N

HAL

open science

Knapsack Problems with Setups

Sophie Michel, Nancy Perrot, Frangois Vanderbeck

» To cite this version:

Sophie Michel, Nancy Perrot, Frangois Vanderbeck. Knapsack Problems with Setups. European
Journal of Operational Research, 2009, 196, pp.909-918. inria-00232782v2

HAL 1d: inria-00232782
https://inria.hal.science/inria-00232782v2
Submitted on 27 Nov 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://inria.hal.science/inria-00232782v2
https://hal.archives-ouvertes.fr

Knapsack Problems with Setups

S. Michel (1), N. Perrot (2) and F. Vanderbeck (3)
(1) ISEL-LMAH, Université du Havre, michels@Quniv-lehavre.fr
(2) France-Télécom, division R&D, nancy.perrot@orange-ftgroup.com

(1) Institut de Mathématiques de Bordeaux, Université Bordeaux 1, fv@math.u-bordeaux1.fr

November 27, 2008

Abstract

Knapsack problems with setups find their application in many concrete indus-
trial and financial problems. Moreover, they also arise as subproblems in a Dantzig-
Wolfe decomposition approach to more complex combinatorial optimization prob-
lems, where they need to be solved repeatedly and therefore efficiently. Here, we con-
sider the multiple-class integer knapsack problem with setups. Items are partitioned
into classes whose use implies a setup cost and associated capacity consumption.
Item weights are assumed to be a multiple of their class weight. The total weight
of selected items and setups is bounded. The objective is to maximize the differ-
ence between the profits of selected items and the fixed costs incurred for setting-up
classes. A special case is the bounded integer knapsack problem with setups where
each class holds a single item and its continuous version where a fraction of an item
can be selected while incurring a full setup. The paper shows the extent to which
classical results for the knapsack problem can be generalized to these variants with
setups. In particular, an extension of the branch-and-bound algorithm of Horowitz
and Sahni is developed for problems with positive setup costs. Our direct approach
is compared experimentally with the approach proposed in the literature consisting
in converting the problem into a multiple choice knapsack with pseudo-polynomial

size.

Keywords: Knapsack problem, fixed cost, setup, variable upper bound, branch-and-
bound.

The Multiple-class Integer Knapsack problem with Setups (MIKS) is defined as fol-
lows. The knapsack has capacity W. There are n item classes, indexed by ¢ = 1,...,n,
with associated setup cost, f; € IR, and setup capacity consumption, s; € IR,. Each

class is made of its own items (¢, j) for j = 1,...,n; € IN with associated profit p;; € IR



and upper bound w;; € IN. The capacity consumption of item (z,j) is assumed to be a
multiple of a class weight, w; € IRy, i.e. w;; = m;; w; for some multiplicity m;; € IV
(assuming w;; < W). Moreover, there are lower and upper bounds, a; < b; € IN, on
the total multiplicity of items that may be selected within each class. The objective is
to maximize the sum of the profits associated with selected items minus the fixed costs

incurred for setting-up classes.

Thus, model MIKS takes the form:

n

max Zzpij l’ij—Zfz‘yz‘ (1)
i=1

i=1j=1
[MIKS] s.t.
DAQmijwiwig) +siy) < W (2)
=1 j=1
@y <> mijzi; < by fori=1,...n (3)
j=1
i < iy fori=1,...nand j=1,...,n; (4)
ri; € IN fori=1,...,nand j=1,...,n; (5)
y; € {0,1} fori=1,...,n, (6)

where z;; denotes the number of copies of item j that are chosen within class ¢ and
y; = 1 iff class ¢ is setup. The main developments of the paper are made under restrictive
assumptions that simplify the characterization of extreme solutions of the continuous
relaxation. In our branch-and-bound algorithms, we shall assume that fixed costs are

non-negative:
Assumption 1 (restrictive) f; > 0 for all i,
and that there are no class lower bounds:

Assumption 2 (restrictive) a; = 0 for all i.

Model MIKS has several interesting special cases. In a binary model, denoted MBKS,
x;; € {0,1} Vij. When each class holds a single item, i.e. n; = 1 Vi, MIKS gives rise to
the integer knapsack problem with setups (IKS):

max zn:pi Ti — z": Jiyi (7)
[TKS] s.t. - -
zn:(wi ritsiy) < W (8)
- a;y; <xp < by fori=1,...n 9)
z, € IN fori=1,...,n (10)
v, € {0,1} fori=1,...,n. (11)



Further relaxing the integrality constraint on z; gives rise to the continuous knapsack
problem with setups denoted CKS. Observe that, when a; = w; = 0 and b; = 1 V2, all the
above models boil down to a standard binary knapsack problem (f.i., for IKS, as w; = 0,
it is optimal to set z; = b; if p; > 0). Hence, these models are at least as hard as the

standard binary knapsack problem.

Model CKS arises as a sub-problem in capacitated multi-item lot sizing problem when
setting up the machine for the production of an item requires setup time and cost: once the
demand covering constraints are dualized the problem decomposes into a CKS problem
for each period. Then, w;, f; and s; are respectively the processing time, the setup cost
and the setup time for item ¢, p; is the difference between the dual value for covering item
i demand and its production cost, W is the machine capacity of that period, and [a;, b;]
defines an interval of valid production levels for item 7. A lower bound a; on production
may arise due to a business rule to amortize setup or due to technical constraints that
translate into a minimum batch size. Note that, for this application, fixed cost naturally
satisfy Assumption 1. Goemans [4] studied the structure of the CKS polyhedron, derived

facet defining inequalities and proposed a heuristic separation procedure.

Model IKS is encountered as a sub-problem in solving the cutting stock problem by
branch-and-price |[10]. When using branching constraints that enforce integrality of the
number of cutting patterns that involve a given item ¢, the knapsack subproblem must be
modified to include a fixed cost. Nonzero lower bounds, a;, may arise in the course of a
rounding heuristic when, in order to achieve a feasible solution to the residual problem,
one must impose a minimum production level in remaining cutting patterns. A special
case of model IKS was studied by Sural et al. [13|: they assume f; = 0 and w; = 1 for
all . Then, they show how to generalize the Dantzig’s upper bound and they propose
a primal heuristic. Both are used for setting up a depth-first search branch-and-bound
algorithm. Their motivations for studying this model were applications in finance and
in machine scheduling. The assumption w; = 1 is not restrictive for IKS but assuming
fi = 0 is restrictive. However, the Dantzig’s upper bound can be generalized to the case

fi # 0 as shown in this paper.

Model MBKS also arises as a sub-problem in a branch-and-price approach to the cut-
ting stock problem. Most fractional solutions can be cut-off by bounding the number of
cutting patterns that involves a specific binary variable of the knapsack subproblem in

its 0-1 form [14] . When a branching constraint is added that restricts the number of

!The pricing problem is normally an integer knapsack problem: max{> . p;z; : Y, w; z; < W,z; <
bi,z; € IN Vi}. A standard 0-1 transformation consists in introducing n; = [log, b; |+ 1 binary items (4, j)

for each integer item ¢ with multiplicity m;; = 277! for j = 1,...,n; — 1 and m;,, = b; — Z;L:? mij.



columns involving a specific binary item (7, j), the item dual price is modified in the pric-
ing problem, leading to objective coefficients p; ; # m;; p;. If one combines such branching
with that on the number of cutting pattern involving a specific item ¢, then fixed costs
are also nonzero, giving rise to model MBKS. Observe that if the binary decomposition
of the pricing problem is not done a priori but dynamically as branching constraints are
introduced on specific binary items (see [16] for details), then model MIKS must be used.

The special case of model MBKS with no setups is treated in [15]. Under the as-
sumption f; = s; = 0 Vi, it is shown that the LP-relaxation can be solved by a greedy
algorithm in linear time, a result that extends those of Dantzig [3| and Balas and Zemel
[1] for the 0-1 knapsack problem (this result relies on the assumption that item weights
are a multiple of their class weight); exact algorithms are derived (branch-and-bound or

dynamic programs) by adapting existing algorithms for the 0-1 knapsack problem.

Variants of model MBKS are considered in the literature. Chajakis and Guignard [2]
consider a model where m;; = 1 Vij, class bound constraints are replaced by >0, x;; >
y; Vi, and the item weights are not restricted to be a multiple of a class weight (hence,
the result of [15] concerning a polynomial greedy solution of the LP relaxation does not
extend to the model of [2]). The application that motivated their study is the schedul-
ing of parallel unrelated machines with setups where this knapsack problem arises as
a subproblem. They propose and test two approaches: either a dynamic programming
solver or a two-stage approach. In the latter, the problem is transformed into a stan-
dard multiple choice 0-1 knapsack problem and solved either by dynamic programming
or branch-and-bound. The transformation consists in defining a “pseudo-item” for each
dominant feasible solutions within a class. These dominant solutions are the states of a
dynamic program for solving the binary knapsack problem defined on a single class. There
is a pseudo-polynomial number of them. They found that, for correlated instances with
small knapsack capacity (they assume integer data and consider W < 500), the direct
dynamic programming approach is the most efficient. When the number of families or
the knapsack capacity increases, the two-stage approach using branch-and-bound for the

second stage is the most efficient.

