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Abstract

For many industries (e.g., apparel retailing) managing demand through price adjustments

is often the only tool left to companies once the replenishment decisions are made. A

significant amount of demand uncertainty can be resolved using the early sales information.

In this study, a Bayesian model is developed to summarize sales information and pricing

history in an efficient way. This model is incorporated into a periodic pricing model to

optimize revenues for a given stock of items over a finite horizon. A computational study is

carried out in order to find out the circumstances under which learning is most beneficial.

The model is extended to allow for replenishments within the season, in order to understand

global sourcing decisions made by apparel retailers. Some of the findings are empirically

validated using data from U.S. apparel industry.
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1. Introduction

Fashion goods such as ski–apparel or sunglasses are characterized by high degrees of demand

uncertainty. Most of the merchandise in this category are new designs. Although some of

the demand uncertainty may be resolved using sales history of similar merchandise offered in

previous years, most of the uncertainty still remains due to the changing consumer tastes and

economic conditions every year. Retailers of these items face long lead times and relatively

short selling seasons that force them to order well in advance of the sales season with limited

replenishment opportunities during the season. Demand and supply mismatches due to

this inflexible and highly uncertain environment result in forced mark–downs or shortages.

Frazier [21] estimates that the forced mark–downs average 8 percent of net retail sales in

apparel industry, which he states is also an indication of as much as 20 percent in lost sales

from stock–outs. He estimates that the overall resulting revenue losses of the industry may

be as much as $25 billion.

In 1985, U.S. textile and apparel industry initiated a series of business practices and

technological innovations, called Quick Response, to cut down these costs and to be able

to compete with foreign industry enjoying lower wages. Quick Response aims to shorten

lead times through improvements in production and information technology. As a result,

production and ordering decision can be shifted closer to the selling season which will help

to resolve some uncertainty. Moreover, additional replenishment opportunities during the

season may be created. See Hammond and Kelly [21] for a review of Quick Response and

Sen [37] and Sen [38] for reviews of operations and current business practices and trends in

the U.S. apparel industry.

Despite the efforts of domestic manufacturers to remain competitive in this industry,

retailers are using more and more imports to source their apparel, preferring cost advan-

tage over responsiveness. For most imported apparel and some domestic apparel, managing

demand through price adjustments is often the only tool left to retailers once the buying

decisions took place. These adjustments are usually in the form of mark–downs in the ap-

parel industry. Fisher et al. [19] note that 25 % of all merchandise sold in department stores

in 1990 was sold with mark–downs. Systems that can intelligently decide the timing and

magnitude of such mark–downs may help balance the supply and demand and improve the

profits of these companies operating with thin margins. Despite enormous amount of data

made available to decision makers, such intelligent systems have found limited use in the
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apparel industry. Recent academic research such as Gallego and van Ryzin [22] and Bitran

and Mondschein [6] successfully model dynamic pricing of a given stock of items when the

demand is probabilistic and price sensitive. These studies assume that the retailer’s estimate

of the demand does not change over the course of the season. However, substantial amount

of uncertainty about the demand process can be resolved using the early sales information.

The purpose of this paper is to develop a dynamic pricing model that incorporates demand

learning. By demand learning, we mean learning by using the early sales information during

the selling season as opposed to improving forecasts over time before the start of the season.

A considerable portion of demand uncertainty can be eliminated by observing early sales

in the apparel industry. A consultant at Dayton Hudson Corp. states “a week after an

item hits the floor, a merchant knows whether it’s going to be a dog or a best–seller”

(Chain Store Age [12]). For our pricing only model, we assume that ordering decision has

already been made with the best use of pre–season information and no further replenishment

opportunities are available to the retailer. Basically, the model uses a Bayesian approach

to update retailer’s estimate of a demand parameter. Our model enables us to summarize

sales and price history in a direct way to set the problem as a computationally feasible

dynamic program. We also conduct a numerical study to analyze the impact of different

factors on pricing decisions. First, we study how the accuracy and degree of uncertainty of

the initial demand estimates, starting stock levels and price sensitivity of customers impact

optimal price paths and expected revenues. We are also interested in finding the conditions

under which earlier sales information has the most impact on revenues and whether it is

always optimal to use this information. Further, we explore the trade–off between more

information and early control in pricing decisions. Finally, we extend the model to account

for the possibility of re–ordering during the selling season. This helps us to understand the

possible trade–offs for using quicker but more costly domestic manufacturing to achieve such

flexibility.

