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Abstract. The students of the Industrial Design department at the TU
Eindhoven are allowed to design part of their curriculum by selecting
courses from a huge course pool. They do this by handing in ordered pref-
erence lists with their favorite courses for the forthcoming time period.
Based on this information (and on many other constraints), the depart-
ment then assigns courses to students. Until recently, the assignment
was computed by human schedulers who used a quite straightforward
greedy approach. In 2005, however, the number of students increased sub-
stantially, and as a consequence the greedy approach no longer yielded
acceptable results.

This paper discusses the solution of this real-world timetabling prob-
lem. We present a complete mathematical formulation of it, and we ex-
plain all the constraints resulting from the situation in Eindhoven. We
solve the problem using lexicographical optimization with four subprob-
lems. For all four subproblems, an elegant integer linear programming
model is given which easily can be put into CPLEX. Finally, we report
on our computational experiments and results around the Eindhoven
real-world data.

1 Introduction

In February 2005, outraged students of the Industrial Design department were
protesting at the TU Eindhoven (The Netherlands). Uproar and revolt were
in the air. What had happened? Here is the story. The academic year of the
roughly 350 students of Industrial Design is split into a number of periods. In
every period, every student must do a number of small courses. There is a pool
of roughly 55 courses to choose from, and every student submits an ordered
preference list with his/her 10 favorite courses to the department. Based on all
the ordered preference lists, a scheduler at the department then assigns roughly
four courses to every student. Until recently, the scheduler was a human decision-
maker who essentially applied a hand-woven greedy assignment procedure.

In February 2005, the students were absolutely dissatisfied with the work of
the human scheduler: many of them did not get the courses which they would
have liked to get; many of them were assigned to courses which they really did
not want to do; and more than 150 out of the 350 students received courses that
were not listed on their preference list!
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The department of Industrial Design realized that they had a problem. They
also realized that they did not know how to solve this problem. The number of
students had increased substantially, and the timetabling problem had become
much larger, much harder, and much more complex. Hence, the department
contacted the local experts on the campus: us. They were hoping to find a
somewhat better assignment through computer programs. They explained their
problem to us (in a certain problem formulation No. 1), and we happily told
them that we would be able to solve it: the problem (in formulation No. 1) could
be modeled as a network flow problem, and hence is solvable in polynomial
time. Unfortunately, it turned out that formulation No. 1 was not a complete
formulation of the problem: they had forgotten to inform us about a number of
additional restrictions that lead to a new, more difficult assignment problem (in
formulation No. 2), which eventually turned out to be NP-hard.

This paper is a report on the course assignment problem of the Industrial De-
sign department. We describe the assignment problem in its (incomplete) formu-
lation No. 1 and in its (complete) formulation No. 2. We show that formulation
No. 1 yields a tractable problem, whereas formulation No. 2 yields an intractable
problem. Our main contribution is a careful case study of the complete problem
formulation. We design an elegant integer linear programming model for it, with
roughly 9000 variables and roughly 7000 constraints. Putting this ILP model into
CPLEX yields excellent results within moderate computation times. We describe
the ILP model in detail, and we report on our computational experiments with
the real-world data of the Industrial Design department.

Structure of the paper. The rest of the paper is structured in the following way.
In Section 2 we give a literature review of university and school timetabling.
Section 3 contains a detailed description of the problem we solved for the de-
partment of Industrial Design. The problem is formulated as an integer linear
program which is described in Section 4. Section 5 contains the computational
results. Some conclusions are given in Section 6.

2 Literature Review

The literature contains a large number of variants of the timetabling problem.
These variants differ from each other by the type of institution involved (univer-
sity or high school) and by the type of constraints. The annotated bibliography
of timetable construction by Schmidt and Ströhlein [22] lists many papers that
appeared before 1980. Schaerf [21] gives a survey of the various formulations
of timetabling problems and classifies the timetabling problem into the follow-
ing three main classes: school timetabling, examination timetabling and course
timetabling. Of course this classification is crude, and there are many real-world
timetabling problems that fall in between two of these classes. For surveys of
timetabling methods and applications see de Werra [11], Burke et al. [3], Carter
and Laporte [8] and Burke and Petrovic [5].
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The basic school timetabling problem is also known as the class–teacher model.
The simplest problem consists in assigning lectures to periods in such a way that
no teacher or class is involved in more than one lecture at a time. Even et al. [13]
proved that there always exists a solution of this simplest version of the school
timetabling problem, unless a teacher or class is involved in more lectures than
there are time slots. Alternative formulations of the school timetabling problem
with more constraints can be found for example in Even et al. [13], Garey and
Johnson [15] and de Werra [11]. Daskalaki and Birbas [10] provide an integer
programming formulation of the class–teacher problem and solve it with a two-
stage relaxation procedure. The problem is formulated as a set packing problem
with side constraints by Avella and Vasilev [2]. They tighten the formulation by
adding the valid inequalities of the Set Packing polytope and introduce some
new valid inequalities.