The variant of model MBKS that is considered by Jans and Degraeve [5] is simpler.

They also assume m;; = 1 Vij and w;; # m;; w;, but their model has b; = 1 Vi. This

However, this transformation introduces multiple 0-1 representation of a given integer solution. The
alternative 0-1 decomposition proposed in [15] is to set m;,, = 2™. Then, one needs to introduce explicit
class upper bounds: E?;l m;jT; 5 < b; Vi. It guarantees a unique representation of each integer solution.
This is essential to avoid the enumeration of symmetric solutions. A numerical comparison of branch-and-
bound approaches based on the standard 0-1 transformation versus the multiple class model is presented

in [15]; it shows the increase branch-and-bound tree size that may result from ignoring this symmetry.



subproblem arises in a decomposition of a multi-item lot-sizing problem per time period.
It takes the form

maX{Z(Zpij Tij — fi yz-) : Z(Z Wi Tij + S; yi) <W, Zl’zj <y; Vi, Tij, Yi € {07 1}}
v i g J

where setting x;; = 1 amounts to producing item 7 so as to cover demands from the

current period ¢ up to t + 7 — 1. Moreover, their application assumes positive fixed cost

fi > 0. In this special case, feasible solutions verify z;; = x;; y;. Therefore, their model

reduces to a standard multiple choice knapsack problem

maX{Zﬁijzij . Z’LZJZ']‘ZZ']‘ S VV’ZZU S 1 VZ, Zij € {0, 1}} ;
ij ij J
where z;; = % i, Dij = pij — [i, and W;; = w;; + s;. Jans and Degraeve [5] developed

their own branch-and-bound algorithm for it.

The present paper proposes an analysis of models CKS and MBKS. Their extensions
to models IKS and MIKS are also discussed. The aim is to show the extent to which clas-
sical approach for the knapsack problem, such as the depth-first-search branch-and-bound
algorithm of Horowitz and Sahni or dynamic programs (see [8] pages 30-31 or [9] pages
455-456) can be generalized to variants with setups. In particular, we show that under
assumptions slightly less restrictive than Assumptions 1 and 2, the LP solution to these
problems can be obtained in polynomial time by a greedy procedure. The key to these re-
sults are reformulation as continuous knapsack problems with multiple choice constraints
[6] or class bounds [15|. The formulation are polynomial in size while previously proposed
reformulations such as that of [2| are pseudo-polynomial. However, our reformulations
are only valid for the LP-relaxation: their integer counterparts are not equivalent to our
models. Therefore, the greedy LP solver does not immediately give rise to extensions of
standard branch-and-bound procedures. The other main contribution of the paper is a
specific enumeration scheme for branch-and-bound for CKS and MBKS that exploit the
property of optimal solutions and the greedy ordering of the LP bound. The resulting

branch-and-bound algorithms are tested and compared to existing approaches.

Dynamic programming recursion can also be derived for these knapsack models with
setups. They are straightforward extension of results for the standard knapsack problem.
We present them for the sake of establishing the complexity of the various models. Of
course, the improvements of the basic techniques for knapsack problems: linear time com-
putation of upper bound [1], improved variants of Dantzig’s bounds, improved dynamic
recursion (f.i. using bounds to eliminate intermediate states, exploiting the core, or so-
called balanced enumeration), more sophisticated branch-and-bound (f.i. making use of

dominance rules) and hybrid methods [12]| could also be reviewed for the case of problems



with setups, but this is beyond our scope. We purposely keep the presentation to basic
techniques to get a point across: to demonstrate that knapsack problems with setups are

not much harder than standard knapsack problems.

1 The continuous knapsack problem with setups

In model CKS, the item selection variables, x, are allowed to take continuous values.

Hence, the formulation is:

max { Y (piw — Zfzyz DY (wimi+sy) < W
i=1

=1
aiyiSSCiSbiyi Vi, x;>0Vi, y€{0,1} Vi.} (12)
Here, bounds a; and b; are not necessarily integer, i.e. a; and b; € IR", Vi. Assumption
2 can be made without loss of generality. Indeed, if a; > 0 for some 7, one can transform
the problem as follows: let a, = 0, b, = b; — a;, s, = s; + w; a;, f! = fi — a;p;; its solution
(«%,y}) translates into a solution for the original problem as follows: z; = (a; + x}) y. and

y; = yi. Moreover, we can assume

Assumption 3 (without loss of generality) p; > 0 for all .

Indeed, if p; < 0 for some ¢, ; = 0 in any optimal solution. Also, we have
Assumption 4 (without loss of generality) f; <0 for all .

Indeed, if f; > p; b; for some i, it is optimal to set z; = y; = 0 and consider the problem
that remains on the other variables. While, if 0 < f; < p; b; for some ¢, then, in any
optimal solution, either z; = y; = 0 or x; > z%’ because a solution where 0 < x; < I{_z
can be improved by setting x; = y; = 0. Thus, Iff’ can be interpreted as a lower bound,
a;, which can be eliminated as explained above by re-setting b, = b; — ﬁ st = s; + w; fl,

fl=1fi— E_pi = 0. Finally, one can also assume
Assumption 5 (without loss of generality) w; = 1 for all i.

Otherwise, one can make a change of variables z; = w; z; and redefine the associated

coefficients: p; = £-, b = w; b;.
K3

Under Assumption 5, problem CKS can be reformulated as a multiple choice knapsack
problem. When data are integer, i.e., when a;,b;,s; € IN Vi and W € IN, observe that
the continuous variables x take integer value in any feasible extreme solutions. Therefore,
within each class, one can optimize the use level x by enumeration. Hence, the problem

can be reformulated as a multiple choice knapsack problem:

maX{ZZ (pix — fi) Ay : ZZ (wix + s;) X, < W, Z)\Z<1‘v’z A€ {0,1} Vi, z}
1 T=a i T=a; r=a; (13)



where X! = 1 iff x; = x. This formulation has pseudo-polynomial size but it leads to a
possible solution approach using a solver for the multiple choice knapsack problem, which

we shall use in numerical comparison to our algorithm.

In the rest of this section, we make Assumptions 2 to 4 without loss of generality, but
we carry w; in the notation for the sake of extending the results to model MBKS where
Assumption 5 is not made. Similarly, when Assumption 1 is made, f; = 0 Vi (as implied
by Assumption 4) but we keep f; in the formulation. Thus, our model is given by (12)
where a; =0, p; > 0 and f; < 0.

1.1 Characterizations of optimal solutions

Some properties of optimal solutions are used to develop bounding procedure or dy-
namic programs. To analyse the structure of extreme solutions, note that if one fixes y to
g € {0, 1}", the problem reduces to a continuous knapsack problem that admits a greedy

solution.

Observation 1 (Dantzig, [3])
Let I = {i:y; =1} and W=Ww-— Yicr Si- The resulting problem in the x variables is:

[CKP(§)) = max{) piw;: > wiz; <W,0<z; <bViel} (14)
icl icl
An optimal solution is obtained as follows. Assume an indexing of the items in I such
that

L - il

wy o wg oWy

Let c be the index for which Y, .b; w; < W but dicebiwi > W. Then, set

z, = b fori <c, (15)
W — Y w; b
T, = ice W , (16)
We
z; = 0 otherwise. (17)

This standard observation yields to the conclusion that z; € {0, b;} for all ¢ but one. The
same observation was made in [13]| for the case f; = 0 Vi. Moreover, in that case, [13]
adds that the item with 0 < z; < b;, if any, has the smallest ratio 2~ of non zero items.

This property generalizes trivially to our case. Let us explicitly state this characterization

of extreme solutions to CKS for easy reference.



Observation 2 An optimal solution exists to problem CKS where, for each i, one of the
following case arises

(i) vyi=1andz; =10

(1)) yi=1and0<x; <b

(iii) yi=x;,=0

(v) y;=1andz; =0
Furthermore, case (i1) can only be assumed by one of the items which is called the critical

item. Case (iv) can only arise if f; < 0. Moreover, the level of the critical item, c, if any,

s set so as to fill the remaining capacity of the knapsack. It is computed as x. = L/JCW)
where
W= (wi by + s5) + 5.+ s
kel keJ
forsomesetslg{k:i—zz%z} and J C {k: fk<0mdi—225—’;}-

Indeed, if y; = 1 and x; = 0 but f; = 0, y; can feasibly be set to zero without decreasing
the profit. The rest of the observation results from the following procedure. Let (z*,y*)
be an optimal solution to problem CKS. Let us fix the y variables to their optimal 0-1
values y*. From observation 1, we derive an associated solution z’ defined by (15-17).

Solution (z’,y*) is optimum and has the above form.