Next, we review literature on Bayesian learning in inventory control and dynamic pricing

of fashion goods. We present our basic model in Section 3. Our computational analysis is in

Section 4. Section 5 studies the effects of inventory flexibility during the horizon. Section 6

states our conclusions and avenues for future research.
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2. Literature Survey

Inventory models that incorporate the updating of demand forecasts have been studied

extensively. Most of these models utilize a Bayesian approach to update demand parameters

of a periodic inventory model. Demand in one period is assumed to be random with a known

distribution but with an unknown parameter (or unknown parameters). This unknown

parameter has a prior probability distribution which reflects the initial estimates of the

decision maker. Observed sales are then used to find a posterior distribution of the unknown

parameter using Bayes’ rule. As more observations become available, uncertainty is resolved

and the distribution of the demand approaches its true distribution. The prior distribution of

the unknown parameter should be such that the posterior distribution is similar to the prior

which could be calculated easily. In addition, the demand distribution and the distribution

of the unknown parameter should enable the decision maker to summarize information such

that a dynamic program to solve the problem is computationally feasible. See DeGroot [15,

chapter 9] for such distributions.

Demand learning in inventory theory using a Bayesian approach is first studied by Scarf

[32]. He studies a simple periodic inventory problem in which at the beginning of each period

the problem is how much to order with the assumption of linear inventory holding, shortage

and ordering costs and an exponential family of demand distributions with an unknown

parameter. The distribution of the unknown parameter is updated after each period using

Bayes’ rule. He formulates the problem as a stochastic dynamic program and among other

results, shows that the optimal policy is to order up to a critical level and the critical level for

each period is an increasing function of the past cumulative demand. Iglehart [25] extends

the results of Scarf [32] to account for a range family of distributions and convex inventory

holding and shortage costs. Azoury and Miller [3] show that in most cases non–Bayesian

order quantities are greater than Bayesian order quantities, but also state that this may

not always be true. The dynamic programs used in these studies have two–dimensional

state spaces, one for the starting inventory level and one for the cumulative sales. Scarf

[33] and Azoury [4] show that the two–dimensional dynamic program can be reduced to

one–dimensional for some specific demand distributions.

A particular form of Bayesian approach to demand learning is assuming Poisson demand

with an unknown rate in each period. The unknown demand rate’s prior distribution is

assumed to be Gamma, resulting in an unconditional prior distribution of demand which can
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be shown to be Negative Binomial. Posterior distributions are also Gamma and Negative

Binomial whose parameters can be calculated by using only cumulative demand. These

specific distributions are used to model inventory decisions of aircraft spare parts by Brown

and Rogers [10]. Popovic [31] extends the model to account for non–constant demand rates.

Demand learning models are most valuable to inventory problems of style goods that are

characterized with moderate to extreme degrees of demand uncertainty that is resolvable

significantly by observing early sales. Murray and Silver [28] use a Bayesian model in which

the purchase probability of homogeneous customers is unknown but distributed priorly with a

Beta distribution. This distribution is updated after each period to optimize inventory levels

in succeeding periods. Chang and Fyfee [13] present an alternative approach to demand

learning. Their model defines the demand in each period as a noise term plus a fraction

of total demand which is a random variable whose distribution is revised once the sales

information becomes available each period. Bradford and Sugrue [9] use Negative Binomial

demand model described earlier to derive optimal inventory stocking policies in a two–period

style–goods context.

