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Abstract

This paper addresses the job shop scheduling problem to minimize the number of tardy jobs, considering the sequence dependent
setup time. This problem is taken as a sequencing problem, and a family of approaches with different levels of intricacy is proposed.
The simplest form is a critical ratio-based dispatching rule, which leads to satisfactory solutions by taking into account the group infor-
mation rather than only the individual information of jobs. Then, an enhanced approach consisting of an iterative schedule refining
mechanism will be given. Its feature is to iteratively adjust the estimation of the remaining processing times of jobs in a dynamic and
operation-specific manner. Finally, a genetic algorithm which takes the dispatching rule and the refining mechanism as the core is pro-
posed. The performance of these approaches is carefully examined by a comprehensive experimental study.
� 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Job shop scheduling is essentially a task of allocation of machines over time to the jobs in such a way that the selected
performance criteria are optimized. For the shops running in the make-to-order fashion, the most important goal is to
complete the customers’ orders within the specified due dates. In this paper, we focus on minimizing the number of tardy
jobs as the objective, reflecting the recent emphasis given to customer satisfaction in the industry (Balogun and Popplewell,
1999). Most previous research works assumed no setup times when solving the job shop scheduling problem. However, in
practical applications like semiconductor manufacturing, the setup times are often not negligible and are sequence depen-
dent. Hence, we consider sequence dependent setup (SDS) times in our problem. In the following, we give the mathematical
formulation of the target problem.
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Nomenclature

N, M the set of jobs, the set of machines
ni the number of operations of job i
oij; oi

* the jth operation of job i,i 2 N,j 2 {1, . . . ,ni}; the imminent operation of job i

o00 the dummy operation, used to indicate the initial status of machines
O the set of all operations (excluding o00)
mij the machine required to process operation oij

pij; pi the processing time of operation oij; pi = pi
*

rij; ri sum of processing times of operation oij and its succeeding operations; ri = ri
*

sklij the required setup time to start operation oij right after processing of operation okl; s00kl = 0 "k 2 N and
l 2 {1, . . . ,nk}

xklij the indicator for the processing order between operations okl and oij; xklij = 1 iff operation oij is processed
immediately after operation okl

cij; ci the completion time of operation oij (c00 = 0); ci = cij where j = ni

di the due date of job i 2 N

Ui the indicator for whether job i is tardy or not
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subject to

8oij 2 O; x00ij þ
X

okl2O;mkl¼mij

xklij ¼ 1; ð1Þ

8oij 2 O; cij P pij þ
X

okl2O[fo00g
ðxklij � ðckl þ sklijÞÞ; ð2Þ

8i 2 N ; j 2 f2; . . . ; nig; cij P ciðj�1Þ þ pij þ
X

okl2O[fo00g
ðxklij � sklijÞ; ð3Þ

8okl 2 O [ fo00g; oij 2 O; xklij 2 f0; 1g; ð4Þ
8oij 2 O; xijij ¼ 0; ð5Þ
8oij; okl 2 O ^ mij–mkl; xklij ¼ 0; ð6Þ
8i 2 N ;Ui 2 f0; 1g; and U i ¼ 1 iff ci > di; ð7Þ
For each operation oij, constraint (1) is used to indicate its previously processed operation on machine mij. Constraint (2)
expresses the capacity constraint that one machine can process only one job at a time. Constraint (3) represents the tech-
nological precedence constraint. Constraints (4)–(6) define the possible values of xklij, and constraint (7) sets the values of
Ui. If the setup times are negligible or are sequence independent, the model is still feasible just by setting sklij = 0 "okl,
oij 2 O or by setting sxyij = sklij "oxy, oij, okl, 2 O, respectively.

Job scheduling is usually reduced to a sequencing problem, and the dispatching rule is a common solution in the indus-
try. Lee et al. (1997) designed a three-phase heuristic to minimize the total weighted tardiness on a single machine in the
presence of SDS. Kim et al. (2001) proposed several rules for scheduling in the wafer fabrication facilities to minimize mean
tardiness. Chern and Liu (2003) proposed the family-based scheduling rules to address SDS occurred in the photolithog-
raphy stage in the wafer fabrication system. Duwayri et al. (2006) developed a threshold-based rule to schedule the ion
implanters, which are the bottleneck workstations with significant amount of setup time in the semiconductor manufactur-
ing system. Many other dispatching rules can be found in the survey and simulation-based reports by Chang et al. (1996),
Jayamohan and Rajendran (2000), and Chiang and Fu (2006). Besides the efforts to the development of efficient rules, there
were also research works on rule combination (Dabbas and Fowler, 2003) and by-machine rule selection (Yang et al., 2007)
to solve the job scheduling problems.

In addition to dispatching rules, several kinds of meta-heuristics, like genetic algorithms (GA), are also popular in the
field of job scheduling. Chang et al. (2003) considered SDS in scheduling in a real-world BOPP film factory, which was
modeled as a two-stage flowshop, to minimize the sum of setup times, earliness, and tardiness. Mattfeld and Bierwirth
(2004) adopted the operation-based representation and utilized the parametric active schedule builder to reduce the search
space of GA. Their GA was tested in the job shop with release and due dates, and outperformed several existing
approaches with respect to three objectives, including weighted number of tardy jobs. To exploit the advantages of rules
and GA, Bertel and Billaut (2004) used dispatching rules to initialize the population of GA, and showed the efficiency of
their approach in a hybrid flow shop in terms of weighted number of tardy jobs. An example of further integration of rules
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and GA can be seen in Chiang et al. (2007), where they applied the GA to seek for the good linear combination of multiple
dispatching rules. By using dispatching rules to guide the search process of GA (instead of direct sequencing of jobs), we
can prevent the size of search space from growing exponentially with the increase of number of jobs. This is helpful for
solving large-scale job shop scheduling problems.

The GA models the natural evolutionary process, and the algorithm itself is also evolving. Taillard et al. (2001) pointed
out that one important element in the evolution is the incorporation of local search procedures. Franca et al. (2001) incor-
porated the hill climbing algorithm into GA to solve the total tardiness single machine scheduling problem with SDS. Arti-
ques and Roubellat (2002) addressed the problem of minimizing the maximum lateness in the job shop, and proposed an
efficient neighborhood function for doing local search. The genetic local search was used by Sevaux and Dauzere-Peres
(2003) to minimize the weighted number of tardy jobs for the single machine scheduling problem. Essafi et al. (2007) also
proposed a genetic local search and showed its good performance on minimizing total weighted tardiness in the job shop.
In Essafi et al.’s work, they mentioned that ‘‘Despite the increasing importance of customer service in terms of meeting due
dates, research works dealing with the minimization of due date related objectives in the job shops are very scarce.” More-
over, the number of existing works on due date scheduling in the job shop with SDS is even much fewer. There are no more
than ten papers on this topic in the recent survey reports by Allahverdi et al. (2006) and Zhu and Whilhem (2006), which
covered more than 300 papers published in 1999–2006. To our best knowledge, our work is the first one on minimizing the
number of tardy jobs in the job shop with SDS.