The continuous relaxation of model CKS is given by (12) where y; € {0, 1} is replaced
by y; € [0,1] Vi. Then, the value of the class ¢ solution in the LP solution can be anything
in the convex hull of extreme solutions (i), (i7i) and (iv) of Observation 2 (note that
case (i7) is in this convex hull). For instance, one can generate any profit between 0 and
p; by — fi by setting y; = fg— and letting x; vary between 0 and b;. The associated capacity
consumption is (w; + Z—z) x;. Similarly, if f; < 0, any pair of (p,w) = (—y; fi,y: si) can be
achieved by setting x; = 0 and varying y; € [0, 1]. Therefore, the continuous relaxation of
CKS can be reformulated as follows:

n

max S ((pibi = £:)2 = f:2]) (18)
i=1
=1
L4z <1 fori=1,...,n (20)
2 e [0,1] fori=1,...,n (21)
e [0,1] fori=1,...,n (22)

When zif = 0, letting 2% vary from 0 to 1 allows to achieve any continuous solution in the
convex hull of extreme solutions (i) and (ii7) of Observation 2. Inversely, setting 22 = 0
and letting zzf vary from 0 to 1 allows to achieve any continuous solution in the convex

hull of extreme solutions (iii) and (iv). While, setting 2/ = 1 — 2b, allows to achieve any

8



continuous solutions of type (ii) in the convex hull of extreme solutions (i) and (iv). Any
other solution for class ¢ has a profit to capacity consumption ratio that is worse than
those that we considered. The mapping from a solution z of (18-22) to a solution (z,y)

for the LP relaxation of CKS is given by z; = b; sz and y; = sz + zzf .

Thus, we have shown that

Proposition 1 The LP relaxation of CKS s equivalent to the continuous relaxation of

binary knapsack problem with multiple choice constraints (18-22).

The latter is known to admit a greedy solution |6]. Hence, this result extends to our model
with setups. Moreover, one can characterized the conditions under-which continuous

solutions with zif > 0 are dominated:

Observation 3 If Sjl;);;’ > fl , there exists an optimal solution to (18-22) where z f =0.

Note that Assumption 1 implies pll; +J;l > _S—f Vi. Let us write the greedy LP solution.

Under the assumption of Observation 3, the special ordered set (SOS) constraints (20)

are redundant and (18-22) reduces to a standard binary knapsack LP relaxation:

Observation 4 le; ﬁ; > 50 Li i an optimal solution to the LP relazation of problem
CKS is given by indexing the items in order that
(p1b1 — f1) > (p2 b2 — f2) > > (Pn b — f0) (23)
(w1 bl + 81) (U)Q b2 + 82) (wn b + Sn)

and setting

T, = b andyizl fori <c,
b (] C
r, = — iz +S)andyc=—,
(we +3¢) be

x; = 0andy; =0 fori>c,

where ¢ is the index in the sorted item order such that
i<c i<c

This observation merely translates the greedy LP solution of (18-22) in the (z,y) variables
(when z/ = 0 Vi).

b 2l € {0,1} Vi. Tt is
important to note that, although model CKS and formulation (18-22) have the same LP

solution, the integer version of (18-22) is not equivalent to model CKS. Indeed, a solution

Now consider the integer version of formulation (18-22) where z?

where case (i7) of Observation 2 is optimal for some item i cannot be represented as an

integer solution in the z-formulation.



1.2 Branch-and-Bound

The standard Branch-and-Bound algorithm of Horowitz and Sahni for the 0-1 knap-
sack problem [9] is a specialized depth-first-search branch-and-bound where variables are
fixed in an order that is greedy for both primal and dual bounding procedure. Hence,
the first leaf node to be explored when plunging depth into the tree corresponds to a
greedy primal solution while backtracking leads to exploring progressively more distant
neighbors of this greedy solution. The dual bounds need not be recomputed after fixing a
variable to one: their value differ from that of the parent node only for the branch where

we part from the greedy ordering, i.e., when a variable is fixed to zero.

The extension to model CKS is not trivial. Indeed, the procedure requires that the
same greedy approach solves both LP and IP problems. We have such greedy approach
for the z-formulation but not for the (x,y)-formulation. As mentioned above, both for-
mulation are not equivalent in IP term. This difficulty can be overcome by implicitly
dealing with both the z-formulation (for dual decisions) and the (z,y)-formulation (for
primal decisions). To illustrate how, we explicitly provide a branch-and-bound procedure

under Assumption 1 which simplifies the problem.

We use the greedy ordering (23) that was defined for the z variables. But, the fixing
of z variables has a different interpretation for dual and primal bounds. The primal so-
lution (z,y) associated with a dual solution z is obtained by rounding-up the fractional
setup included in z (which yields a setup solution ) and by setting x to the value of
the optimal solution of CKP(y) defined in Observation 1. This ensures that the solution
we build obeys the characterization of Observation 2. The so called “forward moves” are
sequences of branches where a z; variable is fixed to 1. Forward moves are interspersed
with “fixing-to-zero” branches where a z; variable is set to zero which we interpret as fixing
the associated x; to zero for the primal bound. Primal and dual bounds are evaluated

after each “fixing-to-zero” branching.

The branch-and-bound search is organized as follows: Items are considered in the
order (23). For each item 4, three cases are considered: (a) z; = 1 (which, for the primal
bound, corresponds to setting x; = b; and y; = 1), (b) yv; = 1, and x is free, (¢) z; = 0.
However, Observation 2 tells us that case (b) needs only be considered if the knapsack is
filled at full capacity. Hence, we can manage with a binary tree where only two branches
are defined for each item: the first branch to be explored corresponds to aggregated case
(a) or (b), while the second branch corresponds to case (¢). When case (a) is feasible
given the residual capacity, the first branch is interpreted as case (a) as it dominates
case (b). But when branching on case (a) is infeasible due to lack of capacity, all the

previous left branches are interpreted as case (b). In the latter situation, we have reached

10



a leaf node which we call “A type leaf node” (the knapsack is filled at full capacity) where
CKP(y) is solved according to Observation 1. Another type of leaf node (called “B type”)

arises when there are no more items to consider. In the latter case, as the branch z, =1

has been explored, the branch z, = 0 does not need to be explored as it is dominated.

This algorithm is presented in Table 1 (in a pseudo-language where we make use of some

C-++ notations). In our notations, INC is the value of the incumbent solution, Z is

the value of the current partial solution, U is the current dual bound, C' is the current

residual capacity and v is the return value of the routine solving CK P(y). The greedy

heuristic for the primal problem used in this branch-and-bound procedure can be used

independently. It is given in Table 2.

Table 1: Branch-and-Bound algorithm for CKS under Assumption 1

Initialization:

Compute UB:

Test Pruning:
Forward Move:

Type A Leaf Node:

Type B Leaf Node:

Backtracking:

Sort items according to (23).

Let INC=7Z=0;C=W;x=y=0;1=1.

Let U=2; K=C; 1=t

while (I <n) and (K > wb, + s;), do {

Ut= (pbi — f1); K—= (b +s); I=1+1.}

If (1 <n), U+= (pbi — f1) Wﬁsl)

it (U < INC), goto Backtracking.

While (i <n) and (w;b; +s; < C), do {

Z+= (pibi — fi); C—= (wi b+ 8;); &y = bj; y; = ;i =1+ 1.}

If (i <n) /*and (w;b; +s; > C) */, do {

If (s, <C), {lety;=1;v=CKP(y);

T = argmax{CKP(y)};if (v > INC), INC = v, record (Z,y);}
Let z; =y; = 0; i =i+ 1; /* Zero Setting */ and go to Compute UB. }
Else /* (i=n-+1)*/, do{

If (Z>INC), {INC = Z; record (z,y);}

Let i =1¢—1;

I (yy==1),{ Z—= (pibi — fi); C+= (w; b; + 8;); x; = y; = 0.} }
Do (i =i — 1) while (y; = 0) and (i > 1).

If (i = 0), STOP.

Z—= (pibi — f;); C+= (w; b; + 8;); xi = y; = 0; i =i+ 1 /* Zero Setting */.
Go to Compute UB.

11



Table 2: Primal heuristic for CKS under Assumption 1

Step A: Sort items according to (23). Let C' = W; x = y = 0; incumbent = 0; ¢ = 1.

Step B: While (C' > w;b; + s;) and (i < n), do { x; =b;; y; = 1; C—= (w; b; + s;); i++.}
Step C: If (i > n), { record solution (z,y); update the incumbent; and STOP.}

Step D: Let y; = 1; solve CK P(y) according to Observation 1 and update the incumbent.
Step E: Let y; = 0; ¢ =17+ 1; and go to Step B.