University timetabling can be classified into two categories: course and ex-
amination timetabling. Petrovic and Burke [19] discuss problem statements and
give an overview on recent research results on university timetabling. The main
differences between course timetabling and examination timetabling are that
examination timetabling has only one exam for each course, that the time con-
flict condition is strict, and that several exams can be done simultaneously
in one room. Examples for additional soft constraints are: students can do
at most one exam per day, and students may not have too many consecu-
tive exams. Schaerf [21] gives an integer linear programming formulation of
the examination timetabling problem and describes some alternative variants
of the problem. Carter and Laporte [7] provide an overview on examination
timetabling.

The course timetabling problem consists in scheduling a set of lectures for
each course within a given number of rooms and time period. The main difference
from the school timetabling problem is that university courses can have common
students, whereas school classes are disjoint sets of students. De Werra [11] gives
a binary integer programming formulation. An overview on course timetabling
problems is given by Carter and Laporte [8] and Schaerf [21] discusses some
of the most common variants of the basic formulation. The design and imple-
mentation of a decision support system for constructing a combined university
course-examination timetable is reported by Dimopoulou and Miliotis [12]. They
also take into account the increased flexibility of students’ preferences for specific
classes.

One variant is called the grouping subproblem or student scheduling problem.
If the number of students is too large for one room, courses are split into groups
of students and there are conditions on the minimum and maximum number
of students that can be assigned to each group. A student is required to take a
certain number of courses, which they have to select themselves after a timetable
is made available. The problem consists of assigning a student to a specific group
of a course for a given fixed timetable such that students are satisfied and there
are no time conflicts, see Busam [6], Feldman and Golumbic [14] and Laporte
and Desrochers [16].
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Cheng et al. [9] discuss the Student Scheduling Problem (SSP) as it generally
applies to high schools in North America. They define the problem as the assig-
nation of courses and a specific section to each student. The objective is to fulfill
student requests, providing a conflict-free schedule. They show that the problem
is NP-hard and discuss various multi-commodity flow formulations with frac-
tional capacities and integral gains. The main difference between the SSP and
our timetabling problem is that for the SSP all courses on the preference list of
the students have to be assigned to students. This results with most practical
cases in an empty feasible solution set.

Laporte and Desrochers [16] give a mathematical formulation of the student
scheduling problem. They formulate the problem as an optimization problem
splitting the requirements into hard and soft ones. The only hard constraint in
their model is that student course selections must be respected. Time conflicts
for students are soft constraints. When time conflicts occur students are advised
to make a different course selection. The problem is then solved in three phases:
in the first one the algorithm searches for an admissible solution, in the second
section enrollments are balanced and in the third the room capacities have to
be respected. Tripathy [23] formulated the student scheduling problem as an
integer linear programming problem and uses Lagrangian Relaxation to solve it.
Sabin and Winter [20] use a greedy approach that is moderated by an intelligent
ordering of the students. Miyaji et al. [18] apply goal programming.

McCollum [17] explains that for university timetabling there is still a gap be-
tween a successful research project and what is needed in practice. He tries to
bridge this gap between research and practice by providing up-to-date informa-
tion from practice which is needed by researchers. Burke et al. [4] and Zampieri
and Schaerf [24] note that many of the search methodologies described in the
literature are not applicable in most educational institutions, because they are
simplified too much.

Carter and Laporte [8] note that they were ‘somewhat surprised to discover
that there are very few course timetabling papers that actually report that the
(research) methods have been implemented and used in institution’. McCol-
lum [17] explains that the situation has hardly changed in the last decade. Our
paper is an example of a successful implementation of a mathematical program-
ming model for a specific course timetabling problem.

3 Problem Description

At our first meeting, the Industrial Design department explained the problem to
us in a certain problem formulation No. 1; see Section 3.1. This problem can be
modeled as a network flow problem, and hence is solvable in polynomial time;
see Ahuja et al. [1].