In this work, we propose a family of approaches to solve the target problem. The first member is a dispatching rule that
prioritizes jobs based on the critical ratio-based indices. The rule, named enhanced critical ratio (ECR), is featured by con-
sidering the influence on the urgency of competing jobs caused by processing of the picked job. As the remaining processing
time is an important factor in the ECR rule, the second member equips the first member with a schedule refining mecha-
nism for adjusting the remaining processing times to obtain improved schedules. With several parameters in the ECR rule
and refining mechanism, we need an automatic parameter optimizing algorithm. This is achieved by our third member,
which is a GA that takes the ECR rule as the basis of genome encoding and the refining mechanism as the local search
procedure.

The rest of this paper is organized as follows: Section 2 gives a review of the ECR rule. Then, the iterative schedule
refining mechanism is presented in Section 3. In Section 4, we detail the GA for parameter optimization. A comprehensive
study of performance of the proposed approaches is shown in Section 5. Conclusions and future research directions are
given in Section 6.

2. The ECR dispatching rule

As mentioned, many dispatching rules have been proposed in the literature. In our observation, most of them share a
common feature – when applying these rules to do job scheduling, only information concerning each individual job is used.
It can be expected that they can not provide good decisions with this small amount of information. In our solution, we
proposed a new dispatching rule, the ECR rule, which takes into account the ‘‘group information” based on the critical
ratio (CR) rule. Although some other rules, like the cost over time (COVERT) and apparent tardiness cost (ATC) rules,
also consider the information of other jobs or machines, the ECR rule is distinguished from them in that it evaluates a job
by measuring the influence upon all competing jobs caused by processing of the selected job. The detailed steps to apply the
ECR rule were presented in Chiang and Fu (2004). Here we only show its equation to calculate the index value of a job i.
The job with the smallest index value is selected as the next processing target.

Let job b denote the last job processed on the released machine, t denote time to select the next job, and Q denote the
queue containing waiting jobs. The index value Zi of a job i is calculated by
Zi ¼
X

k2Q;i–k

urgðrk; dk � t � sb�i� � pi � si�k� Þ þ urgðri � pi; di � t � sb�i� � piÞ; where

urgðr; aÞ ¼
ðr=aÞ2; a P r > 0;

Bþ D � ðr � aÞ; a < r;

0; r ¼ 0:

8><
>:

ð8Þ
The ECR rule intends to pick a job as the next processing target such that the total urgency of all jobs is kept minimal after
that job is processed. The urgency of a job is measured by a function of the critical ratio (ratio of the remaining processing
time to the allowance time) of the job. When the critical ratio is close to one, the urgency should increase very fast. In our
current implementation, we use the function f(x) = x2. Let us use Fig. 1 to demonstrate how the ECR rule works. There are
two candidate jobs to be processed. If job J1 is processed first, the total urgency of both jobs is still low
(Z1 = (0.5)2 + (0.5)2 = 0.5). However, if job J2 is processed first, the urgency of job J1 will increase drastically, and the total
urgency is higher (Z2 = (0.8)2 + (0.27)2 = 0.71 > 0.5). Therefore, ECR picks job J1 first in this situation.



Fig. 1. Basic idea of the ECR rule.
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The ECR rule performed well in preliminary experiments, and an improvement was proposed to raise both its solution
quality and computation speed (Chiang and Fu, 2004). In our observations, the ECR rule might make an inappropriate
decision when there are candidate jobs with very low or very high critical ratios. Thus, a filtering preprocess is added. Crit-
ical ratios of all candidate jobs are calculated, and only the jobs with critical ratios lying in a predefined interval [L,U] are
considered by ECR. This preprocess can eliminate the conditions in which the ECR might not behave well; meanwhile, the
computation time is saved because the number of jobs to be prioritized is reduced. When there are no jobs with critical
ratios falling into [L,U], all jobs in the queue will be processed in the order following the shortest processing time first
(SPT) rule. Two other parameters B and D are used in the ECR rule to make sure that the urgency of the tardy jobs will
not decrease as the tardiness increases. To set the values of these parameters L, U, B, and D suitably, we develop a GA and
present it in Section 4.

3. The iterative schedule refining mechanism

The remaining processing time is a factor commonly adopted in the design of dispatching rules. It is usually calculated
as the sum of processing times of unfinished operations. However, this sum (hereafter we call it the minimal remaining
processing time, rmin) is only a lower bound and the actual remaining processing time (ract) is usually longer than rmin

because of resource contention in the shop. To cope with this problem, a common solution in the literature estimates
the actual remaining processing time by multiplying an amplification ratio (A) to rmin excluding the processing time of cur-
rent operation (pc), i.e. ract = pc + A � (rmin � pc) where the value of A is determined empirically (Kim and Kim, 1994; Kim
Product 1
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Estimating the remaining processing time
by the conventional static amplification method:

J1:    10+ A.(8+12) 

J2:    5+ A.(6+7) 

J4:    6+ A.(7) 

J3:    9+ A.(4+3) 

There is not a value of     A  that can estimate the 
remaining processing times of all jobs suitably.

Fig. 2. An example for the drawbacks of the conventional method to estimate the remaining processing time.
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et al., 2001). This kind of estimation is static since the amplification is made in a uniform way regardless of different degrees
of contention encountered by different jobs at different stages.

To realize the drawbacks of the static amplification method, we take Fig. 2 as an example. In this shop, there are many
kinds of products, and here only the routes of three of them are depicted. The number above the arrow is the processing
time on the machine for each product. Severe resource contention takes place on the colored machines (M1–M4 and M6),
and the degree of resource contention is assumed to be small for other machines. For the job of product 1, J1, the value of
A should be large to reflect the fierce resource contention at machines M2 and M3. With a large amplification ratio and
consequently longer estimated remaining processing time (than rmin), the urgency of job J1 becomes higher, and that could
instruct the ECR rule to sequence J1 in an earlier order. In other words, setting a large A value for J1 to reflect the long
queueing time in its later stages intends to make it completed within due date with a greater chance. Nevertheless, for the
job of product 3, J3, the value of A should be close to one due to little resource contention at machines M7 and M8. In this
case, the static amplification method, which estimates ract by amplifying (rmin � pc) in a uniform way for all kinds of prod-
ucts, is believed to fail.