1.3 Dynamic programming recursion for the CKS problem

Here, we assume integer data: s;, w;, and W € IN. To solve problem CKS, one can
implement a dynamic programming recursion that computes the best solution of the form

described in Observation 2. Let the item indexing be such that

Py P

wy  wWo Wy,

Let V*(C) be the best value that can be accumulated using items 1 up to k at level
7 € {0,by} and using a capacity C. Setting VO(C) = 0 for all 0 < C' < W, the values

VE(C) can be computed recursively:

VH(C) = max{V*1(C), VF"(C — wy by — si) + pr b, — fu}
—_———

Tp=yr=0 zp=by, yr=1

for all 0 < C < W and k = 1,...,n. This requires O(nW) operations. Let U*(C) be
the best value that can be accumulated using items n down to k at level x; = 0 but with
yr € {0,1} and using a capacity C. Setting U"(C) = 0 for all 0 < C < W, the values

U*(C) can be computed recursively:

UH(C) = max{U*(C), UM (C — s1.) — fi}

yr=0 =0, yp=1

forall0 < C < W and k = n,...,1. This requires another O(nW) operations. Then, the

optimal solution value for CKS can be obtained as
max{V"(W), U'(W),
k—1 e e Y 4. k+1
1rgi?§n{ C1,Co: W —by, £%§1+Cz+sk<w{ VI (C)+ (W == G Sk)wk St UTHC)3) )

These latter computations require another O(nW?) operations. The associated (z,y) so-

lution is easy to obtain.

Under Assumption 1, U*(C) = 0 for all k, C and the above maximization in Cy is not

needed. Then, the complexity is O(n W). When the upper bounds b; are not tight, i.e.

12



b; > Ww;zsl for all i, no items k can be taken at level x;, = by, hence V¥(C) = 0 for all k, C
and the above maximization in C; is not needed. Then, the complexity is also O(n W).
When Assumption 1 holds and items are unbounded, solving the problem requires O(n)
(without sorting the items, one just needs to enumerate on which should be the critical

item).

For the general case where some f; may be negative, another dynamic programming
recursion can be defined whose complexity is O(n?W) and does not require to sort items
beforehand: Let T%¥(C) be the best value that can be accumulated with items 1 up
to k, with x; € {0,bx} when yr = 1, while not using i (y; = 0) and using a capacity
Cedo,..., W}

Tk’Z(C) = maX{Tk_l’i(C), Tk_l’i(c — Sk) — fk, Tk_l’i(c — Wk bk — Sk) + Pk bk — fk}

Tk =yr=0 =0,y =1 Tp=bk, yp=1

(21)
if k # i, or TH(C) = TH1(C) if k = i. Then, the optimal solution value can be obtained
as
(W - C - Si)

OSZBZSb“ yi:5(W—C—Si>0)

bidps— fi (W —C — s, > 0), (25)

max m(/@x{T (C), T™(C) + min{

z;=y;=0

T(C) — f; S(W —C —s; > 0)} . (26)

{Ei:O,yi :5(W—C—Si 20)

where §(x) = 1 if (x) = true and (*)™ = max{0, x}. Some computations can be saved by
observing that T%%(C') = T**1(C) for k < i, but this remark does not change the worst

case complexity.

2 The multiple-class binary knapsack with setups

Model MBKS is defined by setting item bounds u,;; to 1 and restricting z;; to be

binary, i.e., the model takes the form:

max{» ( Zp”x” Zfzyz > Zm”wzx”)ﬂtszyz) < W, a;y; < Zm”x” < by, Vi,

=1 j=1 = =1 = 7j=1
Lij S Yi Vz,j , Lij c {O, 1} V’L,j , Y € {0, 1} Vi } (27)

Here, Assumption 2 is restrictive: indeed, if a; > 0 there is a knapsack sub-problem to be
solved to decide which items (7, j) within class ¢ should be selected to satisfy this lower
bound. Also note that we cannot assume positive profit p;;. An item (7, j) with negative
profit p;; < 0 might be worth selecting to satisfy the lower bound a;. However, if a; = 0,

one can make non restrictive assumptions:

13



Assumption 6 (without loss of generality) Under Assumption 2, p;; > 0 for all j.
Otherwise, z;; = 0 in any optimal solution. Similarly, Assumption 4 takes a weaker form:

Assumption 7 (without loss of generality) Under Assumption 2, f; < max{>"; p;;zi; :
Zj mij Tij S bi, Tij S {0, 1} VJ}

Otherwise, if the set-up cost is larger than the maximum profit that can be generated
with the class i items, it is optimal to set x;; = 0 Vj and y; = 0. Finally, eliminating
rational class weights w; as in Assumption 5 is feasible (by setting m;j = my;w;, a, = a;w;,
b, = b;w; and multiplying by a constant sufficiently large to take this number integer);

but it is not recommended as it introduces large numbers in knapsack constraints (3).

MBKS can be reformulated as a multiple choice knapsack, in the line of the work
of Chajakis and Guignard [2]. Since we assumed that all items have a weight that is a
multiple of the class weight, the capacity consumption of a class i, i.e., w; (3, mi; x45),
is the same for all solutions (z;;)j=1,..,, that yield the same total multiplicity M,; :=
>0 M Ty As a result, the optimization within each class can be done independently
of the global optimization of the use of the knapsack capacity W. Thus, for each class,
one can theoretically enumerate all pairs (M; = > migxig, B = 30, pij x;;) that can
be achieved by 0-1 solutions z;;. Note that one only needs to consider undominated
pairs (M;, P;): a pair (M;, P;) is dominated if another class i solution achieves a profit at
least as large with a smaller multiplicity or a greater profit for the same multiplicity. To
compute all undominated pairs, one needs to solve an “all-capacities” knapsack problem
for each class i (a dynamic program is well suited for this), i.e. for each M = a;,...,b;,

we compute:
P,(M max{ZpU T me zi; =M, z;; € {0,1} Vj} (28)

Then, the multiple choice knapsack reformulation of MBKS is given by:

b;
max{) Z — )Ny, ST (M w4 8) Ny < W,

i M=a; i M=a;
b;
>Ny <1Vi Ay € {0,1}Vi, M} (29)
M=a;
This reformulation involves a pseudo-polynomial number of variables. As for CKS, we use

this multi-choice knapsack reformulation approach to benchmark our numerical results.

2.1 Characterizations of optimal solutions

In analyzing the structure of optimal solutions, first note that an optimal solution may
have y; = 1 while the z;;’s are set to the minimum value that allows to satisfy the class

lower bound a;. However, this is not the case when a; = 0 and f; > 0.

14



Observation 5 Under Assumptions 1 and 2, there exists an optimal solution where y; =

0 when »>; x;; = 0.

The characterisation of LP solution to MBKS also relies on a decomposition per item
class:

Observation 6 Consider solutions to the LP relaxation of MBKS. Their projection in
the subspace (x; = > Mij Ty, y;) associated with class i are convex combinations of the

following extreme points:

(i) x;,=0(ie. z;; =0Vj) and y; =0,
(i4) xi=3;mijry=a; andy; =1,

(#1) ;= > ;mij x5 = by and y; = 1.

If the profit per unit of knapsack capacity of extreme solution (ii) is less than that of (iii),
e, if
P (a) = fi _ PEV(b) — fs
wia; +s;  — wib +s;
where PEY (M) is the solution to the LP relaxation of (28), then one only needs to con-

sider solutions that are conver combination of cases (1) and (iii). The reverse case, i.e.
PLP(a;))—f; > PEP(b)—f;
w; ai+s; w; bi+s;

(30)

, can only arise if a; >0 or f; < 0.

This observation results from the analysis of extreme solutions for the single class knap-

sack problems define by constraints (3). Figure 1 illustrates both the case where the slope
PEP(a)—fi  PEP(b)—fi
>
w; a;+8; w; bi+s;

and vice versa.

PEP(ai)—fi PP (b))~ fi PLP(b)—fi
w; a;+s; w; bi+s; w; bi+s;

x; Zq

Figure 1: Ratio of class ¢ profit per unit of knapsack capacity consumption

Similarly to what we did for model CKS, we can derive from Observation 6 a z-re-
formulation of the LP relaxation of MBKS. In the continuous relaxation of MBKS, item

(i,7) can yield a profit per unit equal to

a; b;
. pijm_z.._.fi Pij .- — fi
J 1]
either or
w; a; + S; w; b; + 54

15



or a convex combination of these two, depending of whether it is contributing to the class
effort of targeting extreme solution (i7) or (iii) of Observation 6 or their combination.
Case (7i) can be split in two sub-cases, either a; > 0 or f; < 0. Let I* = {i : a; > 0}
and I/ = {i:a; = 0 and f; < 0}. Thus, I*N I/ = . For i € I/, the extreme solution
(ii) takes the form (z; = 0,5 = 1). Hence, we introduce variable z/ € [0,1] such that
=/ = 1 represents solution (z; = 0,y; = 1). Similarly, for i € I, we define a variable 2,
for each item (i, j) of class 4, such as zf; = 1 if item (i, j) contributes in full to targeting
extreme solution (iz). Symmetrically, variables z}; are defined for i € I = {1,...,n} and
associated with extreme solutions (7i7). With these notations, the LP relaxation of MBKS

can be reformulated as

max Z Z Dij — mzj z” + Z Z Pij — ng Z fz (31)

ZEIaj 1 zte 1 Z iclf
ZZwZ mwzijZZ w; + m”z”—l—ZSZ zZ < W (32)
el j=1 el j=1 2 iclf
LM, Ty .
Zl[a]zij—i— b‘] z;] < 1 Viel* (33)
j= ) 1
ST <1 Viel (34)
=1 b
itz <1 Vel
z € [0,1]Viel j
z, € [0,1)Viel,
2 e [0,1]VieI'(35)

A solution z translates into a solution for the LP relaxation of MBKS as follows:

™M i

L)+ 2] (36)

m. .
_ ~a b _ tj _a
T = 25+ 2 and oy =) ( bt -

(¥}
j 7 bz

Constraints (33-34) are required to enforce y; € [0,1]. Observe that constraints (3) are
built in the definition of the change of variables. Indeed, if we replace = and y by their
expression in z in (3), in the case a; > 0, we obtain:

a; Y (2 77;%] b m” < me z + zfj) < by (2 ml:j + zzl?j mij)
J

j g '

which is always satisfied because ‘;Z < 1 in the left-hand-side and % > 1 in the right-

hand-side. In the case a; = 0, (3) is trivially verified. Hence, we have shown that

Proposition 2 The LP relazation of MBKS is equivalent to the continuous relazation of

binary knapsack problem with class bounds and SOS constraints (31-35).

