysis of decision options using the causal 

map structure as the model for evaluation. 

When decision-makers are talking and reflecting about a decision that they face, they 

tend to adopt a reasoning discourse, talking about the means available for them to achieve 

their desired ends (Buss, 1978). This discourse involves complex chains of arguments, 

interlinked in intricate ways. An evaluation of options that is based on such a reasoning 

process may therefore be helpful. It is this type of reasoning process that the recently 

developed Reasoning Maps method (Montibeller et al., 2007a) intends to represent.  

A Reasoning Map utilises a causal map structure to capture and represent a decision 

maker’s reasoning about the decision faced. Within that structure, it employs user-defined 

qualitative scales to reflect the performance of decision options and strengths of influence, 

aggregating these variables using user-selected qualitative operators.  Reasoning Maps 

can be seen as providing an approach to multicriteria modelling which lies between, on 

the one hand, the extremely flexible representation of decision strategies as a rule based 

system – as typically embodied in knowledge-based experts systems (Hayes-Roth, 1985) 

and characterised by the dominance-based rough set (DRSA) approach to multicriteria 
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analysis developed by Greco et al. (2005) – and, on the other hand, the prescribed format 

of, for example, a multi-attribute value function.   

The decision-rule approach has the advantage of being natural language based and 

parameter free, but as a consequence it can be difficult and time-consuming to surface 

relevant knowledge, as well as to derive a complete/valid representation of the preference 

aggregation procedure.  The appropriate rule structure is often derived by inference from 

example cases, but may be directly elicited.  On the other hand, structured models (like 

multi-attribute value functions) have the advantage of predefined aggregation procedures, 

but can be based on strong assumptions (such as conditions of preference independence) 

and may call for the elicitation of model parameters (such as weights and thresholds) 

which are not intuitively meaningful to the decision maker (Larichev, 1992).   

A Reasoning Map shares the advantage of the natural language base with the decision 

rule approach and combines this with the flexibility to select from a range of potential 

aggregation procedures. In doing so the method pays explicit attention to the cognitive 

limitations of decision-makers in providing preference information. Thus, as already 

indicated, it employs qualitative assessment of preferences and utilises aggregation 

operators for qualitative data; it also provides qualitative outputs.  

 The main aim of this paper is to present and evaluate the operators which could be 

employed by Reasoning Maps and to suggest some directions for further research in this 

area. Qualitative operators have attracted much interest from AI (e.g. Yager, 1995), from 

researchers in fuzzy methods (e.g. Godo and Torra, 2000) and from those working on the 

integration of AI and Multi-Criteria Decision Analysis (e.g., Greco et al., 2005). Thus we 

believe that the paper may be of interest for researchers interested in conceptual and 

practical links between Artificial Intelligence and Multi-Criteria Decision Analysis 

(MCDA: see Belton and Stewart, 2002; Figueira et al., 2005).  

The next section presents a brief outline of the Reasoning Map approach, which sets the 

scene for the following section, in which we discuss different operators for aggregating 

data in this type of modelling. Conclusions and directions for further research are 

presented at the end of the paper. 

2 Reasoning Maps 
In this section we present briefly the Reasoning Map method. A detailed description of 

the approach is presented in Montibeller et al. (2007a) and examples of its use in 

supporting real-world decision-making processes can be found in Montibeller et al. 
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(2007a; 2007b). 

2.1 The Means-Ends Network 
A reasoning map is a means-ends network, which represents decision-makers’ 

discourse about a decision they have to make. This discourse is about the means available 

to achieve their desired ends (and also about the negative outcomes of some of these 

means). Each node in the map represents a concept, an idea, and the edges represent the 

perceived (positive or negative) influence from a given means concept to a given end 

concept. This system of coding is in line with that utilised in causal maps (Bryson et al., 

2004; Eden, 2004) and influence diagrams as employed in System Dynamics (see 

Diffenbach, 1982; Wolstenholme, 1999). Note, however, that unlike these two forms of 

representation, Reasoning Maps do not permit cycles. 

For example, if a decision maker says that an “increase in Research & Development 

(R&D) investment would lead to a rise in the number of new products being developed” 

this would be represented as:  

increase in R&D investment ⎯→⎯+   rise number new products being developed. 

If she then says that “this increase in R&D investment would also decrease the amount of 

dividends being paid to stockholders”, this could be mapped as: 

increase in R&D investment ⎯→⎯−   amount of dividends paid to stockholders. 