Even for jobs of the same product, the static amplification method could also have problems. Given two jobs of product
2, J2 at M1 and J4 at M4, the value of ract of J2 should be significantly different from the value of rmin, whereas the values of
ract and rmin of J4 should be almost the same. Again, a single value of the amplification ratio can not satisfy this situation.
Besides, amplifying the processing time on M5 for J2 is unreasonable because there is little resource contention on M5.

After realizing the drawbacks of the static amplification method, we propose to use an iterative refining mechanism with
two features: First, it considers the degree of contention of machines in a job-specific and operation-specific manner. The
remaining processing time is estimated according to the actual queueing time of each job at each operation. Second, it
refines the schedule iteratively based on the estimates of remaining processing times in each iteration.

The heuristic based on the ECR rule and the iterative refining mechanism is named I-ECR. Let qij denote the queueing
time of operation oij, the entire procedure of I-ECR is given as follows:

Step 0. t ¼ 1; rij ¼
Xni

pik ¼ rmin
ij : ð9Þ
k¼j

Run a simulation and apply the ECR rule described in Section 2 to construct a schedule St.If t P T, the refining
process ends, and the best schedule among all T schedules is reported.
Step 1.

Step 2. Calculate queueing times qij based on the schedule St obtained in Step 1.

Step 3. rij ¼ pij þ
Xni

ðpik þ A � qikÞ ¼ rmin
ij þ A �

Xni

qik; ð10Þ

k¼jþ1 k¼jþ1

. Goto Step 1.
t = t + 1

In this approach, the increment of remaining processing time is determined according to the dynamic information
obtained during the iterative refining process. The queueing time of each job at each operation is taken into account to
adjust the remaining processing time. The original idea of this iterative refining mechanism was mentioned in Vepsalainen
and Morton (1988). Taner et al. (2003) adopted this mechanism to minimize the maximum lateness in the job shop, and the
authors revised the original mechanism to a parameterized version (Chiang and Fu, 2005). The iterative refining mecha-
nism can be applied to any rule as long as the rule takes the remaining processing time to calculate the index values of
jobs. For example, the COVERT and ATC rules are also good candidates. What we need to do is just to use the estimated
remaining processing times when the remaining processing times are required by the cooperated dispatching rule. The val-
ues of parameters A and T certainly have influence on the performance of this mechanism. Related experiments and dis-
cussions are provided in Section 5.

4. Genetic algorithm with I-ECR

As mentioned in Section 2, there are four parameters L, U, B, and D in the ECR rule. Their default values are zero,
infinity, two, and zero, respectively. The [0,1] interval means that the ECR rule considers all jobs in the default condition.
The default value of B, two, emphasizes the importance of avoiding tardy jobs (the maximal urgency of non-tardy job is
one, see Eq. (8)), and the default value of D makes ECR concentrate on the jobs that are possible to be completed within
due dates. Although the ECR rule with the default setting performs satisfactorily, the performance can be further improved
by tuning these parameters to fit different problem instances.

In order to determine suitable values for these parameters, we resort to the GA, which is commonly adopted in param-
eter optimization (Goncalves et al., 2005; Chiang et al., 2007). To construct a GA, there are generally five primary com-
ponents to be concerned – genome encoding, genome evaluation, genetic operators, initial population, and genetic
parameters. Besides these five components, local search procedures are usually incorporated into modern GAs to improve
the performance. The iterative schedule refining mechanism described in the previous section will serve this function. The
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parameters A and T from the refining mechanism are then also taken as the tuning targets of the GA. Details of the pro-
posed GA are given as below:

Genome encoding: Genomes represent the solutions to be sought, and our genome has six genes corresponding to param-
eters L, U, B, D, A, and T. The range of values of L, U, and D is [0,1], and the range of value of B is [1,2]. The precision of
these four parameters is up to the second digit. The range of value of A is [0,1], with precision up to the first digit, and T is
an integer in [1, 10].

Genome evaluation: To evaluate a genome, the I-ECR heuristic is conducted. Before applying the I-ECR heuristic, values
of the parameters (L, U, B, and D) in the ECR rule and of the parameters (A and T) in the refining mechanism are set
according to the values of corresponding genes. After the I-ECR stops, the number of tardy jobs of the best schedule
among T generated schedules is recorded on the genome. During the evolutionary progress of GA, we observed that many
genomes may have the same number of tardy jobs. In this condition, it is difficult to effectively qualify the genomes only by
the number of tardy jobs. Therefore, we adopt the total tardiness, which is defined by

P
i2N maxf0; ci � dig, as the second-

ary measure for qualification of genomes.
Genetic operators: To do mating selection, we use the 2-tournament selection operator. It randomly picks two gen-

omes, and then selects the genome with a smaller number of tardy jobs as a parent. In case of a tie, the genome with
a smaller total tardiness is selected. If there is still a tie, one genome is selected randomly. Two-point crossover and
single-gene-substitution mutation are adopted for producing the offspring. Given two parents, the two-point crossover
produces two offspring by randomly picking two points and then exchanging the sections enclosed by these two points
between two selected parents. Then, the single-gene-substitution mutation is applied on each offspring with probability
pm (, which is a parameter of our GA). It randomly picks one gene and sets its value as a random value in the cor-
responding range. Each time when two offspring are produced, the best two genomes among the parents and offspring
will replace the parents. In this way, the elitism strategy is realized implicitly. Besides, we introduce two population
diversity control mechanisms in our GA. The first mechanism controls the diversity in the objective space. It requires
that the two survivors from two parents and two offspring must have different number of tardy jobs or total tardiness,
unless all four genomes have the same values. The second mechanism controls the diversity in the encoding space.
This is achieved by replacing the worst ri% genomes with random immigrants in each generation. (The values of genes
of the immigrants are generated randomly within the corresponding ranges.) The idea of random immigration comes
from the work by Goncalves et al. (2005), and its function is different from the mutation operator. The mutation
operator makes a small modification to the genomes (that have already evolved during the GA process) and aims
to produce better genomes by injecting some new material that is not easily obtained by doing crossover. On the other
hand, the random immigration intends to do exploration on the search space by introducing totally new genomes into
the population. In Section 5.4.1, we will provide experimental results about setting suitable values for the parameters
pm and ri.

Initial population: Random creation is used, which means values of genes are generated randomly within their corre-
sponding ranges.

Local search procedure: In contrast to the intention of GA to explore the solution space globally, the local search
procedure usually aims at finding the optimal or near-optimal solution in a relatively smaller region, namely, the neigh-
borhood of a given (base) solution. Searching in the neighborhood is usually achieved through generating similar solu-
tions by making slight modifications to the base solution and then selecting the best one among them. The iterative
refining mechanism is a good candidate to serve this function. It refines the schedule iteratively, which resembles search-
ing a group of similar schedules. This local search process is conducted directly on the solution space, not on the coding
space, and two consecutive search points are related by queueing times and estimated remaining processing times.
Besides, different genomes can have different ways (parameters A and T) to do this local search. In other words, the
local search procedure itself also evolves during the process. To give a global view of our proposed GA, we provide
the flow chart in Fig. 3.