On one hand, it is known that the LP relaxation of binary knapsack problem with SOS
constraints admits a greedy solution [6]. On the other hand, |15] shows that the LP

16



relaxation of a binary knapsack with class bounds can also be solved using a greedy pro-
cedure. But, solving problem (31-35) requires dealing with both SOS constraints and
class bounds. We have not found a greedy procedure to solve this case involving both
complexities. Instead, we develop a greedy LP solution for the special case where SOS
constraints are redundant, a result that extends that of reference [15] to the case with

setups.

We make the simplifying assumption that all class ¢ items target a filling up to b;

because this corresponds to a better ratio:

Assumption 8 (restrictive)

@i f b
Pij 7, fi < Pij 7, fi
’LUZ'CLZ'—FSZ' B wzb,—l—s,

(i, 7).

This assumption corresponds to the case illustrated by part (b) of Figure 1. Note that

Assumption 1 implies the above since, when f; > 0, either a; > 0 and (p;; — % mi;) <

(pij — {:—1 m;;) while (w; + 21) > (w; + %), or @; = 0 and p;; > 0 as stated in Assumption

6. Hence, Assumption 8 can be understood as a little less restrictive than Assumption 1.

Observation 7 Under Assumption 8, problem (31-35) admits a solution where all vari-

ables z; and zlf have value zero.

Indeed, if Assumption 8 holds and 2§, > 0, one can modify the solution by setting ;" = 0
(witZt)mi;

and zfj/ = z,l?j + 2. This solution modification is feasible with regard to knap-

(wit5H) mij
sack constraint (32) by construction but also with regard to constraint (33) as it can be
easily checked. Moreover, the profit value of the modified solution is not less than the
original. Similarly, if zlf > (, decreasing its value allows to increase some zfj value of

better profit ratio.

Then, we can give a greedy LP solution to MBKS:

Proposition 3 If Assumption 8 holds, an optimal solution to the LP relaxation of MBKS
is given by the following procedure. Sort the items (i,7) in non-increasing order of their

ratio: .
(pij — 3+ ™4y)

S

(wi + §1) my; (31)

Let m = Y ,n; and k = 1,...,m be the item indices in that ordering. K® is the set of

items k that belong to class i:

K'={k: 3je{l,...,n;} withk=(i,7)} .

17



Fori € {1,...,n}, let the critical item for class i be ¢; € K, be such that

keKt k<c; keKi k<c;

Let Ki(l)={ke K':k<ciand k <1}, I’()) ={i : c; <1}, and

=2 ijzb mm-zjw,bw@— S ) (39)

i keKi(l) ¢ ieIb(l) i keKi(l)

Then, let the global critical item, c € {1,...,m}, be the highest index item such that

Wi(e) <W but W)+ (w;, +

ZHW>W (40)

where i. refers to the class containing the global critical item (i.e. ¢ € K') and set

x = 1 forke K'(c) andi=1,...,n, (41)
1
Te; = (b — . my) fori € I’c), (42)
Me; kEKi(c)
1 .

o - ' K’ 4
x (W ¥ =), (W =W (c)) if c € (43)
z, = 0 otherwise (44)
y = 1 fori € I’(c) (45)

ic(e + me x, ) )
Yie = Lek ()Z:% Me ¥ fori:ce K" (46)
¥y = 0 otherwise. (47)

Proof: Observation 7 implies that in the LP formulation (31-35) we only keep the z);
variables. The simplified formulation is that of a continuous multiple class knapsack
problem that admits a greedy solution as proved in [15]. Converting the greedy solution

z into the original variables x and y provides the desired result. "

2.2 Branch-and-Bound

The greedy procedure that allows to solve (31-35) under Assumption 8 can be the
basis for a specialized branch-and-bound algorithm for MBKS that generalizes the depth-
first-search algorithm of Horowitz and Sahni. However, we are confronted with the same
difficulty as for model CKS: the greedy procedure is defined for the z-formulation whose
[P counterpart is not equivalent to model MBKS. To overcome it, we branch on z vari-

ables but make corrections to the primal solutions to make them feasible for MBKS.

To simplify the presentation, we make Assumptions 1 and 2 that imply Assumption

8. Then, the integer version of the z-formulation takes the form

maxzz Dij — m,] Zij (48)

i=1j5=1 Z

18



s.t. ZZ wi+—)mijzi; < W (49)

i=1j=1 Z

J

Problem MBKS and problem (48-51) admit the same LP solution but not the same integer
solution. The Branch-and-Bound strategy is to apply the Horowitz and Sahni scheme to
the above z-formulation, to translate z solution into a feasible solution (x,y) for MBKS,
by applying the mapping (36) and rounding-up the y variables, and to adapt the residual

problem dynamically at each branch-and-bound node.

Fixing z;; to 1, translate into fixing z;; = 1 and also y; = 1 (if the class set-up was
not already set to 1). Hence, for the residual problem, the attractivity of the items (i, j)
from class ¢ with y; = 1 is proportional to their ratio

_Piy (52)

Wi
Thus, at a given branch-and-bound node, the z-formulation of the residual problem takes
the form

max Z Z Dij — mw Zij + Z Z Dij Zij (53)

i€I0 jeJ; eIt jeJ;
Z Z w; + ) mij 2z + Z Z wymijzi; < C (54)
i€V jed; et jed;
JjeJi

;€ {01y Vi, j.  (56)

where I° (resp. I') is the set of classes for which y; is still at value zero (resp. is already
set to 1), J; denotes the set of class ¢ items that have not yet been fixed to 0 or 1, C
denotes the remaining knapsack capacity, and C; is the residual upper bound on class
1 items. By extension of the above arguments, one can easily be convinced that, at a
given branch-and-bound node, problem (53-56) and the residual MBKS problem in its
(x,y)-formulation have the same LP value and therefore computing the LP-solution of
(53-56) provides a valid dual bound for that node. Finally, observe that a preprocessing
can be applied to (53-56). Any item (i, j) with ¢ € I° that is such that (w; m;; +s;) > C
cannot be in the solution of the (x,y)-formulation of the residual problem. Therefore, it

can be removed from the z-formulation (53-56) before computing its LP value.

The LP-relaxation of (53-56) admits a greedy solution. Items whose class is in I° are
sorted by decreasing ratio (37), while those whose class is in I' are sorted by decreas-

ing ratio (52) and the two sorted lists are merged to define the greedy ordering. Then,

19



items are considered in that order and taken into the LP solution while there remains
some knapsack capacity and some class multiplicity. Thus, the “Compute UB” step of
our branch-and-bound is implemented so as to compute the upper bound of Proposition 3
adapted to the residual problem: for items whose class is in I', we use ratio (52) instead
of (37), capacity consumption w; m;; and profit p;;. This upper bound will have to be
recomputed after each fixing to zero as in the Horowitz and Sahni algorithm, but also
after each fixing to 1 of a new y; variable, as it modifies the partition I°, I', and hence

the partition of the items.

Our branch-and-bound algorithm is presented in Table 3. Items k£ denotes the next
item in the greedy ordering for the current residual problem (53-56). It is obtained dy-
namically from two static lists that are sorted a priori. Each item (i, j) is represented
twice, once in list L° as an item whose class is not setup and once in list L! as an item
whose class is setup (defining specific py, wy, and my, value as described in Table 3). Each
list is appropriately sorted by decreasing ratio Z—Z. One moves forward in list L° (resp.
L') ignoring items whose class is setup (resp. not setup) and a function named next
compares the next candidate from the two lists and returns that with the largest ratio i—’;.
However, the cursor in each list must be reset after each modification of a class setup.
The order in which items have been considered is memorized in a data structure to enable

backtracking through a call to function prev.