Therefore for this basic example, an increase in R&D investment has both positive and 

negative outcomes, denoting the multicriteria nature of this strategy. 

Formally, a reasoning map is an acyclic diagraph G = (C, D), with q nodes, a node set 

C = {1, 2, …, q} and an edge set D = {-1, 0 , +1}. A positive value on an edge dij ∈ D 

represents a positive perceived influence of a means concept Ci on an end concept Cj; a 

negative value represents a negative influence; and a zero value represents no influence.  

Aiming to provide a cognitively valid decision method (Larichev, 1992), all elicited 

information, aggregation of data, and model outputs in a Reasoning Map are defined in 

qualitative terms, without any conversion to numbers. The evaluation process uses only 

qualitative (crisp) assessments, via an ordinal scale where the number of levels as well as 

a linguistic term describing each level (such as ‘strong’, ‘weak’, etc.) are defined by the 

decision-maker. To give a formal definition of this scale, let ℘ be a partially ordered 

finite set with m elements ℘ = {p1, p2, … , pm}, where each value pi is a qualitative label.  

There are two main advantages of using purely qualitative operators. Firstly, 

behavioural research (e.g., Budescu and Wallsten, 1985; Huizingh and Vrolijk, 1997) has 
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shown that human beings employ ordinally consistent preferences, as long as m is kept 

small (around 7±2). Secondly, there are arguments that qualitative decision analysis − 

which does not rely on fuzzification or any other means of quantifying qualitative 

preference measurement − increases the transparency of the model and, therefore, may 

enhance decision-makers’ confidence on its outputs (Larichev, 1992; Moshkovich et al., 

2005). 

Following Kosko (1986), Reasoning Maps also represent the strength of each link in the 

map, eij, using this qualitative scale ℘. This variable measures the strength of perceived 

influence of the means concept Ci (with associated variable Vi) over the end concept Cj, 

(with associated variable Vj). It is important to acknowledge that the notions of causality 

and influence, as represented by the links is causal maps, are open to multiple 

interpretations (see  Wellman, 1994; Marchant, 1999) and care must be taken to clarify 

the intended meaning. In a Reasoning Map, the strength of perceived influence seeks to 

capture, in qualitative terms, the decision-makers’ perception of the extent to which an 

increase in the performance of an action on a means concept may lead to an increase in its 

performance on an end concept.  However, it should be recognised that, no matter how 

theoretically well-defined the model is, it is always difficult, in practice, to make sure that 

decision-makers use the pre-defined theoretical framework consistently throughout the 

process (see Montibeller et al., 2007a). 

In Figure 1 we present an example of a 9-concept Reasoning Map (each node denotes a 

concept) with the associated variables dij and eij for each link. There are three types of 

concepts in this map: attribute concepts, where a given decision alternative a is evaluated 

(only out-arrows, e.g., concepts 1 to 3 in Figure 1); consequence concepts, which 

represent the intermediate consequences of adopting a given alternative (both in-arrows 

and out-arrows, e.g., concepts 4 to 7 in the same figure); and value concepts, which 

represent the decision-maker’s ultimate ends (only in-arrows, e.g., concepts 8 and 9 in the 

same figure). 

2.2 Evaluating Decision Alternatives 
Decision alternatives are evaluated by the attribute concepts in a Reasoning Map. Each 

i-th attribute concept has an associated variable VA
i(a) which measures the performance 

using the same ordinal scale ℘ (concepts 1 to 3 in Figure 1, for example). The attributes 

should be preferentially independent (ordinal independence). 

For consequence and value concepts, the performance of decision alternatives has a 
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positive and a negative component (as suggested by Zhang et al., 1989). Thus each of 

these i-th concepts has an associated variable Vi(a) = [V-
i (a),V+

i(a)], as exemplified in 

Figure 1 (concepts 4 to 9). 

As in cognitive maps (Axelrod, 1976) and fuzzy cognitive maps (Kosko, 1986) two 

parameters are required for drawing causal inferences in Reasoning Maps (for details, see 

Montibeller and Belton, 2006), namely, partial effects and total effects.  