Unfortunately, we learnt after some time that formulation No. 1 was not a
complete formulation of the problem. They actually had forgotten to tell us
about a number of additional restrictions that lead us to a new, more difficult
assignment problem formulation No. 2. Section 3.2 describes formulation No. 2.
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Table 1. Example of preference lists

Student rs P1 P2 P3 . . . P10

s040202 4 DAC03 DA247 DA125 . . . DA405
s040203 4 DA619 DA125 DA201 . . . DA616
s040204 4 DA418 DA242 DA402 . . . DA621

3.1 Problem Formulation No. 1

At the first meeting with the Industrial Design department, we were told that
every student hands in a preference list of at most 10 courses and requests a
certain number of courses. The only constraints are that a student cannot do
two courses at the same time and there is a maximum number of students that
can be assigned to a course. This section contains a more detailed description of
problem formulation No. 1.

A set C of courses and for each course c an upper bound Cmax
c on the number

of students is given. This number depends on the preference of the teacher and
the room capacity in which the course is given. Each course has one weekly
meeting time which is already fixed. This weekly meeting time always consists
of two consecutive hours. Two such consecutive hours are defined as one time
slot. The weekly meeting time of a course is chosen from a set T of disjoint time
slots. T (c) is defined as the time slot which is the weekly meeting time of course
c. Hence, one of the constraints in the model is that courses ci and cj cannot be
assigned to one student if T (ci) = T (cj).

We define S as the set of students. For each student s the requested number rs

of courses is given. Ps is defined as the set of positions on the preference list for
which student s filled in a course. Most students have Ps = {1, . . . , 10}. There
are also students that hand in a smaller preference list. For instance, a student
almost finishing his bachelor degree and with only one course left to do, which
has to be a math course, hands in a preference list with only math courses. For
a student s with only six courses on its preference list we have Ps = {1, . . . , 6}.
Table 1 gives a few examples of preference lists. Column Pi gives the encoded
course name of the course on position i of the preference list. The parameter csp

is introduced and is equal to c if course c is on position p of the preference list
of student s.

In summary, the input of problem formulation No. 1 consists of

– a set T of time slots;
– a set C of courses; for every course c ∈ C a time slot T (c) and a maximum

number Cmax
c of participating students is given;

– a set S of students; for every student s ∈ S a set Ps of filled positions of the
preference list, a course csp for each position p ∈ Ps and a requested number
rs of courses is given.

The goal is to assign as many courses to students as possible, while
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– the number of courses assigned to student s does not exceed the requested
number rs,

– courses assigned to a student are on his preference list,
– courses assigned to a student do not conflict in time,
– no course exceeds its maximum number of assigned students.

This problem can be modeled as a network flow problem. A description of this
network flow model is given in Appendix A.

3.2 Problem Formulation No. 2

When we received the first data set from the Industrial Design department, we
were very surprised: there suddenly were also lower bounds Cmin

c on the num-
ber of students participating in course c. This yields the new constraint that
a course either will not be given at all, or otherwise has at least Cmin

c partic-
ipating students. This new constraint cannot be modeled as a flow-constraint,
and hence the maximum flow model in Appendix A becomes obsolete. In fact,
the new constraint makes the problem NP-hard; see Appendix B. After looking
at the data more carefully and after conversations with the Industrial Design
department we noticed there were a lot more restrictions. This section explains
these extra restrictions and defines the problem in more detail.

An academic year is divided into a certain number of teaching periods. For in-
stance, the academic year 2005–06 is divided into six teaching periods. We define
such a teaching period as a block. The Industrial Design department wants us to
schedule two consecutive blocks simultaneously. Therefore, set B is introduced
as the set of blocks that have to be scheduled simultaneously.

In problem formulation No. 1 we assumed the workload of all courses was
equal. However, there are courses with a workload of 40 hours and courses with a
workload of 80 hours. In the remainder of this paper a workload of 1 corresponds
with a workload of 40 hours. In Appendix B we prove that having courses with a
workload 1 and courses with a workload 2 makes the problem NP-hard. For each
course c ∈ C and block b ∈ B the parameter w(c, b) is defined as the workload
of course c in block b. Hence for a course c with a workload of 80 hours in block
b we have w(c, b) = 2.

In problem formulation No. 2 the definition of rs is adjusted into the requested
workload of student s for |B| blocks together. For every student s, a maximum
requested workload rsb for each block b ∈ B is given separately, because the
requested workload of a student is not always equally divided over all blocks
b ∈ B. For instance, if student s has to do a practical training in block b2 he has
rs = 2, rsb1 = 2 and rsb2 = 0.