The other notations used in Table 3 are analogous to that of Table 1, except for K;
that stands for the remaining capacity /multiplicity within class i. Moreover, i, denotes
the class index of item k& and jj, its index within the class. In “Forward Moves”, we set z;’s
to one in formulation (53-56), which amount to fixing z(;, ;) to 1 in MBKS. If i, € I°,
we set y;, = 1, we update C', Z, and the resulting residual problem formulation (placing
ir € I'), and we reset the greedy ordering of the remaining items. Then, we return to
the “Compute UB” step. Otherwise, we continue our sequence of fixing z;’s to one. This
is repeated while there remains some class capacity and some knapsack capacity to insert
further items, i.e., while C' > wyp,;,, where wy,;, is the smallest item weight. Otherwise, the
next item is set to zero and the dual bound must be recomputed. A leaf node is reached
when the knapsack is filled or there are no more items to consider. In the latter case, as
the branch z, = 1 has been explored, the branch z, = 0 does not need to be explored as it
is dominated. “Backtracking” must insure that the class setup is set to zero when the last
positive item of that class is set to zero. This is done in the Withdrawltem(k) subroutine
of Table 4. Within this branch-and-bound procedure lies a primal greedy heuristic that
could be used independently. Note that alternative primal heuristics can be developed

that make use of decomposition of the problem into knapsack subproblems for each class.

20



Table 3: Branch-and-Bound for MBKS when f; > 0 and a; =0 V2

Initialization: Let N =Y, n;. Each item (7, j) is duplicated. The first copy is defined by
my = my;, wy = (w; + Z—Z) mi;, and pg = pij — {—Z_’mij, k=1,...,N;and
LY is the list of the first copies sorted in decreasing order of their ratio (37).
The second copies are defined by my = m;;, wi, = w; m;;, and py = p;;, Vk; and
L' is the list of the second copies sorted in decreasing order of their ratio (52).
Let Wiy, = ming{w;, myp}; C=W; Ci=b;, Vi; Z =0, x =y = 0;
INC = 0; k is the first item of L°. Let next(k) be a subroutine that returns
the best item next to k in greedy order for the current residual problem (53-56)
by proper extraction from either L° or L', reset reactualizes it after each class
setup modification, and prev returns the item fixed at the previous B&B node.
Compute UB: Let U=7; K =C,; K; =C;, Vi; and let [ = k.
Step A: While (I < N) and (w; < K) and (my < K;,) {
If (w;, my, 5, + si,(1 —y;,) > C), {l = next(l), goto Step A. }
Ut=p;; K—= wy; K;;—= my; | = next(l). }
Step B: If (I > N), goto Test Pruning.
Step C: If ((my > K;,) and (w, I;” < K)),
{(Ut=p 5 K—=w

l
. B K, =05 1 = neat(l); go to Step A}.
Step D: /* (w; > K) or even (w; Kill > K) */ U+=p wKz

L.
my ?
m

Test Pruning: If (U < INC), goto Backtracking.
Forward Move: While (k < N) and (w;, mi + s;, (1 —v;,) < C) and (my < C;,), do {
Tiy,gy) = 1; C==wy; Ci == my;; Z+= py;
if (y;, = 1), then k = next(k);
else {y;, = 1; C—=s,;,; Z—= f,; reset; goto Compute UB; } }
If (k> N)or (C < wni), /* leaf node */ goto Record Incumb.
Set item to 0:  /* ((w;, mp+s; (1 —y;,) > C) or (my > C;, ) */
k = next(k). If (k > N), goto Record Incumb. Else, goto Compute UB.
Record Incumb:If (Z > INC), then INC = Z and record (x,y).
Pre-backtrack: If (k> N), {k = prev; if (2, ;) = 1), WithdrawItem(k); }
Backtracking: Do { k = prev; } while ((z, j,) = 0) and (k > 1)).
If (k = 0), STOP.
[* (26,50 = 1) */ WithdrawItem(k); k = next(k).
Go to Compute UB.

21



Table 4: subroutine WithdrawItem (k) of the Branch-and-Bound for MBKS

Let Llig, k) = 0; C+= wy; Cik"i‘: my; £—= Dg.
If (Cy, = b;), do {ys, = 0; C+= s;,; Z+= fy,; reset; }.

2.2.1 Dynamic programs for model MBKS

A solution by dynamic programming assumes integer data: s;, w;, and W € IN. Let
us first consider the unbounded case where a; = 0 and b; > {Ww;z‘”J for all 2. Then, one can
write a dynamic programming recursion where V*(C') defines the best value that can be
achieved using items from class k = 1,...,7 with a capacity consumption C' and V¥ (C)
defines the best value that can be achieved using items from class k = 1,...,7 — 1 plus
at least one item among the first j items of class ¢, with a capacity consumption C. The

V3(C') and V*(C) values can be computed recursively as follows:

ViI(C) =max{ V" C), VN C —w;mi) + pij,
VIO —wimij — si) — fi + pig} (57)
ViC) =max{ VI7Y(C), VI"(C), VITHC —s) — fi} .

Such dynamic program requires O(3; n; W) operations. 2

For the bounded case, one must first solve a knapsack sub-problem within each class
before solving the overall problem: Let U?(M) be the optimal value that can be achieved
with class i items using a multiplicity of exactly M units. UY (M) is defined by analogy
with the above V¥(C) definition. One can compute U*(M) and UY(M) by dynamic
programming: Initially, U*(0) = 0 Vj and U*°(M) = —oo for M = 1,...,b;; then, one
sets U (M) = U~ (M) for M =1,...,m;; — 1 and one computes

U7 (M) = max{U" (M), U7 Y (M — my;) + pi;} (58)
M = mj,...,b; and for j = 1,...,n,. Then
U'(M)=U""(M) YM . (59)

These computations requires O(n; b;) operations for each class i. Therefore the overall
complexity for computing all the U*(M) is O(3; n;b;) (which is bounded by O(3; n;1W)

?Observe that this complexity O(>", n; W) does not imply that the multiple class problem requires a
higher complexity than the integer knapsack problem treated in Section 3.1 (for which the unbounded
problem can be solved in O(nW)). Indeed, the input data file is of length proportional to ), n; since it
includes the description of the profit values p;;.

22



as b; < L%j) As an aside, observe that when m;; = 297! Vi, j, a given multiplicity M

can only be obtained from a single combination of 0-1 items (,j) and U(M) can be
computed directly, although this does not change the computational complexity. >From
U'(M) values, one can compute V¢(C'), the best value that can be achieved with items of

class 1 up to ¢ and capacity C:

VHC) = max{V'(C), max {VITHC —wi M =)+ U(M) = fi}}. (60)

yi=0

yi=1

This requires O(nW max;{b;}) operations (which is bounded by O(nWW?2) but can be much
smaller than O(nW?) in practice).

When an integer knapsack problem is transformed into a binary multiple class knap-
sack problem one can treat the class bounds a; and b; implicitly and use the dynamic
recursion (57) for the unbounded case to benefit from the lower complexity O(3>; n; W).
Indeed, in such case, the profit is defined for the class and not for the 0-1 items, therefore
Assumption 2 is valid (quantity a; can be incorporated to the fixed cost and weight). To
eliminate the upper bound b;, one just needs to amend the 0-1 transformation defined
in the introduction: set n; = |log,b;] + 1 and m;; = 297! for j = 1,...,n; — 1 but

n;—1
M, = b — Doy My

3 Extensions to non-binary models

We now examine possible extensions of the analysis of model CKS and MBKS to their

integer counterpart.

3.1 The integer knapsack problem with setups

Consider the problem with integer variables x given by (7-11), where a;,b; € IN. Refor-
mulation (13) is now valid without having to make an extra assumption on the integrality
of data. Assumptions 2, 3, and 4 remain valid without loss of generality. But the proof
of validity of Assumption 4 must be adapted now that bounds a; and b; are assumed
integer: If 0 < f; < p; b; for some 4, then, in any optimal solution, either z; = y; = 0
or x; > [%1, because a solution where 0 < z; < L%J < f)—l can be improved by setting
r; = y; = 0. Thus, [1{—21 can be interpreted as a lower bound a; and eliminated as in the
proof of validity of Assumption 2. However, the nice characterization of optimal solution

of Observation 2 does not carry on to IKS: case (i) can now arise for more than one class.

The LP solution of IKS is obviously that of CKS. Hence, Proposition 1 and Obser-
vation 4 extend to IKS. The primal greedy heuristic of Table 2 can be adapted for IKS.

23



In Step D, instead of solving C K P(y), one can use a standard primal greedy procedure
for the integer knapsack problem in x (y being fixed) that is defined by (?7-??) with
additional constraints x; € IV Vi € I. However, the branch-and-bound procedure for
CKS cannot be simply extended for IKS because the weaker characterization of optimal
solution implies that there are more than two branches to be considered for each class.
Note that the static greedy ordering (23) assumes x; = b; while branching decisions on x;
can lead to considering x; € {1,...,b; — 1}. Therefore, after making branching decisions
that define new bounds on z;’s, the greedy ordering of the classes changes for the residual
problem. However, another approach that exploits the results of this paper is possible. It
consists in transforming the IKS model into a MBKS model using the 0-1 transformation

of [15] and apply the branch-and-bound procedure proposed above for model MBKS.