A partial effect is calculated for each link in the map, and a total effect for each of its 

concepts (except for attribute concepts). A partial effect is a qualitative function of the 

decision alternative’s performance and the strength of the respective link 

For links leaving attribute concepts (e.g., links e16, e14, e24, e25, e35 and e39 in Figure 1), 

the partial effect of the i-th attribute on the t concept, for an alternative a, is given by: 

V+
it(a) = PE[eit, VA

i(a)] if the perceived influence dit is positive or   [1] 

 V-
it(a) = PE[eit, VA

i(a)] if the perceived influence dit is negative  [2] 

for i =1, 2, …, n. 

For example, assume that the performance of alternative a on the attribute concepts are 

the ones shown in Figure 2 and that Minimum is chosen as the PE operator (see Section 

3.1 for a discussion on this choice).  In this case, the partial effects arriving in concept 4 

are (from Eq. [1]): 

V+
14(a) = PE[e14, VA

1(a)]  = Min [‘moderate, ‘strong’] = ‘moderate’;  

V+
24(a) = PE[e24, VA

2(a)] = Min [‘weak’, ‘moderate’] = ‘weak’. 

 

For the other links in the map, partial effects are split into positive and negative effects. 

Formally, the negative and positive values of the partial effect (V+
it and V-

it) of the i-th 

concept on the t concept, for an alternative a, are given by: 

If the sign of influence dit is negative, then:   

 V+
it(a) = PE[eit, V-

i(a)]   and  V-
it(a) = PE[eit, V+

i(a)].   [3] 

If the sign of influence dit is positive, then:  

 V+
it(a) = PE[eit, V+

i(a)]   and  V-
it(a) = PE[eit, V-

i(a)]   [4] 

for i =1, 2, …, n. 

Total effects (TE) for a given alternative a are calculated for each t-th consequence and 

value concept in the map (for example, concepts 4 to 9 in Figure 1), aggregating the 

relevant partial effects. Again we split positive (V+
t(a)) and negative performances (V-

t(a)): 

V-
t(a) = TE[V-

1t(a), V-
2t(a),…, V-

nt(a)]      [5] 
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V+
t(a) = TE[V+

1t(a), V+
2t(a),…, V+

nt(a)].     [6] 

For example, in Figure 2, given the two positive partial effects arriving in concept 4 

calculated above; and assuming that the TE operator chosen was Maximum (see section 

3.2 for a discussion on this choice), the total effect is (from Eq. [6]): 

V+
4(a) = TE[V+

14(a), V+
24(a)] = Max[‘moderate’, ‘weak’] = ‘moderate’. 

Following this procedure, and using these PE and TE operators in Eqs. [1] to [6], it is 

possible to calculate the total effect for each concept as shown in Figure 3 (with PE as 

Minimum and TE as Maximum). Notice that the alternative a has a positive moderate 

effect on value concept 8 (V8(a) = [+m]); and both a negative weak and a positive 

moderate effect on value concept 9 (V9(a) = [-w,+m]). If other alternatives were available, 

this Reasoning Map could be used to compare their impacts on these two value concepts. 

Contrary to causal maps and fuzzy cognitive maps, which have pre-defined partial and 

total effects operators, in Reasoning Maps we suggest some flexibility in the choice of 

operators (PE in equations [1]-[4]; TE in equations [5] and [6]). The discussion on, and 

an evaluation of, some of the possible operators is presented in the next section. 

3 Qualitative Operators for Reasoning Maps 
As already indicated, Reasoning Maps keep the modelling purely qualitative, without 

any quantification or fuzzification. Therefore, it can use operators for partial and total 

effects that work with qualitative, ordinal information both as input and as output.  

Several types of operators have been proposed with that purpose: Maximum or 

Minimum (Kosko, 1986); Weighted-Maximum or Weighted-Minimum (particular cases of 

the Sugeno integral, see Godo and Torra, 2000); Median or Mode (traditional ways of 

aggregating ordinal data); the Ordinal Weighted Average (OWA) operators proposed by 

Yager (1995) (for example, Linear Aggregation, referred to by him as “normative 

aggregation”, and the Max-Min Weighted Average). 

There are also operators with quantitative weights, like the Weighted Median suggested 

by Yager (1998), the Linguistic Ordered Weighted Average proposed by Herrera and 

Herrera-Viedma (2000), and the Ordinal Weighted Mean described in Godo and Torra 

(2000). However, these ones are excluded from our discussion, as they require 

quantitative information. For a full review of ordinal operators in general, see Domingo-

Ferrer and Torra (2003).  