5. Experiments and results

5.1. Generation of problem instances

The problem instances used in our experiments are generated based on the public instances provided by Taillard (1993).
We select 10 problem instances with 30 jobs and 15 machines (ta31–40) and 10 instances with 50 jobs and 15 machines
(ta51–60). For each selected ‘‘ta” instance, we generate nine ‘‘tan” instances with different combinations of three levels
of due date tightness factor (FF) and three levels of maximum ratio of setup time to mean processing time (SS). In total,
there are 2 � 9 = 18 problem categories (defined by combinations of number of jobs, FF, and SS) and 2 � 9 � 10 = 180 new
instances. Parameter settings for these tan instances are summarized in Table 1. The instance tan (10 � k + i) is generated
based on the instance ta(30 + i), where k = 0, . . . , 8, and i = 1, . . . , 10. The instance tan (10 � l + i) is generated based on the
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Fig. 3. The flow chart of proposed genetic algorithm.

Table 1
Parameter settings for generation of problem instances

30 jobs, 15 machines 50 jobs, 15 machines

FF = 1.7 FF = 1.9 FF = 2.1 FF = 2.6 FF = 2.8 FF = 3.0

SS = 0% tan 1–10 tan 11–20 tan 21–30 tan 91–100 tan 101–110 tan 111–120
SS = 25% tan 31–40 tan 41–50 tan 51–60 tan 121–130 tan 131–140 tan 141–150
SS = 50% tan 61–70 tan 71–80 tan 81–90 tan 151–160 tan 161–170 tan 171–180
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instance ta(50 + i) where l = 9, . . . , 17, and i = 1, . . . , 10. The number of jobs, number of machines, required machines, and
processing times in each tan instance are the same as they are in the based ta instance. The additional parts include due
dates and SDS times. The SDS times in tan instances are generated by using the processing times in ta instances as the
seeds. The due dates are generated by using the Total WorK content (TWK) method. The algorithm for generating the
new instances is given in Table 2. Researchers who are interested in using these new problem instances can follow the algo-
rithm to generate them. The electronic files of these instances are also available from the authors upon request.

In the experiments, all scheduling approaches are implemented in C++ language by Microsoft Visual C++ 6.0�. All
experiments are conducted on personal computers with Intel 2 GHz CPU and 1 GB RAM.

5.2. Performance of ECR

5.2.1. Benchmarks

In order to test the performance of the ECR rule, we take 18 existing dispatching rules as benchmarks. Anderson and
Nyirenda (1990) proposed rules CR + SPT and S/RPT + SPT, and showed that they are effective in minimizing the num-
ber of tardy jobs. Rules SPT, EDD, LTWK, SRPT, and SPT/TWK were the best five rules among 42 rules in terms of
number of tardy jobs in Chang et al. (1996). Rules SLK/OPN, ATC, MDD, COVERT, and MOD were the best five rules
for minimizing mean tardiness in Jeong and Kim’s survey (1998). The abovementioned rules were also pervasively adopted
as benchmarks in the literature (Jayamohan and Rajendran, 2000; Chiang and Fu, 2006). In addition to these well-known
rules, four recently proposed rules are also taken into consideration in our experiments. The ATCS rule is an enhancement
of ATC rule, and showed good performance to minimize the total weighted tardiness for single machine with SDS (Lee
et al., 1997). Jayamohan and Rajendran (2000) proposed the PTPWODD rule, which performed well on minimizing the
number of tardy jobs. The EADD rule was developed by Lodree et al. (2004) and showed good performance on minimizing
the number of tardy jobs. Abu-suleiman et al. (2005) introduced the MCR rule, which yielded better performance than the



Table 2
Algorithm for generation of problem instances

N: number of jobs; M: number of machines
pij: processing time of operation j of job i in the ta instance
s[x]: variables for generating sequence dependent setup time
di: due date of job i in the tan instance
sijk: sequence dependent setup time from job i to job j on machine k in the tan instance
For i = 1, . . . ,N Do

For j = 1, . . . ,M Do
s[(i�1) �M + j] = pij

End For
End For
s = 0
x = 1
For k = 1, . . . ,M Do

For i = 1, . . . ,N Do
For j = 1, . . . ,N Do

If i = j or SS = 0 Then
sijk = 0

Else
s = sijk = (s[x] + s) Mod (SS � 100)

x = x + 1
If x > N �M Then

x = 1
End if

End if
End for

End for
End for
For i = 1, . . . ,N Do

di ¼ ðFF þ ðði� 1ÞMod5Þ � 0:1Þ � ð
P

j¼1;...;M pij þ
P

k¼1;...;M ð
P

j¼1;...;N sjik=ðN � 1ÞÞÞ
End for

Table 3a
Definitions of the benchmark rules

Rule Index value Z = Rule Index value Z =

MCR (d � t)/rz SPT p

EDD d SRPT r

MDD max{d, t + r} LTWK P

ODD d � c � (r � p) SPT/TWK p/P

MOD max{d � c � (r � p), t + p} SLACK d � r � t

CR+SPT max{(d � t)/r � p, p} SLK/OPN (d � r � t)/o
S/RPT+SPT max{(d � r � t)/r � p, p} COVERT (1/p) � (1 � (d � r � t)+/(b � k � r))+

PTPWODD p + q + d � c � (r � p) ATC (1/p) � exp(�(d � p � b � (r � p) � t)+/(k � pa))
EADD See Lodree Jr. et al. (2004) ATCS (1/p) � exp(�(d � r � t)+/(k1 � pa))� exp(�s/(k2 � sa))
Notations

p (P) processing time of the imminent (all) operation(s) pa average processing time of the competing operations
d job due date s sequence dependent setup time
r remaining processing time t system time
q waiting time of the imminent operation sa average sequence dependent setup time
o number of unfinished operations b, k parameter of COVERT/ATC
c parameter of ODD/MOD/PTPWODD k1, k2 parameter of ATCS

For all rules except COVERT, ATC, and ATCS, the smaller the index value is, the higher the priority is.

Table 3b
Tested parameter values of the dispatching rules with parameters

Rule Tested parameter values Rule Tested parameter values

MCR z = 0.2,0.4,0.6, . . . , 2.0,2.2 COVERT b � k = 1,2,3, . . . , 19,20
ODD/MOD/PTPWODD c = 1,2,3, . . . , 9,10 ATC b and k = 2,4,6,8,10, respectively

ATCS k1 and k2 = 1,2, . . . , 6, respectively
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original CR rule in terms of tardiness and earliness. For the rules with parameters, we test at least ten versions of each of
them with different parameter values and then use the best results to do performance comparison. Here, the proposed ECR
rule uses the default setting. The definitions of all tested rules are provided in Table 3a, and the tested parameter values are
given in Table 3b.