It was assumed in problem formulation No. 1 that a course has one meeting
every week, hence it has one time slot. But there are also courses which have
two weekly meetings, and hence two time slots. If courses with two time slots
are introduced into problem formulation No. 1, the problem cannot be modeled
as a network flow problem.
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Table 2. Examples of courses

Course Section Time slots of meetings wlb1 wlb2 Min Max

DA242 DAG242-1 B1TM2, B1TA1 1 0 0 30
DAG242-2 B1TM2, B1TA2 1 0 0 30
DAG242-3 B1TM2, B1WA1 1 0 0 30
DAG242-4 B1TM2, B1WA1 1 0 0 30
DAG242-5 B1TM2, B1WA2 1 0 0 30

DA247 DAG247-1 B1WA2, B2WA2 1 1 5 15
DAG247-2 B1WA2, B2WA2 1 1 5 15

The set C of courses contains courses with multiple sections, meaning that
the course is repeated during the week. Table 2 contains course DA242 as an
example. For example, time slot B1TM2 stands for the second part of Tuesday
morning in block 1. The workloads of a course in block 1 and 2 are denoted by
wlb1 and wlb2. The course DA242 has five sections which all have two time slots.

We define I as the set of sections offered to the students. For every section
i ∈ I its course c(i) ∈ C is given, a minimum number Cmin

i and a maximum
number Cmax

i of students. The meeting times for each section i ∈ I are given as
the set of time slots T (i) ⊆ T . There are a few courses, for example literature
studies, which are not assigned to a time slot and thus T (i) = ∅.

Another constraint arises if students have specific needs, for instance when
they almost finish their studies and only have one course left to pass. Then a
course on the preference list of the student can be set to urgent. As long as the
maximum number of students (all with an urgency) is not assigned to this course,
the course has to be assigned to the student. A course which is urgent for one
student has to be given. In this case, it doesn’t matter whether the minimum
number of students is reached or not. We define U as the set containing all
combinations (s, p) for which course csp is urgent for student s.

A few courses have meeting times which are spread over two blocks. See for
example course DA247 in Table 2. This course has two sections and a total
workload of two which is equally spread over the two blocks. If a student is
assigned to a section of this course in one block he needs to be assigned to the
same section of this course in the next block. Hence, it is also possible that courses
are given in two blocks which are not scheduled simultaneously. If this occurs,
this implies there are students already preassigned to sections if the schedule of
the second block is made. Therefore, we introduce the set F of fixations which
contains combinations (s, p, i) for which section i of course csp is already assigned
to student s. This results in hard constraints that do not lead to an infeasible
solution, because these students are assigned in the scheduling period before.

In summary, the input of problem formulation No. 2 consists of

– a set B of blocks that have to be scheduled simultaneously;
– a set T of time slots;
– a set C of courses; for every course c its workload w(c, b) for each block b is

given;
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– a set S of students; for every student s a total requested workload rs, a
requested workload rsb for each block separately, a set Ps of filled positions
on the preference list and for each position p ∈ Ps a course csp is given;

– a set I of sections; for every section i its course c(i), a minimum Cmin
i and

maximum Cmax
i number of students and a set of time slots T (i) ⊆ T is given;

– a set U of combinations (s, p) for which course csp is urgent for student s;
– a set F of combinations (s, p, i) for which section i of course csp is already

preassigned to student s.

Our main goal is to assign workload to students as much as possible, while

– maintaining the number of students in a section below a maximum size
prescribed,

– the total workload assigned to student s is less than or equal to rs,
– the workload assigned to student s in block b is less than or equal to rsb,
– sections assigned to a student do not conflict in time,
– students are only assigned to a section of a course on their preference list,
– students are only assigned to one section of a course,
– student s is assigned to section i if (s, p, i) ∈ F .

Soft constraints are, for example, spreading students over sections, a section
needing to be assigned to at least a certain minimum number of students and
student s having to be assigned to course csp if (s, p) ∈ U .

4 The Integer Linear Programming Model

The problem is formulated and solved as a lexicographic optimization problem.
Lexicographic optimization is a form of multi-criteria optimization in which the
various objectives fi, i = 1, . . . , m cannot be quantitatively traded off between
each other. If a solution x minimizes f1, then a solution x′ minimizes f2 if
the condition f1(x) = f1(x′) is satisfied. In general, x∗ minimizes fi under the
constraining conditions that f1(x∗) = f1(x1), . . . , fi−1(x∗) = fi−1(xi−1) where
xj minimizes f1, . . . , fj for 1 ≤ j ≤ i − 1.

The timetabling problem is split into four subproblems which are formulated
as an integer linear programming problem. The goals of the four subproblems
are:

1. Maximize the number of assigned courses with an urgency.
2. Minimize the shortage of students to reach the minimum number of students

of a section. Because of urgencies, some sections must be taught, but do not
have enough students with this course on their preference list. We assign as
many students as possible to those sections.