Fisher and Raman [20] propose a production planning model for fashion goods which uses

early sales information to improve forecasts. Their model, which is called Accurate Response,

also considers the constraints in the production systems such as production capacity and

minimum production quantities. Iyer and Bergen [26] study the Quick Response systems,

where the retailers have more information about upcoming demand due to the decreased

lead times. They use Bayesian learning to address whether the retailer or the manufacturer

wins under such systems. Eppen and Iyer [16] develop a different methodology for Bayesian

learning of demand. The demand process is assumed to be one of a set of pure demand

processes with discrete prior distribution. This distribution is updated periodically based on

Bayes’ rule. This demand model is used in a dynamic programming formulation to derive

the initial inventory levels and how much to divert periodically to a secondary outlet for a

catalog merchandiser. Eppen and Iyer [17] use the same demand model to study the impact

of backup agreements on expected profits and inventory levels for fashion goods. Gurnani

and Tang [23] study the effect of forecast updating on ordering of seasonal products. Their

model allows the retailer to order at two instants before the selling season. The forecast

quality may be improved in the second instance, but the cost may either decrease or increase

probabilistically.

All of the studies above ignore one crucial aspect of the problem: pricing. In economics
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literature, Lazear [27] studies clearance sales where he uses Bayesian learning to update

the reservation price distribution after observing early sales in the season. However, his

model considers the initial and the mark–down prices of a single item and thus lacks the

dynamics of price adjustments for a stock of items. Balvers and Casimano [5] incorporate

Bayesian learning in pricing models, but they assume a completely flexible supply and ignore

inventories that link the pricing decisions. Style goods, on the other hand, face supply

inflexibility as a result of short seasons, long lead times and limited production capacities.

This characteristic of the problem gave rise to models such as those in Gallego and van Ryzin

[22] and Bitran and Mondschein [6] that dynamically price the perishable good over the

selling season. Both of these models assume that there is no replenishment opportunity and

the only decisions to be made are the timing and magnitude of price changes over the course

of the season. Gallego and van Ryzin [22] use a Poisson process for demand where the demand

rate depends on the price of the product. Monotonicity results as a function of the remaining

stock level and remaining time in the selling season are derived via a dynamic continuous–

time model. Among other results, they show that the optimal profit of the deterministic

problem, in which demand rates are assumed to be constant, gives an upper bound for the

optimal expected profit. For the continuous price case, fixed–price heuristics are shown to

be asymptotically optimal. For the discrete price case, a deterministic solution can be used

to develop again asymptotically optimal heuristics. Feng and Gallego [18] derive the optimal

policy for the two price case. In Bitran and Mondschein’s [6] model, the purchase process for

a given price is determined by a Poisson process for the store arrival and a reservation price

distribution. They show that the model is equivalent to the model in Gallego and van Ryzin

[22]. They also show that the loss associated with preferring a discrete–time rather than a

continuous–time model is small. Smith and Achabal [34] study clearance pricing in retailing.

Their model is deterministic, but incorporates impact of reduced assortment and seasonal

changes on demand rates. Petruzzi and Dada [30] consider a periodic review model where

the retailer is allowed to order new inventory as well as change the price at each period.

However, the stochastic component of their demand model is very specific. If the retailer

can fully satisfy the demand in any period, the uncertainty is completely resolved and the

remaining problem is a deterministic one. Otherwise, the retailer updates the lower bound

for the uncertain component, the remaining problem remains to be a stochastic one, with a

new estimate for the uncertain component.

Recently, three closely related papers discuss Bayesian learning in pricing of style goods.
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Subrahmanyan and Shoemaker [36] develop a general periodic demand learning model to

optimize pricing and stocking decisions. As in Eppen and Iyer [16,17], they use a set of

possible demand distribution functions for each period and a discrete prior distribution that

tabulates the probability of these possible demand distributions being the true demand

distribution. This discrete distribution is updated after each period using the Bayes’ rule.

The information requirements are extremely large in a general model as updating requires

the history of sales, inventory levels and prices in each period. They present computational

results on specific demand and price parameters. Bitran and Wadhwa [7] consider only

the pricing decisions utilizing the two–phased demand model and discrete–time dynamic

programming formulation in Bitran and Mondschein [6]. A Poisson process for store arrival

and a reservation price distribution are used to define the purchase process. They assume that

uncertainty is involved in a parameter of this reservation price distribution. An updating

procedure on this parameter is proposed such that the rate of the purchase process has

Gamma priors and posteriors. The methodology allows them to summarize all sales and

price information in two variables. They present computational results to show the impact

of demand learning on prices and expected profits. Aviv and Pazgal [2] studied a problem

where the arrival process is Poisson, the arrival rate has a Gamma distribution and the

retailer controls the price continuously. The resulting model is a continuous-time optimal

control problem. Among other results, it is shown that initial high variance leads to higher

prices and the expected revenues of the optimal pricing policy are compared with expected

revenues from several other policies including a fixed price scheme.