We now present possible operators for the aggregation of partial and total effects, 

discussing each of the operators and the pros and cons of adopting it. 
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3.1 Partial Effects 
One of the possible operators for the partial effect in Reasoning Maps (PE in Equations 

[1]-[4]) is the use of the operator Min, as proposed by Kosko (1986) for his fuzzy 

cognitive map. The rationale for selecting this operator for a Reasoning Map is that the 

strength of perceived influence eit works as a cap on the means-end transmission: a strong 

performance is brought upwards to the superior concepts if the influence is strong, but not 

if it the influence is weak. 

An important advantage of this operator is that it does not require any parameter 

elicitation, which is particularly important for large maps or when the time for eliciting 

information from decision makers is limited (for example, if a Reasoning Map is being 

used in a decision conferencing mode; for details about this type of intervention, see 

Phillips, 2007). Also, it is quite simple to explain, which may increase decision makers’ 

confidence in the recommendations of the model (see a discussion about the advantages 

of simple decision models in Edwards et al., 1988). Conversely, the main drawback of the 

Min operator is that it does not allow further modelling of decision-maker’s preferences. 

Furthermore, it leads to a degradation of outcomes by compressing the performances of 

decision alternatives (for example on a given means concept, a strong alternative and a 

moderate one would have the same partial effect if the strength of influence is weak). 

An alternative approach is to use a decision table, as exemplified in Table 1, where all 

the possible combinations of partial effects (from ‘very weak’ to ‘very strong’) are 

combined with the strength of influence (again from ‘very weak’ to ‘very strong’). The 

decision-makers then provide the total effect for each combination, for example: a very 

strong performance on a means concept which has a weak strength of influence towards 

an end concept generates, in their view, a moderate partial effect (highlighted in bold). As 

suggested by Greco et al. (2005) decision tables are an easier way to elicit preferences of 

decision makers and the partial effect can be fully specified by the user. This type of 

operator may be feasible if the same table could be employed for the whole map, 

otherwise the burden of elicitation would be extremely heavy. 

In the example described in Section 2.2, the decision Table 1 (DecTable) would provide 

the following results for partial effects 1-4 and 2-4 (highlighted by a circle in the table): 

V+
14(a) = PE[e14, VA

1(a)]  = DecTable [‘moderate, ‘strong’] = ‘strong’;  

V+
24(a) = PE[e24, VA

2(a)] = DecTable [‘weak’, ‘moderate’] = ‘weak’. 
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3.2 Total Effects 
There are several qualitative operators that can be employed for calculating total 

effects. They differ in several aspects, in particular: i) how easily they can be understood 

by decision-makers, ii) how sophisticated is the preference modelling they allow; iii) the 

elicitation burden they impose on decision-makers; iv) the nature of the aggregation they 

perform (i.e., whether or not the resultant level of total effect is influenced by the value of 

each and every partial effect); and v) their discriminatory power.  

We now present and discuss these operators in light of the above considerations. The 

use of each operator is illustrated with the following problem: 

Suppose a set of 5 ordered labels (m = 5):  

℘ = {‘very weak (vw)’, ‘weak (w)’, ‘moderate (m)’, ‘strong (s)’, ‘very strong (vs)’}. 

Then let Vy(a) be the original set of n positive partial effects of an alternative a, arriving 

at node y of a Reasoning Map (n = 5) as shown in Figure 4: 

Vy(a) = {V1y(a) = ‘s’; V2y(a) = ‘s’; V3y(a) = ‘m’, V4y(a) = ‘vs’, V5y(a) = ‘w’}. 

Ordering the elements of Vy(a) from the strongest to the weakest influence, creates 

the ordered set of partial effects, Vy
o(a): 

Vy
o(a) = {V1y

o(a)  = ‘vs’ ; V2y
o(a) = ‘s’; V3y

o(a) = ‘s’, V4y
o(a) = ‘m’, V5y

o(a) = ‘w’}. 

There are three main types of operator: those for which the outcome depends on the 

position of elements in an ordered set of partial effects; those for which it depends on the 

frequency of occurrence of elements; and those for which it depends on the position of 

elements in the original set of partial effects. Each type is discussed in the sections below. 

3.3 Outcome Controlled by Position in the Ordered Set 
 

Maximum  

Max [Vy
o(a)] : gives V1y

o(a)   (i.e. the 1st element in the ordered set) 

In the Example: Max [Vy
o(a)] = V1y

o(a)  = ‘vs’. 