3. Maximize the total assigned workload. We try to assign a workload rs to
every student s.

4. ‘Optimize’ the timetable. For example by assigning courses to students which
rank high on their preference list.
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All parameters are already introduced in Section 3. Left to define are the de-
cision variables. These are defined as follows:

xsp :=
{

1 if course csp is assigned to student s
0 otherwise

yi :=
{

1 if section i is assigned to one or more students
0 otherwise

zspi :=
{

1 if section i of course csp is assigned to student s
0 otherwise.

The following constraints have to be fulfilled in all four subproblems:

∑
i∈I|csp=c(i)

zspi = xsp ∀s ∈ S, ∀p ∈ Ps (1)

∑
p∈Ps

∑
i∈I|csp=c(i)

w(csp, b)zspi ≤ rsb ∀s ∈ S, ∀b ∈ B (2)

∑
p∈Ps

∑
i∈I|csp=c(i)

∑
b∈B

w(csp, b)zspi ≤ rs ∀s ∈ S (3)

∑
s∈S

∑
p∈Ps,csp=c(i)

zspi ≤ Cmax
i yi ∀i ∈ I (4)

∑
p∈Ps

∑
i∈I|csp=c(i),t∈T (i)

zspi ≤ 1 ∀s ∈ S, ∀t ∈ T (5)

zspi = 1 ∀s ∈ S, ∀p ∈ Ps,

∀i ∈ I|(s, p, i) ∈ F (6)
xsp ∈ {0, 1} ∀s ∈ S, ∀p ∈ Ps (7)
yi ∈ {0, 1} ∀i ∈ I (8)

zspi ∈ {0, 1} ∀s ∈ S, ∀p ∈ Ps, ∀i ∈ I. (9)

Constraint (1) ensures that at most one section of a course is assigned to a
student. The workload assigned to a student has to be less than or equal to
the requested workload of each block separately and all blocks together. This is
fulfilled by constraints (2) and (3). Constraint (4) enforces that the maximum
number of students for a section is not exceeded and constraint (5) ensures that
at each time slot only one section is assigned to each student. If (s, p, i) ∈ F
then section i of course csp has to be assigned to student s, which is fulfilled by
constraint (6).

The goal of the first subproblem is to maximize the number of assigned courses
with an urgency. The constraint that a section needs to have more than a min-
imum number of students is not a restriction in this subproblem, because at least
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one section of a course must be given if there is a student with an urgency for this
course. This first subproblem can be solved with the following ILP formulation:

Umax = max
∑

(s,p)∈U xsp

(x, y, z) satisfy (1)–(9).

The next step is to minimize the shortage of students to reach the mini-
mum number of students of a section, keeping the maximum number of assigned
courses with an urgency equal to Umax. There are sections that have to be given
because they are assigned to students with an urgency for the corresponding
course. Those sections are assigned to other students such that the minimum
number of students for those sections is reached. The decision variable si is de-
fined as the shortage of students for section i. This variable gets a value larger
than zero if it is not possible to assign section i to the minimum number Cmin

i of
students. The second subproblem minimizes the total shortage Smin of students.
This results into the following ILP formulation:

min
∑
i∈I

si = Smin

∑
(s,p)∈U

xsp = Umax

∑
s∈S

∑
p∈Ps,csp=c(i)

zspi + si ≥ Cmin
i yi ∀i ∈ I

si ∈ Z+, ∀i ∈ I

(x, y, z) satisfy (1)–(9).

The third subproblem maximizes the total workload assigned to students with
the restrictions that Umax and Smin keep their optimal values. This maximum
workload is denoted by Wmax and is determined by the following model:

max
∑
s∈S

∑
p∈Ps

∑
b∈B

w(csp, b)xsp = Wmax

∑
i∈I

si = Smin

∑
(s,p)∈U

xsp = Umax

∑
s∈S

∑
p∈Ps,csp=c(i)

zspi + si ≥ Cmin
i yi, ∀i ∈ I

si ∈ Z+, ∀i ∈ I
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(x, y, z) satisfy (1)–(9).

To ‘optimize’ the final timetable we assign courses as high as possible on the pref-
erence lists, spread the students as equally as possible over the sections of a course
and discourage the possibility that one student gets a lot of courses which are on
the bottom of his preference list. Therefore, the fourth subproblem is solved. The
objective function is separated into three terms and has to be minimized under
the restrictions that Umax, Smin and Wmax keep their optimal values.

The term in the objective function to assign courses as high as possible on the
preference lists is Wp

∑
s∈S

∑
p∈Ps

∑
b∈B w(csp, b)(82 − (10 − p)2)xsp. Assigning

a course on top of a preference list, p = 1 for this course, adds a lot less to the
objective function than assigning a course on the bottom of the list, p = 10 for
this course. Wp is a weighting factor and also the workload is taken into account.