3. Model

3.1 Demand Model

Assume that there are N points in time that the pricing decisions can be made. Without

loss of generality, assume that each period in consideration is of unit length. The demand

in each period has a Poisson distribution. The demand rate is separable and consists of two

components: a base demand rate λ, and a multiplier m(p) for the charged price p. The

Poisson rate is equal to

λ(p) = m(p)λ.
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Without loss of generality, we assume m(1) = 1. Although our model does not depend on a

particular demand function, we use exponential price sensitivity λ(p) = ae−γp to find

m(p) = e−γ(p−1), (1)

in our computational analysis. Exponential price sensitivity and multiplicative demand

functions are widely used in practice and research (see Smith and Achabal [34] and Smith

et. al [35] for examples). The distribution of demand given the price and base rate is given

by,

f(x|λ, p) =
e−m(p)λ[m(p)λ]x

x!
, for x = 0, 1, 2, . . .

We assume that there is uncertainty only in the magnitude of demand, but not in the

functional form of the price demand relationship (e.g., price elasticity). That is, we assume

that we have perfect information about the function m(p) and that the uncertainty of the

demand rate for a given price can be totally characterized by the uncertainty in the base

demand rate λ. Consequently, observing sales will facilitate learning on the magnitude of

demand only.

We assume that λ is distributed as Gamma with parameters α and β. The probability

density function for Gamma is given by,

f(λ) =
βαλα−1e−βλ

Γ(α)
, λ > 0.

Then, the prior distribution (unconditional of λ) of demand in the first period will have

Negative Binomial distribution:

D1 ∼ NB

(

α,
β

β + m(p1)

)

,

if the price for period 1 is p1. The probability function is given by,

f(x|p1) =

(

α + x − 1
x

)(

β

β + m(p1)

)α (

m(p1)

β + m(p1)

)x

, for x = 0, 1, 2, . . .

This uses the fact that if λ is distributed with Gamma with parameters α and β, kλ is

distributed with Gamma with parameters α and β/k for any multiplier k. An unconditional

distribution that is Negative Binomial is consistent with the high uncertainty involved in

fashion goods as the variance to mean ratio of a Negative Binomial random variable is

always greater than 1. Additional support is provided in Nahmias and Smith [29] where

they discuss the suitability of Negative Binomial demand for a retailer system.
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If the realized demand in period 1 is x1, Bayes’ rule implies that the posterior distribution

of λ will be again Gamma with parameters α+x1 and β+m(p1). Then, the prior distribution

of demand in the second period will have a Negative Binomial form:

D2 ∼ NB

(

α + x1,
β + m(p1)

β + m(p1) + m(p2)

)

,

given that the price in second period is p2.

Likewise, when the realized demand is x1, x2, . . . , xn−1 and prices charged are p1, p2, . . . , pn−1

in periods 1, 2, . . . , n − 1, the prior distribution of demand in the nth period will also have

a Negative Binomial distribution:

Dn ∼ NB

(

α +
n−1
∑

i=1

xi,
β +

∑n−1
i=1 m(pi)

β +
∑n

i=1 m(pi)

)

,

given that the price in nth period is pn. Denote cumulative sales prior to period n as

Xn−1 =
∑n−1

i=1 xi and cumulative price multipliers prior to period n as Mn−1 =
∑n−1

i=1 m(pi).

Xn−1 and Mn−1 summarize all the information in periods 1, . . . , n − 1 and are called the

sufficient statistics for estimating demand in period n, for a given price pn.

The unconditional demand distribution for the nth period will have a mean of

E[Dn] =
(α +

∑n−1
i=1 xi)m(pn)

β +
∑n−1

i=1 m(pi)
,

which basically means that the sales rate in the nth period is a linear function of sales rate

in the earlier n − 1 periods. This is in fact not surprising. Carlson [11] studies sales data

of apparel merchandise from a major department store to see whether the sales rate after

a mark–down is predictable. Given an initial price and a mark–down percentage, he shows

that past mark–down sales rate is in fact a linear function of pre mark–down sales rate. Our

model completely agrees with this empirical result.