 

The Max operator reflects an optimistic decision attitude. Its main advantages are that it 

does not require extra preference elicitation and is easily understood by decision-makers. 

Conversely, its main drawbacks are that: it does not allow further modelling of 

preferences; it is non-aggregative, as only one partial effect (the strongest one) is taken 

into account; and it may provide indistinguishable results when comparing decision 

alternatives (for example, an alternative with a single strong partial effect and the others 



Montibeller and Belton. Qualitative Operators for Reasoning Maps. 

 12

weak, would score the same as another alternative which has all partial effects strong). 

 

Minimum 

Min [Vy
o(a)] : gives Vny

o(a)  (i.e. the last element in the ordered set) 

In the Example: Min [Vy
o(a)] = V5y

o(a)  = ‘w’. 

 

The Min represents a pessimistic decision attitude. Its main disadvantages and 

advantages are exactly the same as the Max operator, just described above. 
 

Median 

 Median [Vy
o(a)] :  if n is odd, gives V[(n+1)/2]y

o(a); (i.e. the middle element in the 

ordered set) 

if n is even, gives either V(n/2)y
o(a)  or V[(n/2)+1]y

o(a) 

Obs.: As the partial effects are on an ordinal scale, when n is even the decision maker 

should decide for the optimistic (V(n/2)y
o(a)) or the pessimistic (V[(n/2)+1]y

o(a)) assessment 

from the mid-point (n/2). 

In the Example: Median [Vy
o(a)] = V[(5+1)/2]y

o(a) = V3y
o(a) = ‘s’. 

 

The Median produces an “average” in an ordinal sense. Its main advantages are that it is 

a simple, easy to understand concept and it does not require any extra parameters (unless 

the number of partial effects is even, then the decision-maker has to decide if she is 

optimistic or pessimistic for the mid-point). Similarly to Min and Max, the main 

disadvantages of the Median are that it does not allow further preference modelling and it 

is not aggregative. 

Max-Min Weighted Average 

MMW [Vy
o(a)] : gives Max [ Min[α, V1y

o(a) ], Vny
o(a)] ; 

where α is degree of optimism/pessimism (where α measured on the scale℘, with 

higher values representing a more optimistic outlook). 

In the Example: if α = ‘m’, then:   

MMW [Vy
o(a)] = Max [ Min[α, V1y

o(a) ], V5y
o(a)] = Max [Min[‘m’,‘vs’], ‘w’] = Max 

[‘m’,‘w’] = ‘m’.   
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This operator was proposed by Yager (1995), and it is the ordinal equivalent of the 

Hurwicz cardinal operator: αMax(.) + (1-α)Min(.). Therefore, if α = 1, then Max; if α = 

0, then Min. For instance, if α = ‘vs’ (very optimistic), then in the example MMW [Vy
o(a)] 

= Max [Vy
o(a)] = ‘vs’.  If α = ‘vw’ (very pessimistic), then MMW [Vy

o(a)] = Min [Vy
o(a)] 

= ‘w’. 

One advantage of this operator is that it allows some preference modelling (the degree 

of optimism/pessimism), which can be elicited for the whole map, thus reducing the 

elicitation burden (however, if needed, α can be elicited for each node). It is partially 

aggregative, as it employs two partial effects for calculating its final result. Its 

disadvantages are that it can lead to indistinguishable results, and it produces α itself if 

V1y
o(a) < α < Vny

o(a). In addition, it is not as easily understandable by decision-makers as 

the previous ones. 

 

Linear Aggregation 
LA[Vy

o(a)] = Max[Min[w1,V1y
o(a)] , Min[w2, V2y

o(a)] , … , Min[wn, Vny
o(a)] ]; 

where the w’s are a function of the number of elements (n) and the number of labels 

(m). 

This operator was also proposed by Yager (1995), and was denoted as “normative 

aggregation”. A set of weights should be calculated first, using a function proposed by 

him (which takes as inputs the number of labels and the number of partial effects). Notice 

that the weights are not associated with a given partial effect Vjy(a), but only with a given 

position in the set of ordered partial effects Vjy
o(a). 

In the Example: For 5 elements and 5 labels the weights are:  w1 = ‘vw’, w2 = ‘w’, w3 

= ‘m’, w4 = ‘s’, w5 = ‘vs’ (for details on how to calculate the weights, see Yager, 1995). 