5.2.2. Performance of each dispatching rule
For each of the 19 tested dispatching rules, the average numbers of tardy jobs over instances tan 1–90 (30 jobs and 15

machines) and tan 91–180 (50 jobs and 15 machines) are provided in Tables 4a and 4b, respectively. Besides, for each cat-
egory of (10) instances with the same FF and SS, we assign a rank to each rule. The average rank of each rule over nine
categories is shown in the parentheses. The rules are placed in increasing order of the average rank. (Due to the limitation
of space, the average number of tardy jobs and rank of each rule in each category are omitted here.)

In Tables 4a and 4b, the proposed ECR rule and existing rules SRPT, MDD, LTWK, and EDD are always inside the
group of best six rules. When the problem instances with 30 jobs are solved, some existing rules may outperform the ECR
rule, especially when the job due dates are tight. When the instances with 50 jobs are solved, however, the ECR rule
becomes the best performer, showing its advantage of dealing with large-scale problems.

In general, the rules perform stably, which means that for each rule its ranks in all problem categories are similar. Some
special cases are reported as follows. The rules EADD and LTWK are particularly suitable for solving the instances with
tight due dates. But they are not even in the group of best ten rules when solving the instances with loose due dates. On the
contrary, the ATCS rule is ranked about the 10th place when solving the instances with tight or moderate due dates but can
be the best or the second best rule when solving the instances with loose due dates. Besides, we also observe that the expe-
rience of using rules to minimize other due date-based performance measures like mean tardiness and maximum tardiness
is not applicable to minimization of number of tardy jobs. Rules COVERT, ATC, and CR + SPT, which are recognized for
minimizing mean tardiness, and SLACK, which is well known for minimizing maximum tardiness, provide bad perfor-
mance. To choose one rule from the 19 tested rules, we recommend to use the proposed ECR rule when due dates are mod-
erate or loose and to use the SRPT rule when due dates are tight.

5.3. Performance of I-ECR

In this subsection, we will examine the benefit of integrating the proposed ECR rule with the iterative refining mecha-
nism. As mentioned, there are two parameters that control the execution of the refining process – A, which decides the
percentage of queueing time being added to the predicted remaining processing time, and T, which decides the number
of iterations to do the refining actions. In the experiments, we use {0.1, 0.2, . . . , 1.0} as the value of A and the value of
T is 10. The minimal number of tardy jobs among the 100 (10 � 10) schedules is recorded. To see how the iterative refining
mechanism improves other rules, we also test all other rules except EDD and SPT since they do not consider the remaining
processing time. Since the iterative refining mechanism is now responsible for estimating the remaining processing time,
values of the parameters for estimating the remaining processing time in ODD/MOD/PTPWODD (c), COVERT (b
and k), and ATC (b) are set as one in the experiment. A prefix ‘‘I-” is added before a rule name to denote the heuristic
combining the rule and the iterative refining mechanism.
Table 4a
Average number of tardy jobs and average rank of each dispatching rule over problem instances tan 1–90

SRPT MDD EADD ECR EDD LTWK MCR SPT ATCS ATC

14.1(3.6) 14.6(3.7) 13.9(4.1) 14.3(4.3) 14.9(4.9) 15.3(6.8) 16.0(7.7) 15.9(7.8) 15.7(8.4) 16.6(9.4)

COVERT PTPW+ SPT/T S/RPT+ MOD ODD SLACK CR + SPT SLK/OP

16.8(10.4) 16.9(10.6) 17.2(12.1) 18.6(12.7) 17.9(13.9) 19.4(15.3) 20.3(16.3) 21.7(17.2) 25.2(19)

Table 4b
Average number of tardy jobs average rank of each dispatching rule over problem instances tan 91–180

ECR SRPT MDD MCR LTWK EDD ATCS EADD ATC SPT

18.4(2.3) 21.0(3) 21.8(3.7) 22.2(4.9) 22.5(5.3) 22.7(5.7) 21.4(8.7) 24.1(8.2) 24.5(8.7) 24.7(9)

PTPW+ COVERT SPT/T MOD ODD S/RPT+ SLACK CR + SPT SLK/OP

25.8(11) 26.6(11.6) 27.1(12.6) 29.4(13.9) 29.8(14.9) 34.5(15.3) 31.8(16.4) 39.1(17.9) 44.3(19)



Table 5a
Average number of tardy jobs average rank of each I-heuristic over problem instances tan 1–90

I-ECR I-EADD I-MDD I-SRPT I-LTWK I-ATCS I-MCR I-SPT/T I-PTPW+

7.7 (1.1) 9.5 (2.2) 10.7 (4.4) 10.7 (5.1) 11.2 (6.2) 12.2 (6.4) 12.1 (6.6) 12.3 (8) 13.2 (7.6)

I-ATC I- S/RPT+ I-COVERT I-CR + SPT I-MOD I-ODD I-SLACK I-SLK/OP

13.4 (8.3) 13.7 (9.6) 16.5 (13.2) 16.5 (13.2) 17.1 (13.3) 18.0 (14.6) 18.7 (15.3) 22.2 (16.9)

Table 5b
Average number of tardy jobs average rank of each I-heuristic over problem instances tan 91–180

I-ECR I-EADD I-MDD I-SRPT I-SPT/T I-ATCS I-LTWK I-MCR I-PTPW+

10.6 (1) 14.6 (2.6) 16.1 (3.3) 17.1 (4.4) 18.4 (6) 17.9 (6.2) 18.4 (6.4) 19.6 (8) 20.7 (8.7)

I-ATC I- S/RPT+ I-MOD I-ODD I-SLACK I-CR + SPT I-COVERT I-SLK/OP

22.1 (9.4) 22.5 (9.6) 28.3 (12.4) 29.0 (13.6) 31.3 (14.7) 32.2 (14.7) 32.4 (14.7) 42.0 (17)

T.-C. Chiang, L.-C. Fu / European Journal of Operational Research 196 (2009) 78–92 87
5.3.1. Performance of each I-heuristic

Like the results summarized in Tables 4a and 4b, the average number of tardy jobs and average rank of each tested I-
heuristic are provided in Tables 5a and 5b, respectively. The I-heuristics are placed in increasing order of the average rank.
In both tables, the I-ECR heuristic is the best performer, followed by I-EADD, I-MDD, and I-SRPT. The result is not
surprising since ECR, MDD, and SRPT themselves are good rules, which has been observed in Section 5.2.2. Applying
the iterative refining mechanism to obtain more accurate remaining processing times makes their superiority more obvious.
The improvement is particularly significant for ECR and EADD so that they become the best two among the 17 I-
heuristics.