It is also worthwhile to see how the mean and variance of the unconditional distribution

of demand behaves as n increases. For simplicity of the exposition, assume that the price

is equal to 1 throughout the season so that m(pi) = 1 for all i. The expected value and

variance of the unconditional demand are given by,

E[Dn] =
α +

∑n−1
i=1 xi

β + n − 1
,

V ar[Dn] =
(α +

∑n−1
i=1 xi)(β + n)

(β + n − 1)2
.

It is easy to see that as n approaches infinity, both the mean and variance approach x,

average of xi, which is the true rate of the Poisson process. We note that the convergence
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is faster if β is smaller. This corresponds to higher degrees of uncertainty in the decision

maker’s initial estimate of demand rate, and thus more reliance on actual sales information

in estimating future demand.

While our analysis so far assumes that the periods are identical except for the prices

charged, our model allows us to permit seasonality and any other extensions as long as the

multiplicative nature of the demand function is preserved. That is, as long as we can state

the demand rate in period i as

λi(pi, τi) = m(pi, τi)λ,

(where m now is a more general function of price pi and seasonality factor τi) our model

is applicable. Also, uneven period lengths are easily accountable. In a situation where the

periods have varying lengths and seasonality, the state variable Mn−1 can be represented as

Mn−1 =
n−1
∑

i=1

m(pi, τi)`i,

where `i is the length of the period i. The details of the derivation for two periods are given

in Section 4.

3.2 Pricing Model

The problem is determining prices in periods 1, . . . , N so that a fixed stock of I0 items is

sold with maximum expected revenue. For simplicity of the presentation, We assume that

the inventory holding costs within the selling season are negligible. We note that the it is

very easy to relax this assumption in the context of our model.

We use a discrete–time dynamic programming model. Let Vn(In−1, Xn−1, Mn−1) be the

maximum expected revenue from period n through N when the initial inventory is In−1 and

the cumulative sales and cumulative price multipliers are Xn−1 and Mn−1, respectively. Note

that

In−1 = max{0, I0 − Xn−1},

and can be dropped from the formulation. But we keep In−1 in our formulation for ease of

exposition. Also let ps be the salvage value for any inventory left unsold beyond period N .

Backward recursion can be written as

Vn(In−1, Xn−1, Mn−1) =
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max
pn≥ps

E
[

pn min{Dn, In−1} + Vn+1

(

(In−1 − Dn)+, Xn−1 + Dn, Mn−1 + m(pn)
)

(2)

∣

∣

∣

∣

Xn−1, Mn−1 + m(pn)
]

.

Boundary conditions are

VN+1(IN , XN , MN) = psIN , for all IN , XN , MN , (3)

Vn(0, Xn−1, Mn−1) = 0, for all n, Xn−1, Mn−1. (4)

First condition states that any left over merchandise has only salvage value when the season

ends at the end of period N . The second conditions states that the future expected profits

are zero, when there is no merchandise left in stock since re–ordering is not allowed. This

property also allows us to avoid the problem of censored of demand information due to

unsatisfied demand. In case of excess demand (when the inventory is exhausted), there are

no further decisions to be made and no further information about demand is required. The

dynamic program can be solved by starting with the Nth period and proceeding backwards.

We solved many problems with different sets of parameters to investigate the structural

properties of the optimal policy. In all these problems, we observed that higher sales in

earlier periods always translate into higher prices in future periods. The intuition behind

this behavior is the following. First, higher sales in earlier periods mean (stochastically)

higher demand in future periods because of the Bayesian nature of the demand distributions.

Second, higher sales in earlier periods also mean lower left–over inventory for future periods

since there are no further replenishment opportunities. Thus, higher sales in earlier periods

inflate the expected demand while decreasing the available supply in future periods. This

allows the seller to charge higher prices to balance the demand and supply. The second

part of the argument (lower inventory calls for higher prices), is formally proved by Chun

[14] for Negative Binomial demand. The first part of the argument (stochastically larger

demand calls for higher prices), however, is not true in general. See Bitran and Wadhwa [8]

for counter examples and certain conditions that are required.

In order to show how the model works, we provide the following example.