Then:  

LA [Vy
o(a)] = Max[Min[w1,V1y

o(a)] , Min[w2,V2y
o(a)] , Min[w3,V3y

o(a)] , 

Min[w4,V4y
o(a)] , Min[w5,V5y

o(a)] ]; 

LA [Vy
o(a)] = Max[Min[‘vw’,‘vs’], Min[‘w’,‘s’], Min[‘m’,‘s’], Min[‘s’,‘m’], 

Min[‘vs’,‘w’]]; 

LA [Vy
o(a)] = Max[‘vw’,‘w’,‘m’,‘m’,‘w’] = ‘m’. 

 

This operator is the ordinal equivalent of a cardinal weighted-sum of k criteria, with wk 
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= 1/n. Its main advantages are that it is fully aggregative, as it employs all partial effects 

for its result, and it does not require the elicitation of any extra parameter. The main 

disadvantages are that it does not incorporate any extra preferential information and is a 

quite difficult concept to be understood by decision makers.  

3.4 Outcome Controlled by Frequency 
Mode 

Mode [Vy(a)] = gives the most frequent partial effect 

In the Example: Mode [Vy(a)] = {V2y(a) , V3y(a)} = ‘s’. 
 
This operator provides the most frequent partial effect. While being a quite simple 

concept, and not requiring any extra preference elicitation, the mode may provide 

unstable results, as the change in a single partial effect may change drastically the 

response of this function (Domingo-Ferrer and Torra, 2003). Therefore this operator is not 

recommendable when there are high levels of uncertainty about performances or strengths 

of influence. 

3.5 Outcome Controlled by Position in the Original Set 
Weighted Minimum 

WMin [Vy(a)] = Min[Min[w1,V1y(a)] , Min[w2,V2y(a)] , … , Min[wn,Vny(a)]]; 

where w’s are elicited from the decision maker. 

 

This is a special case of the Sugeno Integral, concerning ordinal data (Domingo-Ferrer 

and Torra, 2003). A weight should be elicited for each partial effect. Notice that in this 

operator, contrary to LA, each weight is associated a priori with a given partial effect 

Vjy(a). 

In the Example: Assuming that the decision maker defined w1 = ‘s’, w2 = ‘w’, w3 = ‘s’, 

w4 = ‘w’, w5 = ‘m’, then: 

WMin [Vy(a)]  = Min[Min[w1,V1y(a)] , Min[w2,V2y(a)] , Min[w3,V3y(a)] , 

Min[w4,V4y(a)] , Min[w5,V5y(a)] ]; 

WMin [Vy(a)]  = Min[Min[‘s’,‘s’] , Min[‘w’,‘s’] , Min[‘s’,‘m’] , Min[‘w’,‘vs’] , 

Min[‘m’,‘w’]]; 

WMin [Vy(a)] = Min[‘s’,‘w’,‘m’,‘w’,‘w’] = ‘w’. 

 
This operator reflects a pessimistic weighted average decision attitude. Its main 
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advantages are that it is an aggregative operator (as it considers all the partial effects for 

computing its result) and is relatively easy to be understood. It imposes, however, a huge 

elicitation burden. Besides, the role of weights could be misunderstood, as the partial 

performances of decision alternatives have already been modulated by the partial effect 

operator – so it would be like considering weights twice. 

Weighted Maximum 
WMax [Vy(a)] = Max[Min[w1,V1y(a)] , Min[w2,V2y(a)] , … , Min[wn,Vny(a)]]; 

where w’s are elicited from the decision maker. 

This operator is similar to the previous one, but takes the Maximum of the minima 

between weight and partial effect. Again here each weight is associated a priori with a 

given partial effect. 

In the Example: Assuming the same weights as the previous operator: 

WMax[Vy(a)]  = Max[Min[w1,V1y(a)] , Min[w2,V2y(a)] , Min[w3,V3y(a)] , 

Min[w4,V4y(a)] , Min[w5,V5y(a)] ]; 

WMax [Vy(a)]  = Max[Min[‘s’,‘s’] , Min[‘w’,‘s’] , Min[‘s’,‘m’] , Min[‘w’,‘vs’] , 

Min[‘m’,‘w’]]; 

WMax [Vy(a)] = Max[‘s’,‘w’,‘m’,‘w’,‘w’] = ‘s’. 