Assuming integer data (s;, w;, and W € IN), a dynamic programming solution can
easily be obtained by generalizing the standard dynamic program for the integer knapsack
problem. Let Vi(C) be the best value that can be accumulated using items 1 up to i and
using a capacity C: i.e. VI(C) = max{>t_ (pp@r — fe ) : Sooey(Wrzp+spyp) < O ap <
b Y, Tx € IN,y, € {0,1} for k= 1,...4} . Setting VO(C) =0 for all 0 < C' < W, the

values V*(C') can be computed recursively:

forall 0 < C < W and k= 1,...,n. This requires O(nW?) operations in the worth case.
Then, the optimal solution value is given by V"(W). A dynamic program of a better
complexity O(nW log W) can be achieved by transforming the integer knapsack problem
in a 0-1 model and applying the dynamic program presented at the end of Section 2.2.1.
W—s,;

When the item upper bounds are not tight, i.e. b; > { J for all 7, the recursion can

take a simpler form. The complexity gets down to O(nW) operations as is the case for
the standard unbounded integer knapsack problem. Let V¥(C,y) be the best value that
can be accumulated using items 1 up to ¢, with setup variable y; = y and using a capacity
C. Then,

VH(C,0) = max{V"1(C,0),V"1C,1)}  and
ViC, 1) = maX{Vi(C' —5;,0) — i, VI(C —w;, 1) + p;}

x;=0 z;>1

The optimum is given by max{V"™(W,0), V"(W,1)}.

3.2 The multiple-class integer knapsack with setups

Consider model MIKS, whose formulation is (1-6), as a generalization of model MBKS

where variables z;; take integer value. Then, u;; € IV defines an upper bound on z;;.

24



Due to constraints (3), u;; can be redefined as min{u;, [ 2- j} Results derived for MBKS
can be extended for MIKS, basically by introducing the multlphcatlve factor u;; where
appropriate. Subproblem (28) becomes (M) = max{>>; pij o4 : >; mij 5 = M, x5 €
{0,...,u;;} Vj}. The LP solution of MIKS have the same properties as that of MBKS:
Observation 6 and Proposition 2 are still valid. Proposition 3, that provides a greedy LP
solution to MBKS under Assumption 8, can be generalized for the integer case. The greedy
ordering of the items remains to sort item by non-increasing ratio (37). The definition of
intra class critical items (38) takes a modified form: ¢; is such that > e pee, 70w <
bi but Yjeri p<e Mk ux > by . While (39) becomes

Z Z w; + —) my ug + Z Wy + b- Z My Ug)

i keKi(l ieIb(l) keK(l)
and the definition (40) of the critical item becomes:
W(e)<W but Wi(e)+ (w; + Z—) Mette > W (61)

The greedy LP solution (x,y) is given by (41-47) where each multiplicity m; must be

replaced by my ug. Thus, we have shown that

Proposition 4 Under Assumption 8, the LP relazation of MIKS can be solved by a greedy

algorithm.

A dynamic programming solution assumes integer data. Recursion (57) can be adapted
for MIKS in the case bounds are loose, i.e. a; =0, b; > {Ww_isiJ, U > LSJJ for all i: let

Vij (C) = max{Vi’j_l(C), Vi’j(C' — W; mij) +pij, Vi_l(C — Wi My — Si) - fz +pz‘j}

while the computation of V*(C) remains the same. Its complexity is O(>; n;W).

For the bounded case, recursion (60) can easily be adapted by redefining (58) as

U7 (M) = max {U""Y (M —my; x) + p;; v} (62)

0<z<u;;

The overall complexity becomes O(3; n;W?).

When only bounds u;; are tight but a; and b;’s are loose (i.e. a; =0, b; > VVW;SJ Vi),

a better complexity can be achieved using binary decomposition of the integer variables

Tij. Let
nij = |logyuii| + 1 (63)
and define n;; items (4, j, k) with
ng;—1
Myl = My Qk_l for k = 1, R Y 1 and mijmj = U5 — Z Qk_l (64)
k=1

25



and

ng;—1

Dijk = Dij ¥ lfork=1,..., ni; — 1 and pyjn,; = pij (Ui — Z k-1 mij) (65)

k=1
Constraint (4) is replaced by z;x < y; V(4, j, k). In this way, bounds u;; are built into the
reformulation and recursion (57) for the unbounded problem can be used with complexity
The primal heuristic that can be derived from the first plunge depth into branch-and-

bound tree of Table 3 can be extended to the integer case: one must set z; to

©=5)] Cu

x = min{uy,
Wy, Mg

’mk

To solve MIKS by branch-and-bound, one can convert it to a MBKS problem using a
binary decomposition and use the procedure of Table 3. When the item upper bounds are
loose, i.e., u;; > UZ;

suggested in [15] in order to avoid multiple representations of the same solution. However,

J, the 0-1 transformation can be done defining myj,,; = m;; 2nii—1 ag

when bounds u;; are tight, we use the 0-1 transformation (63-64) where mj,,; = u;; —
e ' 2k=1 gven though it suffers from symmetry. Indeed, enforcing the u,;; bounds by

adding explicit constraints would yield a model that has a structure from MBKS.

4 Numerical tests

As for the standard knapsack problem, whether dynamic programming or branch-and-
bound is a more efficient approach will typically depend on the size of numbers (such as the
capacities) and the correlation between item profits and weights: dynamic programs have
pseudo-polynomial complexity but tend to reach their worst case bound; while branch-
and-bound procedures have exponential worst case complexity but, in practice, they tend
to use fewer iterates than DP to prove optimality when instances are not too correlated
(the greedy ordering is not really discriminant for correlated instances). Numerically com-
paring branch-and-bound and dynamic programming for knapsack problem with setups
would merely reproduce this standard analysis. Anyway, these pure approaches are made
obsolete nowadays by hybrid approaches. The best performing approaches for knapsack
problems are those combining the advantages of both branch-and-bound and dynamic
programming paradigm, truncating the enumeration based on dominance principle and
dual bounds. They are dynamic programs enumerating solution starting from the greedy
solution and progressively extending the so called core around that greedy solution and

making extensive use of dual bound pruning and other form of preprocessing (see [7]).

As it was made clear from the introduction, our purpose in this paper was not to

develop the most effective algorithm for the knapsack problem with setups, but instead,

26



to show that the properties on which the knapsack algorithms rely can be extended to
the case with setups. In particular, our main algorithmic contribution was to extend the
branch-and-bound paradigm (greedy enumeration scheme and greedy dual bounds) to the
case with setups. Thus, the focus of our numerical section is on testing our extensions of
Horowitz and Sahni branch-and-bound algorithm. We compare the branch-and-bound al-
gorithms proposed in Table 1 and in Table 3 to a standard MIP solver (Xpress-MP [17], in
our tests) and to the best approach of the previous literature for knapsack problems with
setups, namely the conversion into a multiple choice knapsack with pseudo-polynomial
size followed by the application of a specialized algorithm for the multiple choice knapsack.
We must insist on the fact that the algorithms of this paper have not been developed so
as to incorporate the latest techniques for improved efficiency outlined in the introduction
[12]. This makes comparison to specialized solver for multiple choice knapsack somewhat
bias.

For the tests on model CKS, we generate random instances with n € {1000, 5000, 10000}

and W = 100 * n. We want approximately 20% of the items in the solution, hence on av-

erage (s; +b;w;) = 0%. For each class i, s; +w; are generated from a uniform distribution
- 0.35W 0.65W7. : 0.5W .
in interval [%°5, %957 ]; thus, s; +w; is on average equal to %5~ and b; must be approxi-
=5 —3S; . .
mately equal to 222—. We set s; = a w;, where « is a parameter in [0, 4] and we draw b;
3

1.5W
uniformly in [1, L%jslj] The profit p; is uniformly distributed in [(1 — B)w;, (1 + 5)w;]
where (3 is a parameter in [0, 1] measuring the correlation between item weight and profit,
and f; is uniformly distributed in [(1 — 3)s;, (1 + 5)s;].

The results are presented in Table 5. The first column indicates the chosen parameters
of 10 random instances for the 18 combination of parameters n, o, and 3. The following
columns give the average computation time for the standard MIP solver “Xpress-MP”, the
average time obtained using the specialized multiple-choice knapsack dynamic program
solver of Pisinger [11] (“MCKP?”) after application of transformation (13) and the average
time of our Branch-and-Bound algorithm of Table 1 (“BB”). Time units are seconds on a
PC bi-pro. Xeon 3GHz, 2Go. We also run tests using a basic dynamic program (which
would be more in line with our basic Branch-and-Bound solver). For illustration, our
computation times for n1000 — a2 — (0.5 was then 695.16s and for n5000 — a2 — (30.5
it was 13226.49s which is more than 250 time slower that the solver of Pisinger. The
last line of Table 5 provides average times over all classes. It shows that our basic BB
algorithm is about 100 time faster than transforming the problem to a multiple choice

knapsack and applying an efficient solver to the reformulated problem.