Example: The retailer has 30 units to sell in a season of length 1. When the price is

set to 1.00, the demand is Poisson with a rate distributed with Gamma with parameters

α = 10 and β = 0.5. Thus, mean demand is α/β = 20 and variance of the demand is

α(β + 1)/β2 = 60. Within the season, there are two periods of equal length. The retailer

can charge different prices in these periods from a discrete set P={0.50, 0.55, .., 0.95, 1.00}.
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The price affects the demand in an exponential manner with γ = 3 described in equation 1.

The mean total demand is given as follows with the prices in P.

price 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
mean

demand 89.6 77.2 66.4 57.2 49.2 42.3 36.4 31.4 27.0 23.2 20.0

The problem is to find the price in the first period and the form of the pricing policy

in the second period so as to maximize the total revenues. We solve the problem with the

dynamic program given in equations (2-4). The optimal policy is to charge 1.00 in the first

period and then charge the following prices in the second period based on the demand real-

ization in the first period.

1st period
sales x1 0-5 6 7-8 9-10 11-12 13-14 15 16-17 18 19-30

2nd period
opt. price p∗2 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

The resulting optimal expected revenue is 23.248, about 0.775 per unit.

4. Computational Study

We first note that although pricing through a demand learning model is the best the re-

tailer can do, it is not necessarily optimal. The optimal policy depends on the true value of

underlying base demand rate. The optimal prices can be computed by using a dynamic pro-

gramming formulation which uses the true Poisson demand distribution. The performance of

the demand learning model depends on how accurate the retailer’s initial demand estimate

is and how fast the retailer can learn about the true demand process. Note that prior to

the start of the season, the retailer assumes that the base demand rate is distributed with

Gamma with parameters α and β. The expected value and variance of this random variable

are given by,

E[λ] =
α

β
and V ar[λ] =

α

β2
.

Hence, α/β defines the accuracy of the point estimate. Given a fixed ratio α/β, the magni-

tude of β (or α) defines the variance of the initial estimate, and hence the decision maker’s

reliance on her prior beliefs about demand. When β (or α) is large, the retailer is confident

about her initial estimate, and she hardly updates her demand estimate based on observed
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sales. As β (or α) gets smaller, more weight is given to the observed sales in estimating

future demand.

We analyze three different model in our computational study. Under the Perfect Infor-

mation model, the true value of the underlying base rate is known, and an optimal policy

is derived using Poisson distributed demand with rate m(p)λ. Under No Learning model,

the decision maker only knows the values of α and β and an optimal policy is derived using

Negative Binomial distribution with parameters α and β/(β + m(p)). The parameters of

Negative Binomial distribution is not updated as the sales are observed. Under Learning

model, the decision maker also only knows the values of α and β, however when the optimal

policy is derived, parameters of Negative Binomial distribution is updated using observed

sales following the learning model as described in Section 2 (more details to be given below).

In order to understand the impact and value of learning, the performance of the policies

that are derived under the Learning and No Learning models are also evaluated using Poisson

distributed demand with the true value of the base rate. We should note again however

that this rate is not revealed to the decision maker before the season (for otherwise, the

decision maker would simply use Perfect Information model to maximize its revenues) and

thus evaluation of Learning and No Learning models based on the true Poisson rate cannot

appropriately guide the decision maker before the season. In addition, the performance of

the policy under the Learning model is evaluated using Negative Binomial distribution whose

parameters are updated based on the observed sales.

Our primary objective in the computational study is to discover the conditions under

which the early sales information has the most impact on revenues by comparing the revenues

of Learning model with that of No Learning model. While doing this we also generate

the optimal revenues for Perfect Information model. We specifically study the impacts of

accuracy of the initial estimate, the variance of the initial estimate, price elasticity of demand

on all three models.

For the purposes of computational study, we assume that there is only one chance to

change the price. The resulting model is a special two–period case of the model described

earlier. In addition, we assume that the salvage value is zero. We also note that the assump-

tion that the periods are of equal length can be relaxed as briefly described below. This

model is briefly described below.