 

This operator has the same advantages and disadvantages as the previous one, but 

reflects an optimistic weighted average decision attitude. 

In Table 2 we present a summary of these operators in terms of factors that may be 

important in their selection for performing the aggregation of total effects, namely: the 

type of decision attitude it conveyed; the nature of preference parameter(s) required; 

whether the position in the set of partial effect matters or not; and a general comment on 

advantages and disadvantages. We indicate whether the operator is available in the set of 

Excel macros we developed to analyse Reasoning Maps (for more details see Montibeller 

et al., 2007a). 

We suggest that an appropriate operator for performing the total effect aggregation 

should be selected for each intervention, bearing in mind the decision maker’s preferences 

and factors just discussed in this section. Clearly some of these factors are conflicting: for 

example, increasing the sophistication of modelling is achieved at the expense of 

increasing the elicitation burden; and so the choice of operator will be context dependent. 

Initial attempts to employ the Reasoning Maps method in supporting real-world 
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decision making, described in Montibeller et al. (2007a; 2007b), have shown that: i) it 

was relatively easy to elicit preferences and strengths of influence using an ordinal scale, 

but care had to be taken to make sure that the decision-makers fully understood the latter 

parameter; ii) decision-makers were able to appreciate the different results which 

stemmed from using different total effect operators, but the lack of a visual interactive 

software prevented a full exploration of such operators; iii) the degree of specification of 

the model (for example attributes to be employed for the qualitative appraisal of the 

performance of options, the definition of variables associated with concepts of the map, 

etc.) has a heavy impact on the time to conduct the analysis. As a whole, the two cases 

demonstrated that employing the decision method was feasible, but time consuming, with 

the decision-makers perceiving it as a useful tool in supporting their decision. 

4 Conclusions and Directions for Further Research 
In this paper we discussed several possible operators for aggregating qualitative data in 

a Reasoning Map. This recently developed decision method proposes a way of performing 

a qualitative appraisal of decision alternatives using a particular type of causal map to 

structure the evaluation. In this way, it permits the evaluation of options along complex 

chains of reasoning statements: from the means available to the ends that decision-makers 

want to achieve. 

Most of the advantages (and limitations) of qualitative decision analysis (see 

Moshkovich et al., 2005) are shared by the Reasoning Map approach. The control 

imposed with regard to the cognitive complexity of eliciting preference information and 

interpreting output on the performance of options (for details see Larichev, 1992) – which 

lead to the use of qualitative (ordinal) scales for preference elicitation, as well as for data 

aggregation and output of results – can increase the accessibility and attraction of the 

method to managers, who utilise the verbal medium as their main communication tool 

(Mintzberg, 1973). For the same reason, the approach may also help in building 

confidence in its results. However, Reasoning Maps do not provide a quantitative 

evaluation of options and because the method employs ordinal data, it may result in a 

limited degree of discrimination, thus not providing a full rank of alternatives (for a full 

discussion on its limitations see Montibeller et al., 2007a). Therefore the method seems to 

be more useful for complex problems, where there is need for problem structuring 

(Rosenhead and Mingers, 2001) and decision-makers are mainly interested in 

understanding the impact of their actions in intricate chains of reasoning. 
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The investigation of ordinal operators for Reasoning Maps opens several avenues for 

future research, among them we suggest: 

 A more detailed study on the mathematical properties of the model. While every 

operator presented in Table 1 has the basic properties needed for an aggregation 

function (commutative – the initial order of arguments does not matter; monotonic – 

as the partial values increase the overall value should not decrease; and idempotent – 

if all partial values are the same, the overall value should be equal them; see also 

Yager, 1995) a more detailed analysis of these properties in the network itself would 

be welcomed.  

 Full axiomatization of the method. Linked with the item above, there is the need of a 

full axiomatization of the method, which can help in checking the properties and also 

in comparing it with existing methodologies. 

 Explore the use of Decision Rules and other operators. The Decision Rules approach 

(Greco et al., 2005) is attracting growing interest in the MCDA community. We 

believe that there are potential synergies between this approach and Reasoning Maps. 

As exemplified for the partial effect operator, instead of choosing a predefined 

operator one could use decision rules for eliciting preferences in a Reasoning Map; 

this could make the method more flexible and able to accommodate complex 

preference structures. Another possible focus of research would be to investigate 

different ordinal operators that could deal with more complex inter-linkage of 

influences (e.g., when both partial effects A and B both have to be at a certain level in 

order to generate a total effect C). 