For the tests on model MBKS, we generate random instances with a number of item
classes n € {10,50,100}, W = 1000 * n and we impose that 50% of classes have a positive

27



Table 5: Computation time for CKS on random instances
parameters Xpress | MCKP | BB

n1000 — a2 — (30.2 20.84 2.24 1 0.05
n1000 — a2 — (30.5 11.11 2.17 1 0.05
n1000 — a2 — (50.8 11.67 2.70 1 0.04
n1000 — a4 — (50.2 11.66 1.63 | 0.04
n1000 — a4 — 0.5 8.99 1.62 | 0.03
n1000 — a4 — (50.8 9.34 1.64 | 0.04
n5000 — a2 — 0.5 388.25 48.77 | 0.55
nb000 — a2 — (30.2 504.80 50.68 | 1.01
n5000 — a2 — (50.8 301.29 47.70 | 0.38
n5000 — a4 — (0.2 601.20 37.60 | 0.60
n5000 — a4 — 0.5 225.82 36.63 | 0.44
n5000 — a4 — (50.8 301.23 36.33 | 0.31
n10000 — a2 — 0.2 | 1644.59 | 195.96 | 2.84
n10000 — a2 — 0.5 | 1214.14 | 192.85 | 1.28
n10000 — a2 — 50.8 | 1053.59 | 186.00 | 0.98
n10000 — a4 — 50.2 | 959.92 | 147.29 | 2.34
n10000 — a4 — 0.5 | 938.30 | 143.40 | 0.98
n10000 — a4 — 0.8 | 796.34 | 143.87 | 0.80
average 500.17 71.06 | 0.71

28



setup (f; > 0, s; > 0). For each class i, s; + w; are generated from a uniform distribution

w W
20n 7 2n

[0,4] («vis set to 0 if the class has no positive setup); a; = 0, b; is uniformly distributed in

[ %J, LWL;siJ], n; is uniformly distributed in [b;, 5b;] (which can result in large values

of n; € [200,15800]), f; is uniformly distributed in [(1 — 3)s;, (1 + ()s;] where 3 is a

parameter in [0, 1] measuring the correlation between weight and profit. For each item

in interval | | (so s; +w; € [50,500] ), with s; = a w; where « is a parameter in

J in class ¢, m;; is generated in interval [1, %] and w;; = m;;w;. We try to have ratios
rij = 24— that take different values in [1 — 3,1+ 3] for items of the same class and also
15 Wi

between items of different classes: we generate g;; in [0, M| where M is a large constant

and we set r;; =1 — 8+ 5 gy % Then, we compute p;; = [m;w;ri; .

Table 6: Computation time for MBKS on random instances

parameters >un; | Xpress | MCKP BB
nl0 — a2 — 0.2 3256.4 | 168.24 3.18 1.01
nl0 — a2 — 0.5 3256.4 | 177.24 3.34 0.14
nl0 — a2 — 30.8 3256.4 | 282.20 3.29 0.15
nl0 — a4 — 0.2 4781.2 | 280.79 8.29 5.59
nl0 — a4 — 0.5 4781.2 | 781.66 8.86 1.15
nl0 — a4 — 30.8 4781.2 | 1125.58 8.58 0.36
nb0 — a2 — 0.2 60832.9 386.78 | 596.27
nb0 — a2 — 0.5 60832.9 395.64 | 155.48
nb0 — a2 — 0.8 60832.9 395.36 88.19
nb0 — ad — 0.2 84524.7 1130.54 | 808.13
nb0 — ad — 0.5 84524.7 1130.70 | 930.23
nb0 — a4 — 0.8 84524.7 1142.29 | 174.03
n100 — a2 — (0.5 | 231698.0 4201.33 | 1204.17
n100 — a2 — (0.2 | 231698.0 4120.22 | 4012.15
n100 — a2 — (50.8 | 231698.0 4163.15 | 1338.06
n100 — a4 — (50.2 | 335019.0 11032.00 | 6506.93
n100 — a4 — (0.5 | 335019.0 11161.46 | 5387.78
n100 — a4 — (0.8 | 335019.0 11161.13 | 5838.55
average 120018.7 2803.12 | 1502.69

The results for MBKS are presented in the Table 6. The column “}"; n;” gives the
total number of items. The last three columns give the average computation time on
10 random instances for the standard MIP solver “Xpress-MP” [17|, the average time
to apply transformation (29) and then the specialized multiple-choice knapsack dynamic

program solver of Pisinger [11| (“MCKP”), and the average time taken by our Branch-

29



and-Bound algorithm of Table 3 (“BB”). Time units are seconds. “Xpress-MP” could not
solved any instances with n = 50 and n = 100 within our time limit of respectively 3h
and 10h. In average BB is faster than MCKP, but we observe that for 10% of instances,
MCKP is faster. For the correlated problem instances (with § = 0.2), BB computing
times exhibits large variation around the average value (BB can take more than 5h for
one instance and less than 20s for another). While, the computation time for MCKP
is similar for every instance in a group. In the MCKP approach, the bottleneck is the
time spent at transforming the problem into a multiple choice knapsack (taking more
than 95% of the computing time). One has to solve a “all-capacities” knapsack problem
for each class, computing the best profit (28) for each multiplicity M = 0,---,b;. (The
“all-capacities” knapsack problem is to the knapsack problem what the “all-pairs” shortest
path problem is to the shortest path problem, see |7|, section 1.3). To do this, there is
no much better algorithm than a basic dynamic program (which is what we use). The
average times reported at the bottom of Table 6 shows that, over all instance classes, BB

is approximately 2 time faster than MCKP on average.

5 Conclusion

The paper provides a review of the literature on knapsack problems with setups,
discusses various reformulation, and presents specialized branch-and-bound procedures
extending the standard algorithm for the knapsack problem. Numerical experimentation
shows that the latter are competitive approaches to knapsack problems with setups. Dy-
namic programming recursion are provided for the sake of establishing the complexity
of the knapsack variants with setups. The greedy enumeration scheme and greedy dual
bounds of our branch-and-bound procedures could be exploited to develop hybrid dynamic
programming approaches in future work in the line of the best performing approaches for
the standard knapsack problem. The assumption that all item weights are a multiple of
their class weight is essential for solving the LP relaxation by a greedy procedure. How-
ever, in the above multiple choice reformulations as well as for the the dynamic programs
presented herein, this assumption was not used. Hence, the latter approaches extend to
the case where this assumption does not hold. Extentions to the integer models IKS and

MIKS have also been considered.

References

|1| E. Balas and E. Zemel. An algorithm for large zero-one knapsack problems. Opera-
tions research, 28:1130-1154, 1980.

30



[2] E.D. Chajakis and M. Guignard. xact algorithms for the setup knapsack problem.
INFOR, 32(3):124-142, 1994,

[3] G.B. Dantzig. Discrete variable extremum problems. Operations research, 5:266-277,
1957.

[4] M.X. Goemans. Valid inequalities and separation for mixed 0-1 constraints with
variable upper bounds. Oper. Res. Lett, 8:315-322, 1989.

[5] R. Jans and Z. Degraeve. Improved lower bounds for the capacitated lot sizing
problem with setup times. Oper. Res. Letters, 32:185—-195, 2004.

[6] E.L. Johnson and M.W. Padberg. A note on the knapsack problem with special
ordered sets. Operations Research letters, 1:18-22, 1981.

|7] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer, Berlin,
Germany, 2004.

|8] S. Martello and P. Toth. Knapsack Problems: Algorithms and computer Implemen-

tations. Wiley-Interscience Series in Discrete Mathematics and Optimization, 1990.

|9] G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization. John
Wiley & Sons, Inc, 1988.

[10] N. Perrot. Advanced IP column generation strategies for the cutting stock stock prob-
lem and its variants. PhD thesis, University Bordeaux 1, 2005.

[11] D. Pisinger. A minimal algorithm for the multiple-choice knapsack problem. Furopean
Journal of Operational Research, 83:394-410, 1995.

[12] D. Pisinger and P. Toth. Knapsack problems. Handbook of Combinatorial Optimiza-
tion, 1:299-428, 1998.

[13] H. Sural, L.N.Van Wassenhove, and C.N. Potts. The bounded knapsack problem
with setups. INSEAD working paper series, 97-71-TM, 1997.

[14] F. Vanderbeck. Computational study of a column generation algorithm for bin pack-

ing and cutting stock problems. Mathematical Programming, 86:565-594, 1999.

[15] F. Vanderbeck. Extending dantzig’s bound to the bounded multi-class binary knap-
sack problem. Mathematical Programming, 94:125-136, 2002.

[16] F. Vanderbeck. Column Generation, chapter 12. Springer, 2005.

[17] XPress-MP. User guide and reference manual. Dash Optimization, Release 12.

31