Demand in one period is again Poisson with rate

λ(p) = m(p)λ,

13



where m(p) = e−γ(p−1). Assume again that λ is unknown, but distributed with Gamma with

parameters α and β. We assume that the length of the first period is t and the length of

the second period is 1− t. Then prior distribution of demand in the first period is Negative

Binomial:

D1 ∼ NB
(

α,
β

β + m(p1)t

)

, (5)

given that the price is p1 in the first period. If the realized demand in period 1 is x1 and

the charged price is p1, posterior distribution of λ would be again Gamma with parameters

α + x1 and β + m(p1)t. Then the priori distribution of demand in the second period is

Negative Binomial:

D2 ∼ NB
(

α + x1,
β + m(p1)t

β + m(p1)t + m(p2)(1 − t)

)

, (6)

given that the price is p2 in the second period.

The problem is to set prices p1 and p2 such that an initial stock of I0 items are sold with

maximum expected revenue. The problem again can be solved by a dynamic program for

each t. Given the price and observed demand in the first period, the second period problem

is

V2(I1, x1, p1) = max
p2≥0

E
[

p2 min{I1, D2}
∣

∣

∣

∣

x1, p1, p2

]

,

where the distribution of D2 given x1, p1, p2 is given by equation (6). Note also that I1 =

max{I0 − x1, 0} and V2(0, x1, c1) = 0. The problem of the first period is

V1(I0) = max
p1≥0

E
[

p1 min{I0, D1} + V2

(

(I0 − D1)
+, D1, p1

)∣

∣

∣

∣

p1

]

,

where the distribution of D1 given p1 is shown in equation (5).

For No Learning model, the demand distribution for the second periods does not depend

on the price or the sales in the first period. While the first period’s demand distribution is

still given by equation (5), the second period’s demand distribution has different parameters

although it is still Negative Binomial:

D2 ∼ NB
(

α,
β

β + m(p2)(1 − t)

)

, (7)

Then, the dynamic program for No Learning model can be constructed as:

V2(I1) = max
p2≥0

E
[

p2 min{I1, D2}
∣

∣

∣

∣

p2

]

,
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where the distribution of D2 given p2 is given by equation (7). Note again that I1 =

max{I0 − x1, 0} and V2(0) = 0. The problem of the first period is

V1(I0) = max
p1≥0

E
[

p1 min{I0, D1} + V2

(

(I0 − D1)
+
)∣

∣

∣

∣

p1

]

,

where the distribution of D1 given p1 is given by equation (5).

Throughout the computational study, we assume equal periods, i.e., t = 0.5 and we allow

the first and second prices to be in the set {0.50, 0.55, 0.60, .., 0.95, 1.00}. We do not put any

restrictions on the direction of the price change in the second period, i.e., the second period

price can be higher or lower than the first period price.

4.1 The impact of the accuracy of the initial point estimate

In this part of the study, we assess the impact of the initial estimate on profits of Learning

and No Learning models in a variety of settings. For the price sensitivity of demand, we use

a moderate value, e.g., γ = 3.

The analysis is done in two steps; first we keep the initial point estimate constant and

vary the true rate of the Poisson distribution and later we keep the true rate of the Poisson

distribution and vary the initial point estimate. Note that the value of the initial estimate

is α/β. In the first part of the analysis, we set α/β = 20. However in order to study also

the impact of decision maker’s reliance on the initial estimate, we use two scenarios. In High

Variance case, α = 10 and β = 0.5, resulting in a variance of 40 for the gamma distribution

(or a coefficient of variation of 1/
√

10). In Low Variance case, α = 40 and β = 2 resulting

in a variance of 10 for the gamma distribution (or a coefficient of variation of 1/
√

40). We

also use different values for the starting inventory level, in order to incorporate the impact

of imbalance between supply and demand in pricing decisions. This first step of the analysis

is summarized in Table 1.

Note that λ is the true Poisson rate when the price is set at the maximum price 1.00.