If a course has multiple sections, students have to be spread as equally as pos-
sible over the sections. Therefore, Imax

c is introduced as the number of students
assigned to the section of course c with the most students assigned. Also the
spread Sc of course c is introduced and is equal to the sum over all sections of
the difference between Imax

c and the assigned number of students in each section.
Sc is added to the objective function with a weighting factor Ws.

We also discourage the possibility that one student gets a lot of courses from
the 7th to 10th position of his preference list. A constraint is added to the
model that checks whether a student gets more than one course from these
positions. If so, then a penalty We is paid for each ‘extra’ course from these
positions. Therefore, the decision variable Es is introduced for every student s.
This variable is equal to the ‘extra’ number of courses assigned to student s
which are from the 7th to 10th position of his preference list.

This results in the final ILP formulation:

min Wp

∑
s∈S

∑
p∈Ps

∑
b∈B

w(csp, b)(82 − (10 − p)2)xsp + Ws

∑
c∈C

Sc +We

∑
s∈S

Es

∑
s∈S

∑
p∈Ps,csp=c(i)

zspi ≤ Imax
c(i) ∀i ∈ I

∑
i∈I|c=c(i)

(
Imax
c −

∑
s∈S

∑
p∈Ps,csp=c

zspi

)
= Sc ∀c ∈ C

10∑
p=7

xsp ≤ 1 + Es ∀s ∈ S

∑
s∈S

∑
p∈Ps

∑
b∈B

w(csp, b)xsp = Wmax

∑
i∈I

si = Smin
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Table 3. Input information for academic year 2005–06

Blocks |S| |C| |I | |U | Offered wl Requested wl

1 & 2 356 51 79 590 1504 1416
3 & 4 328 64 88 279 1545 1288
5 & 6 302 58 89 151 1544 1333

∑
(s,p)∈U

xsp = Umax

∑
s∈S

∑
p∈Ps,csp=c(i)

zspi + si ≥ Cmin
i yi, ∀i ∈ I

Es ∈ Z+ ∀s ∈ S

Imax
c , Sc ∈ Z+ ∀c ∈ C

si ∈ Z+ ∀i ∈ I

(x, y, z) satisfy (1)–(9).

5 The Computational Results

The computational results for the academic year 2005-2006 are given in this
section. This academic year was divided into six blocks. Blocks 1 & 2, blocks 3
& 4 and blocks 5 & 6 were scheduled simultaneously.

In all blocks the meetings were on Tuesday morning, Tuesday afternoon,
Wednesday morning and Wednesday afternoon. Every morning and afternoon
was split into two parts. So both blocks contained eight time slots. More details
about the input are given in Table 3. The abbreviation wl stands for workload.

The number of students that requested workload in blocks 1 & 2 was 356 and
the total workload they requested was 1416. Hence, for each block, an average of
two courses of the preference list of 10 courses have to be assigned. The number
of students requesting workload decreased during the academic year, because of
students who are doing a practical training and students who are finishing their
studies. In blocks 5 & 6 the average requested workload per student is larger
than in blocks 3 & 4, which is caused by students who still hope to reach the
required workload for the academic year by doing some ‘extra’ courses.

Note that the large number of urgencies in blocks 1 & 2 can be explained by
the fact that first year students are preassigned to courses, because they are not
able to make a choice themselves. All first year students have six compulsory
courses, which they have to do in the first year. These six courses are set as
urgent and only four out of these six courses can be done in each block. The
urgencies in blocks 5 & 6 can be explained by students who are finishing their
education and only have some specific courses left to do.

The models introduced in Section 4 are solved by the standard IP solver
CPLEX 10.0. The computations are done on an Intel Pentium M, 2.0 GHz
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Table 4. Results for the academic year 2005–06

Block 1 & 2 Block 3 & 4 Block 5 & 6

Runtime CPLEX (s) 1.38 1.53 1.67
Umax 439 273 134
Smin 0 0 0
W max 1369 1261 1300
Average position 3.30 3.64 3.87
Bad positions 8 16 39

processor with 1.0 GB internal memory. The values of the weighting factors were
Wp = 10, Ws = 1 and We = 100. The results for the academic year 2005–06 are
given in Table 4.

The computation time of CPLEX given in Table 4 is the computation time
of CPLEX for solving the fourth subproblem. The computation time of the first
three subproblems is even less. What can be concluded is that the computation
time of CPLEX is negligible.