Generally, ranks of these I-heuristics are similar to ranks of their counterparts without applying the iterative refining
mechanism. But now, the performance difference between good and bad approaches is larger. The ratios of average number
of tardy jobs of the 1st performer to that of the 10th performer are 85% (14.1/16.9) and 74% (18.4/24.7) in Tables 4a and
4b, respectively. After applying the refining mechanism, the ratios of average number of tardy jobs of the 1st performer to
that of the 9th performer are 58% (7.7/13.2) and 51% (10.6/20.7) in Tables 5a and 5b, respectively. It reveals that good rules
are able to utilize the accurate information more effectively than the bad rules. It is worthy to note that the proposed ECR
rule receives the largest performance improvement (more than 40%) among all tested rules.
Table 6b
Comparison of improvement by iterative refining and static amplification over problem instances tan 91–180

SPT/TWK LTWK EADD ECR SRPT PTPW+ MDD ODD SLACK

IR 31.9% (90) 18.2% (88) 39.5% (89) 42.2% (89) 18.4% (87) 19.8% (83) 26.3% (90) 2.8% (34) 1.8% (22)
SA 0% (0) 0% (0) 28.4% (90) 31.5% (87) 11.9% (80) 15.1% (73) 23.3% (90) 1.7% (17) 0.7% (13)

S/RPT+ ATCS SLK/OP MCR ATC MOD CR + SPT COVERT

IR 34.9% (90) 16.0% (73) 5.2% (72) 12.0% (82) 9.7% (64) 3.7% (40) 17.6% (86) �21.6% (2)
SA 35.4% (90) 18.6% (76) 8.8% (83) 16.1% (85) 16.0% (86) 14.2% (72) 34.6% (90) �1.1% (39)

Table 6a
Comparison of improvement by iterative refining and static amplification over problem instancestan 1–90

SPT/TWK LTWK SRPT MCR ECR PTPW+ EADD S/RPT+ SLACK

IR 28.6% (89) 26.5% (86) 23.8% (88) 24.6% (89) 46.2% (90) 22.3% (80) 31.7% (84) 26.5% (79) 8.0% (55)
SA 0% (0) 0% (0) 13.0% (71) 15.1% (79) 37.1% (88) 14.5% (59) 24.9% (84) 21.9% (73) 4.4% (38)

MDD ODD ATCS ATC COVERT CR + SPT SLK/OP MOD

IR 27.0% (87) 7.1% (56) 22.6% (84) 19.3% (79) 1.9% (45) 24.1% (89) 11.8% (81) 4.7% (44)
SA 23.0% (86) 4.3% (38) 20.9% (74) 19.2% (84) 6.2% (54) 28.4% (90) 19.8% (85) 16.4% (78)
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5.3.2. Comparison of two refining mechanisms

In this section, we want to compare the iterative refining mechanism and the static amplification mechanism (mentioned
in Section 3). The latter is applied on the same 17 rules in the previous subsection. The value of the amplification rate A

ranges from 1 to 10 with granularity 0.1. The number of schedules generated by the static amplification mechanism, 100, is
intentionally made the same as the number of schedules generated by the iterative refining mechanism in the previous
experiment. Values of improvement percentage of each rule by both mechanisms are shown in Tables 6a and 6b. Besides,
the number of instances whose solutions are improved is given in the parentheses. Here we let ‘‘IR‘‘ denote the iterative
refining mechanism and ‘‘SA” denote the static amplification mechanism. The rules are placed in decreasing order of
the improvement percentage by the IR mechanism minus that by the SA mechanism. A prefix ‘‘S-” is added before a rule
name to denote the heuristic combining the rule and the static amplification mechanism.

In both tables, we first see that the SA mechanism does no improvement on the LTWK and SPT/TWK rules since static
amplification of operation processing times does not change the processing sequences of jobs derived by these two rules. In
contrast to the SA mechanism, the IR mechanism provides at least 18.2% and 28.6% improvement on average to LTWK and
SPT/TWK, respectively. Besides LTWK and SPT/TWK, rules EADD, ECR, and SRPT also prefer the IR mechanism. Rules
MOD, CR + SPT, and COVERT, on the other hand, prefer the SA mechanism. As for other rules, the IR and SA mecha-
nisms produce approximately equal benefits. The possible reason for the preference of the SA mechanism is that it amplifies
the remaining processing times substantially (up to 10 times), and in that condition the rules MOD, CR + SPT, and COV-
ERT will behave like SPT (see Table 3a for their definitions), whose performance is much better than theirs. We also notice
that rules which tend to favor the jobs with longer remaining processing times receive less improvement from the IR mech-
anism. The possible reason is as follows. During execution of the IR mechanism, a tardy job in the current iteration will have
longer remaining processing time in the next iteration. For those rules which favor the jobs with longer remaining processing
times, giving preference to these tardy jobs could lost more on-time jobs and then initiates a ‘‘vicious cycle.” Note that the
proposed ECR rule also favors the jobs with longer remaining processing times; however, the aforementioned problem is
eliminated by careful consideration of the influence of processing of a job upon the total urgency of competing jobs.

Among the 34 heuristics formed by the combinations of 17 rules and two refining mechanisms, the best three heuristics
are I-ECR, S-ECR, and I-EADD. Once again, the advantage of the proposed ECR rule and the integration with the iter-
ative refining mechanism is verified.

5.4. Performance of GA with I-ECR

5.4.1. Benchmark algorithms and parameter settings
The GA is well known for its global exploration ability, but sometimes its performance is not satisfactory due to lack of

ability to do local exploitation. Incorporating local search procedures and/or domain-specific knowledge to GA is becom-
ing a recognized way to enhance its performance. In fact, the GA-I-ECR approach in this work is developed following this
research trend. In this section, we will examine its performance by comparing with three recently proposed approaches,
which are also realizations of integration of GA and domain-specific knowledge.