 Develop supporting software. As stated elsewhere (Montibeller et al., 2007a) there is a 

strong need for developing a software that could implement the method. Such 

software could help to: i) analyse further the properties of the method (e.g., impact on 

the model’s outputs when using different operators, varying the number of qualitative 

labels, or visually interacting in diverse ways with decision-makers); ii) implement 

different ordinal operators (including Decision Rules); iii) evaluate in more detail the 

use in practice of the Reasoning Maps method. There are open issues on how to define 

the “best” aggregation operator for a given decision-maker and the “right” number of 

qualitative levels for a particular problem/map/decision-maker; appropriate software 

would help enormously in conducting research on this front. 

 Further applications. More applications of the method are clearly needed, not only to 

further develop the method itself but also in order to: i) assess for which types of 
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problems the method is more suitable (e.g., it may be more suitable when the problem 

has a more qualitative nature, hard data is difficult to obtain, or the decision-makers 

feel more comfortable expressing their preferences and analysing results in qualitative 

terms); ii) compare the use of Reasoning Maps with traditional MCDA methods (such 

as Multi-Attribute Value Analysis, see Belton and Stewart, 2002) in practice.  

 

Concluding the paper, there are potentially strong links between MCDA and AI, which 

may provide interesting opportunities for future research. In particular, the approaches of 

eliciting and processing qualitative information by AI, and the focus on the multi-criteria 

evaluation of decision alternatives by MCDA, seem complementary rather than 

competing. The Reasoning Maps method is one of the approaches which attempts to make 

these links, as it utilises cognitive/causal maps and ordinal operators, two areas that have 

been extensively explored by AI, to perform a qualitative multi-criteria evaluation of 

decision options. We recognise that the method is yet in its infancy, with several research 

questions still open – in particular the use of ordinal operators for aggregating qualitative 

data – but we hope the discussion presented in this paper could be of some interest to the 

OR community, given the positive results obtained in applying it to some complex real 

world decisions (described in Montibeller et al., 2007a, 2007b) and a growing interest on 

linking AI and MCDA. 
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Figure 1. An Example – Variables of a Reasoning Map. 
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Figure 2. An Example - Evaluating a decision alternative in a Reasoning Map. 
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Figure 3. An Example – Total effects of alternative a in a Reasoning Map. 
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Figure 4. Aggregating five partial performances in a Reasoning Map.
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  Strength of Influence 
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Table 1. A Decision Table for Calculating the Partial Effect – An example. 
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Operator Decision 
Attitude 

Type 
Parameter 

Position 
matters? 

Advantages Disadvantages Available
? 

Maximum optimistic none no  no extra parameter 
 easy concept 

 no extra preferential 
information 

 non-aggregative 
 indistinguishable results 

yes 

Minimum pessimistic none no  no extra parameter 
 easy concept 

 no extra preferential 
information 

 non-aggregative 
 indistinguishable results 

yes 

Median “average” optimistic or 
pessimistic mid-point 

(when n is even) 

no  single parameter for the 
whole map 

 relatively easy concept 

 non-aggregative 
 no extra preferential 

information 

yes 

Mode most frequent none no  easy concept 
 no extra parameter 

 non-aggregative 
 sensitive response to a 

variations of a single 
partial effect 

no 

Max-Min Weighted 
Average 

weighted average 
of optimistic and 

pessimistic effects 

degree of optimism no  extra preferential 
information 

 single parameter for the 
whole map 

 partially aggregative 

 indistinguishable results 
(response is quite 
sensitive to degree of 
optimism) 

 not a very easy concept 

yes 

Linear Aggregation weighted average none no  aggregative 
 no extra parameter 

 no extra preferential 
information 

 difficult concept 

yes 

Weighted Minimum pessimistic 
weighted average 

a weight for each link yes  aggregative 
 relatively easy concept 

 high burden of assessment 
 role of weights may be 

misunderstood 

no 

Weighted Maximum optimistic 
weighted average 

a weight for each link yes  aggregative 
 relatively easy concept 

 high burden of assessment 
 role of weights may be 

misunderstood 

no 

 
Table 2. Comparing total effect operators for Reasoning Maps. 
 