In blocks 1 & 2 a requested workload of 47, in blocks 3 & 4 a requested
workload of 27 and in blocks 5 & 6 a requested workload of 33 could not be
assigned. Especially in blocks 1 & 2 this is caused by the small difference between
the requested and offered workload. However, the main causes are preference lists
for which it was impossible to assign the requested workload. Some examples of
such wrongly chosen preference lists are:

– an empty preference list, because students didn’t hand it in on time;
– a preference list with less than ten courses;
– a preference list with not enough different time slots in one of the two blocks;
– a preference list with the same course in multiple positions; there was even

a student with the same course ten times on his preference list.

If all students were to hand in a preference list with ten courses and enough
different time slots, then in blocks 1 & 2 only five students would not be assigned
to their requested number of courses, and in blocks 3 & 4 and blocks 5 & 6 only
three students.

Table 4 also shows that in blocks 1 & 2 only 439 out of 590 urgency requests
could be assigned. This can be explained by the fact that in these blocks all
courses on the preference list of first year students are set as urgent. Most of
those preference lists contain six suitable urgent courses of which at most four
are assigned. This means at least two not assigned courses with an urgency for
each first year student.

The average position denotes the average of the positions of all courses as-
signed to a student. On average students request a workload of 4, which mostly
corresponds with four courses. For example, if courses on the positions 1, 3, 5
and 7 are assigned, then the average position for this student is 4. Hence, it
can be concluded that students get a lot of courses which are on top of their
preference list.
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During the academic year, the average position increases. This can be ex-
plained by the fact that in blocks 5 & 6 the first year students are allowed to
choose four courses from the same course pool as the other students. In blocks
3 & 4 they were mostly assigned to two out of the six obligatory courses and
to two courses chosen by themselves. In blocks 1 & 2 they were preassigned to
obligatory courses.

If a student is assigned to i ≥ 1 courses from the 7th to 10th position on
his preference list he has i − 1 bad positions. From the number of bad positions
it can be concluded that students are assigned to courses at the top of their
preference lists. That the number of bad positions increases during the year is
explained by the first year students.

6 Conclusions

We have formulated, analyzed and solved a real-world timetabling problem that
showed up at the department of Industrial Design of the TU Eindhoven. Our
successful approach was based on an Integer Linear Programming formulation.
The running time that CPLEX needs for solving the resulting instances is negli-
gible. An advantage of an Integer Linear Programming approach is its flexibility.
Our experience is that the constraints of the timetabling problem change every
academic year and even during the academic year.

The administration and the students of the department of Industrial Design
were highly satisfied with the timetables generated by our program. Most stu-
dents now receive courses that are on top of their preference lists. There still
are a few students who are not satisfied, but in most cases this turned out to
be solely their own fault: they failed to specify correct preferences in the correct
format.
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Burke, E.K., Rudová, H. (eds.) PATAT 2006. LNCS, vol. 3867, pp. 3–23. Springer,
Heidelberg (2007)

18. Miyaji, I., Ohno, K., Mine, H.: Solution method for partitioning students into
groups. European Journal of Operations Research 33, 82–90 (1981)

19. Petrovic, S., Burke, E.K.: University timetabling. In: Handbook of Scheduling:
Algorithms, Models, and Performance Analysis, ch. 45, CRC Press, Boca Raton,
FL (2004)

20. Sabin, G.C.W., Winter, G.K.: The impact of automated timetabling on universities
– a case study. Journal of Operations Research Society 37, 689–693 (1986)

21. Schaerf, A.: A survey of automated timetabling. Artificial Intelligence Review 13,
87–127 (1999)
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A Max-Flow Model of Problem Formulation No. 1

Problem formulation No. 1 can be modeled as a network flow problem. An il-
lustration of the network with its arc capacities can be found in Figure 1. The
layered network has a source node connected to the first layer of nodes of which
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each node corresponds to a student. The capacity of the arcs between a student
node and the source node is equal to the requested number of courses of the
student. For each student and each time slot, a node is defined in the second
layer. Each student node has |T | outgoing arcs with capacity one.

The third layer of the graph contains a node for every course. If a course is on
the preference list of a student, this course node is connected with the node of
its time slot of the student. For example, in Figure 1 course number 1 is given in
time slot 1. Because course 1 is chosen by student 1 and student |S|, there are
arcs from nodes t11 and t|S|1 to course node C1. Each course node is connected
to the sink with its maximum number of students as its capacity.
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Fig. 1. The network flow model

Note that maximizing the flow through this network maximizes the number
of assigned courses and does not deal with the positions of the courses on the
preference lists.

B Some NP-Hardness Results

The timetabling problem defined in Section 3.2 is an NP-hard problem. We prove
this by identifying two independent NP-hard subproblems. Both subproblems
result from adding one additional constraint to the problem formulation No. 1.