Mattfeld and Bierwirth (2004) used the GA to do job shop scheduling considering tardiness objectives. They found that
the GA can not explore the large space of active schedules very well. Thus, they introduced a look-ahead parameter (d) into
the schedule builder in their GA so that the size of search space can be controlled by the value of d. (The size of search
space is between the number of non-delay schedules and the number of active schedules.) Their GA with tunable schedule
builder showed good performance on several performance measures including the weighted number of tardy jobs. Later,
Essafi et al. (2007) improved the GA by Mattfeld and Bierwirth by incorporating a local search procedure. In their local
search procedure, the neighborhood structure is based on the disjunctive graph representation and the critical path. The
neighboring solution is generated by swapping the operations belonging to the critical paths. There are two phases in their
local search procedure. In the improving phase, the candidate operations to be swapped include only the operations of
tardy jobs. In the perturbation phase, operations of all jobs are considered. In Yang et al. (2007), another form of com-
bination of GA and domain knowledge was used. Like our approach, their GA did not search for a processing sequence of
jobs directly. It aimed to choose a suitable dispatching rule for each machine in the shop, and the chosen dispatching rule is
responsible for arranging the sequence of jobs requiring the machine By combining different dispatching rules, their
approach showed up to 61% improvement percentage to the single rule. The above three approaches are taken into account
as the benchmark algorithms in our experiment. In the following, we let MBGA, EMDGA, and YKCGA denote the GA
proposed by Mattfeld and Bierwirth, Essafi et al., and Yang et al., respectively. To observe the effect of the iterative refining
mechanism, we test two versions of our GA, with and without the iterative refining mechanism. They are denoted by GA-I-
ECR and GA-ECR.

To conduct a fair comparison of these five GAs, we do parameter tuning for each of them. To do the tests, we randomly
pick one instance from each problem category and form a small testing data set. Each GA is applied to each instance for
ten times. Each run of GA-I-ECR and GA-ECR is allocated 100 seconds. As for the other three benchmark GAs, we



Table 7
Settings of five tested genetic algorithms

GA-I-ECR GA-ECR YKCGA MBGA EMDGA

Components
Encoding I-ECR parameters (L, U, B,

D, A, T)
ECR parameters (L, U,
B, D)

Rule index Preference list of
operations

Preference list of
operations

Crossover 2-Point crossover 2-Point crossover 2-Point
crossover

PPX PMX

Mutation Single-gene-substitution Single-gene-substitution Swap Insertion –
Domain knowledge ECR rule iterative refining ECR rule Traditional

rules
Parameterized schedule
builder

Critical path-based local
search

Best parameter values after tuning

Instances(tan) 1–90 91–180 1–90 91–180 1–90 91–180 1–90 91–180 1–90 91–180
POP_SIZE 60 60 300 300 300 300 200 300 30 20
pc 1 1 1 1 0.6 0.6 0.6 0.6 0.9 0.9
pm 0.1 0.2 0.1 0.1 0.3 0.3 0.01 0.01 0 0
Self parameters ri = 10 ri = 10 ri = 10 ri = 10 – – d = 0.6 d = 0.8 nsd = 20 nsd = 5
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deliberately allocate four times running time, namely 400 seconds, so that the possible inefficiency due to our re-implemen-
tation of them can be compensated. With the limitation of space, here we only provide the best parameter values of the five
GAs and the short summary of them in Table 7.
5.4.2. Performance of five GAs

After tuning, the GAs are used to solve the 180 tan instances, also for ten times. The computation time allocated for one
run is the same as in the tuning phase. Let Tij denote the number of tardy jobs of problem instance i in run j, we calculate
T min ¼ 1

90
ð
Pcþ90

i¼cþ1minj¼1; ... ; 10fT ijgÞ; T avg ¼ 1
90�10
ð
Pcþ90

i¼cþ1

P10
j¼1T ijÞ, and T max ¼ 1

90
ð
Pcþ90

i¼cþ1maxj¼1; ... ; 10fT ijgÞ for each GA. The
value of c is 0 and 90 for instances tan 1–90 and tan 91–180, respectively. We use these three measures to assess the per-
formance of the tested GAs in the best, average, and worst cases. For each GA, we also count the number of instances for
which it finds the best solution (nbest) and the number of instances for which only it finds the best solution (obest). The exper-
imental results are summarized in Table 8.

When instances tan 1–90 are solved, the proposed GA-I-ECR and the two benchmarks YKCGA and EMDGA, are the
best three among the five tested GAs. They have close performance in the best case, and GA-I-ECR outperforms the other
two in terms of the average-case and worst-case performance. In the best case, the GA can provide as large as 60%
improvement percentage to the best dispatching rule. Each of the best three performers finds the best solution for at least
one-third of the 90 instances, and each of them finds the best solution for at least 13 instances that no other can do it. This
result reveals that significant performance improvement can be obtained by integrating GA with different forms of domain
knowledge. By comparing the performance of GA-I-ECR and GA-ECR, the benefit of accurate estimation of remaining
processing times by the iterative refining mechanism is easily verified.

With the increase of number of jobs and intuitively the problem complexity, the performance difference between tested
GAs becomes larger when problem instances tan 91–180 are solved. The GA-I-ECR and YKCGA, which search for good
schedules through manipulating dispatching rules, obviously defeat the EMDGA and MBGA, which search for good
schedules through directly arranging the sequence of jobs. Although EMDGA and MBGA can provide at least 30%
improvement to the best dispatching rule, they are still worse than the proposed I-ECR heuristic. This result shows the
weakness of GAs that directly sequence the jobs when facing large-scale problems (and the accompanying huge search
space). For the best two performers, the proposed GA-I-ECR is better than YKCGA in terms of all five measures (Tmin,
Tavg, Tmax, obest, and nbest). It demonstrates the potential of proposed ECR rule to beat a group of existing rules and also
notifies us the importance of developing sophisticated rules besides manipulating the combinations of simple rules. The
Table 8
Performance of five genetic algorithms over problem instances tan 1–90 and tan 91–180

GA-I-ECR GA-ECR YKCGA MBGA EMDGA

tan 1–90

TminjTavgjTmax 5.13j5.58j5.94 9.40j9.42j9.44 5.07j5.76j6.47 7.02j8.33j9.53 5.76j6.59j7.52
obest/nbest 16/51 0/3 15/56 1/12 13/39
tan 91–180

TminjTavgjTmax 7.49j8.06j8.69 13.44j13.45j13.46 8.02j8.96j9.97 12.69j13.84j14.98 11.38j12.30j13.24
obest/nbest 41/66 0/1 19/44 0/1 5/9



Table 9
Best known solutions of problem instances tan 1–180

tan 1–30 tan 31–60 tan 61–90 tan 91–120 tan 121–150 tan 151–180

103 513 135 91 513 035 75 25 0135 131 81 33 131 81 41 91 51 013

93 435 0135 1013 515 035 81 25 01345 141 1113 53 141 101 513 111 73 05

1113 63 23 101 613 1135 913 41 0135 123 813 33 111 71 3135 91 35 0135

1113 63 3134 101 55 04 913 25 0* 1313 93 53 121 913 513 91 41 01

1013 613 21345 93 45 035 75 35 0135 131 913 43 121 81 413 101 41 05

101 535 13 913 45 05 81 414 01345 1413 93 53 133 93 53 103 61 11

91 43 03 9135 33 035 713 15 01345 123 913 513 123 81 31 1113 51 03

101 63 13 91 53 03 81 413 01345 131 913 513 131 81 41 101 61 113

1013 61 31 91 613 25 81 51 035 1313 83 413 121 71 313 91 15 0135

913 43 0345 915 413 01235 65 045 0* 121 81 33 1213 813 15 91 41 0*

Meaning of subscript: 1 – GA-I-ECR, 2 – GA-ECR, 3 – YKCGA, 4 – MBGA, 5 – EMDGA, * – all five GAs.
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best solutions found by the five tested GAs and the GAs that can find them are summarized in Table 9, which intends to
identify the problem difficulty and to facilitate the convenience of performance comparison for other researchers.