In the first subproblem, the additional constraint are lower bounds on the
number of students in the courses. There are no time slots, there is only one
section for each course c with a minimum and a maximum number of partici-
pating students. The workload of all courses is one, and only one block has to
be scheduled. Formally, problem Pmin is defined as follows:

Instance: A set C of courses; for every course c ∈ C a minimum capacity
Cmin

c and a maximum capacity Cmax
c of participating students. A set S
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of students; for every student s ∈ S a preference list of some courses in
C, and a number rs of requested courses.

Question: Does there exist an assignment such that (i) every student s
gets exactly rs courses from its preference list, and such that (ii) for every
course c the number of assigned students is either zero (if the course does
not take place) or falls between the bounds Cmin

c and Cmax
c ?

Theorem 1. Problem Pmin is NP-hard.

Proof. The proof is done by reduction from the exact cover by 3-sets problem:
Given a ground set X = {x1, . . . , xn} and a set T = {t1, . . . , tm} of 3-element
subsets of X , can one select T ′ ⊆ T such that every element of X occurs in
exactly one member of T ′?

From an instance of the exact cover by 3-sets problem, we construct a cor-
responding instance of problem Pmin with n students x1, . . . , xn and with m
courses t1, . . . , tm. Every student s has a demand of one course (rs = 1), and
every course c has minimum and maximum capacity three (Cmin

c = Cmax
c = 3).

Assume X possesses an exact cover T ′. Assign student xs to course tc if and
only if xs ∈ tc and tc ∈ T ′. Since T ′ is an exact cover of X , every student
xs will be assigned to exactly one course tc. The course tc is assigned to three
students if it is in T ′, and to zero students if it is not in T ′. This shows that the
constructed instance of Pmin is a yes-instance. The converse statement can be
seen in a similar way. �	

In the second subproblem, we take problem formulation No. 1 and additionally
allow courses with a workload of 2. We consider a situation with only one section
for each course c, only a single block, and without any time slots. (And there is
no minimum capacity of courses.) Problem Pwl is defined as follows:

Instance: A set C of courses; for every course c ∈ C a workload wlc ∈
{1, 2} and a maximum capacity Cmax

c of participating students. A set S
of students; for every student s ∈ S a preference list of some courses in
C, and a desired workload rs.

Question: Does there exist an assignment such that (i) every student
s gets courses with a total workload rs from Ps, and such that (ii) for
every course c the number of assigned students is at most Cmax

c ?

Theorem 2. Problem Pwl is NP-hard.

Proof. The proof is done by reduction from the 3-SAT variant where every vari-
able occurs exactly twice in negated and exactly twice in unnegated form. Con-
sider an arbitrary instance of this 3-SAT variant:

– For every variable xi, we introduce two corresponding students st(xi) and
st(xi) which both request a workload of two.

– For every variable xi, we also introduce a corresponding variable-course
C(xi) which has a workload of two and a capacity of one. C(xi) is in the
preference list of st(xi) and st(xi).
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– For every clause cj , we introduce a clause-course C(cj) with a workload of
one and a capacity of two. Clause-course C(cj) is in the preference list of a
student st(xi) (respectively st(xi)) if and only if xi (respectively xi) occurs
as a literal in clause cj .

Note that in any feasible assignment, student st(xi) (respectively student
st(xi)) will either do course C(xi) or the two courses C(cj1 ) and C(cj2 ) for
which literal xi (respectively literal xi) occurs in clauses cj1 and cj2.

Assume that the 3-SAT instance is a yes-instance, and consider a correspond-
ing satisfying truth-assignment. If xi is set to TRUE, then we assign student
st(xi) to the variable-course C(xi), and student st(xi) to the two clause-courses
that correspond to the clauses containing xi. If xi is set to FALSE, we assign
st(xi) to the clause-courses that correspond to the clauses containing xi, and
student st(xi) to C(xi). Then each student receives his requested workload, and
every course C(xi) gets only a single student. Since every clause has at most
two FALSE literals, the corresponding clause-course will get at most two stu-
dents. So every yes-instance of the 3-SAT problem leads to a yes-instance of the
timetabling problem.

Now assume that the constructed instance of problem Pwl is a yes-instance.
Then every student st(xi) receives a workload of 2, which implies that the student
must either be assigned to one course C(xi), or to two clause-courses C(cj1)
and C(cj2). If student st(xi) is assigned to the variable-course C(xi), we set
xi to TRUE. If student xi is assigned to some clause-courses, then we set xi

to FALSE. Since each clause-course C(cj) is assigned to at most two students,
every clause contains at most two FALSE literals. Hence, every yes-instance of
Pwl corresponds to a yes-instance of 3-SAT. �	
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