5.4.3. Parameter settings of I-ECR and ECR

The mission of proposed GA is to find suitable parameter values for I-ECR and ECR. In this section, we analyze the
best genomes found by the proposed GA and provide the results as a reference for the researchers who are interested in
using our I-ECR and ECR. First, in each problem category, we collect the best 100 genomes obtained by GA-I-ECR and
GA-ECR for 10 problem instances in 10 runs. Then, we calculate the mean value of each parameter (gene) over the col-
lected genomes. Due to the limitation of space, we provide the range of mean value of each parameter over categories with
different FF and SS in Table 10 and the mean values in each category are omitted here. The observations are presented in
the following.

First, the value of L gets smaller and the value of U gets larger when the problem instances with larger number of jobs
are solved. With the increase of number of jobs, it is expectable that the variation of critical ratios over jobs also becomes
larger. To take account of enough jobs so that a good processing sequence can be determined, the ECR rule needs to use a
larger [L,U] interval, which implies the decrease of L and increase of U. Second, the value of U is smaller when ECR is
applied without the iterative refining mechanism. Recall that in ECR the jobs whose critical ratios are greater than U

are not considered, and this filtering procedure intends to disregard the jobs that are expected to be tardy. When the
ECR rule is applied alone, the remaining processing time is a lower bound of the actual remaining processing time. In this
condition, the critical ratios of jobs are smaller than what they are when the iterative refining mechanism is used. Therefore,
the jobs that are likely to be tardy must be identified by a smaller U value. Third, setting the values of D, A, and T as 0, 0.9,
and 10 seems reasonable based on the results in Table 10.

5.5. Use of ECR, I-ECR and GA-I-ECR

In Section 5.2, we compared the proposed ECR rule with 18 existing dispatching rules. In general, the ECR rule pro-
vides very good performance. Particularly, it is the best rule for solving the problem instances with moderate or loose due
dates. In other words, if the initial allowance time is enough to complete the jobs within due dates, the ECR rule can utilize
the time more effectively than the other rules. When the due date is tight, we recommend rules EADD and SRPT. (But note
that EADD is very time-consuming due to the way in which it estimates the remaining processing time.) Enhancing ECR
with the iterative refining mechanism, the I-ECR heuristic is the best performer in 17 of the 18 problem categories among
all 34 tested heuristics, as we presented in Section 5.3. As for the exception (the category of instances tan 1–10), I-EADD is
Table 10
Ranges of mean values of parameters in ECR and I-ECR

L U B D

ECR
tan 1–90 [0.17,0.42] [0.44,0.85] [1.10,1.69] [0,0.16]
tan 91–180 [0.11,0.26] [0.53,0.85] [1.15,1.53] [0,0.03]

I-ECR
L U B D A T

tan 1–90 [0.17,0.37] [0.81,0.95] [1.37,1.97] [0,0.12] [0.78,0.99] [9.18,9.83]
tan 91–180 [0.09,0.19] [0.78,0.96] [1.18,1.61] [0,0.02] [0.80,0.98] [9.31,9.52]
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the only one that outperforms I-ECR. It shows that with the accurate information of remaining processing times, the ECR
rule can beat most existing rules, no matter how tight the due dates are. In Section 5.4, the proposed GA-I-ECR is com-
pared with three existing GAs. When the problem instances with 30 jobs are solved, two existing GAs are comparable to
our GA-I-ECR. But when the problem instances with 50 jobs are solved, the GA-I-ECR outperforms all benchmark GAs.
This result verifies the superiority of GA-I-ECR to solve large-scale problem instances.

To position each member in the proposed family of approaches, we have the following suggestions: Use the ECR rule
when there is a request for a real-time or an interactive scheduler. The experimental results show that on average the ECR
rule can reduce the number of tardy jobs by 15–25% when comparing with the 10th best rule among 19 tested rules.
Another important advantage is that it requires no more information than the existing rules. In other words, when some
rules are already built in the operation control system, ECR can also be implemented easily with little cost. If a simulation
tool is available or the implementation cost of the simulation tool is affordable, the I-ECR is highly recommendable. By
feeding the information of remaining processing times from the simulation tool to the ECR rule, the I-ECR is able to
improve the performance of ECR by more than 40%. Finally, the performance of I-ECR can be further enhanced by opti-
mizing its parameters through the proposed GA. The cost to implement the GA and the computation time to do optimi-
zation is justified by the 30% improvement to the performance of I-ECR.

6. Conclusions

In the literature, there are few research works on scheduling in the job shops in presence of SDS considering due date-
based objectives. To our best knowledge, this is the first work on minimizing the number of tardy jobs in the job shops with
SDS. The target problem is solved by a family of critical ratio-based approaches. Three main components include a dis-
patching rule, an iterative schedule refining mechanism, and a GA-based parameter tuning algorithm. Performance of the
proposed approaches is shown to be superior to the existing ones through comprehensive experiments. The careful use of
critical ratio values and its key factor, remaining processing time, contributes to the good performance of these approaches.
In practical use, users can select one of the proposed approaches according to the cost of implementation, desired perfor-
mance, allowable computation time, and so on. With the gradually-enhanced relationship, users can implement, test, and
apply the proposed approach from the simplest form to the most sophisticated form. A considerable benefit from the pro-
posed scheduler will be obtained in the early construction phase. With some moderate extension cost, the performance gain
is significant.

We will continue the research in two directions. First, more objectives will be considered. In this work, we develop the
approach specifically to minimize the number of tardy jobs. However, there are other important due date-based objectives
such as mean tardiness. Some design of our approach, like filtering out the jobs with very high critical ratios before apply-
ing ECR, might not be suitable to those objectives. Thus, the performance of our proposed approach on these objectives
should be examined, and that could inspire further improvement on our approach. With multiple objectives being
regarded, developing a multi-objective GA will also be a natural extension. Second, the local search procedure in our
GA could be executed more carefully. In our current implementation, the local search procedure is applied on each gen-
ome. Since in the proposed GA this procedure is the step that requires the largest computation effort, it may be a good idea
to do local search only on a portion of the population. Striking a balance between global and local search will also be a
topic of our future works.
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