The true Poisson rate takes on values 10, 15, 20, 25 and 30, while the decision maker’s initial

point estimate is fixed at 20. Note also that optimal policies for No Learning and Learning

models are evaluated using Poisson distribution with the true rate. When we compare the

profits obtained from No Learning and Learning models, we conclude that learning from

observed sales is most beneficial when the initial point estimate is inaccurate and when the

variance is high (the decision maker relies less on the initial estimate and is more willing to

update its estimate based on observed sales). This gives an opportunity to Learning model
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Table 1: The impact of initial estimate, revenues as a function of λ

Initial λ
Inv 10 15 20 25 30

10 Perfect Information 9.0361 9.8697 9.9918 9.9997 10.0000
High No Learning 8.7672 9.8647 9.9918 9.9997 10.0000

Variance Learning 8.9886 9.8564 9.9816 9.9974 9.9996
Low No Learning 8.7521 9.8634 9.9918 9.9997 10.0000

Variance Learning 8.8166 9.8681 9.9914 9.9995 10.0000

20 Perfect Information 14.2552 16.8405 18.6529 19.6623 19.9511
High No Learning 11.8433 16.3099 18.6484 19.5302 19.8411

Variance Learning 12.7448 16.5088 18.5672 19.5032 19.8488
Low No Learning 11.8396 16.2913 18.6510 19.5608 19.8675

Variance Learning 12.1111 16.3755 18.6448 19.5545 19.8660

30 Perfec Information 17.8773 21.7092 24.4823 26.6369 28.3606
High No Learning 14.8758 20.9285 24.4795 25.7868 26.0604

Variance Learning 15.6680 20.9794 24.3064 26.2548 27.1922
Low No Learning 14.8758 20.9271 24.4804 25.8100 26.0904

Variance Learning 15.4997 21.2023 24.4517 25.8500 26.1351

to quickly identify the inaccuracy of the initial estimate and correct the estimate for the

second period. The benefits are more pronounced when the true Poisson rate is lower (e.g.,

λ = 10) than the initial estimate and the initial inventory levels are high (e.g., I0 = 20 and

I0 = 30). Since the maximum allowed price is 1.00, pricing is more instrumental when the

demand rate is significantly lower than the initial inventory.

Notice that in 13 cases, No Learning model is performing better than Learning model.

These are the cases where the initial estimate is fairly accurate and updating the demand

distribution using a random sample can therefore reduce the profits. The reductions are

minimal when the variance is low (the decision maker relies more on the initial estimate and

is less willing to update its estimate based on observed sales). It should be noted however

that the savings due to Learning model when the initial estimate is inaccurate is much higher

than the losses due to Learning model when the initial estimate is accurate.

Finally we should note that when the initial inventory is low (i.e., I0 = 10), pricing is

not very useful as the maximum price is set at 1.00. Therefore, the difference between the

Learning and No Learning models are minimal, and both models can perform very close to

the Perfect Information model.

The second step of the analysis is summarized in Table 2. In the second step of the

analysis we fixed the true Poisson rate (λ) at 20 and let the initial point estimate (α/β)
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Table 2: The impact of initial estimate, revenues as a function of α/β

Initial α/β
Inv 10 15 20 25 30

10 Perfect Information 9.9918 9.9918 9.9918 9.9918 9.9918
High No Learning 9.9554 9.9892 9.9918 9.9918 9.9918

Variance Learning 9.9461 9.9780 9.9816 9.9890 9.9890
Low No Learning 9.9647 9.9892 9.9918 9.9918 9.9918

Variance Learning 9.9645 9.9890 9.9914 9.9918 9.9918

20 Perfect Information 18.6529 18.6529 18.6529 18.6529 18.6529
High No Learning 16.2351 17.9570 18.6484 18.5209 18.3379

Variance Learning 16.3240 17.9525 18.5672 18.5995 18.6227
Low No Learning 16.2632 17.9570 18.6510 18.5209 18.2916

Variance Learning 16.2620 17.9903 18.6448 18.6101 18.4804

30 Perfect Information 24.4823 24.4823 24.4823 24.4823 24.4823
High No Learning 20.0839 23.8004 24.4795 23.8294 22.6325

Variance Learning 20.2463 23.9832 24.3064 24.0655 23.5536
Low No Learning 20.1108 23.7998 24.4804 23.8294 22.6138

Variance Learning 20.1874 23.9254 24.4517 24.0109 23.0534

take on values 10, 15, 20, 25 and 30. In order to eliminate the impact of the variance in

the analysis, we fixed the coefficient of variation of the gamma distribution (which is equal

to
√

(α/β2)/(α/β) = 1/
√

α) to 1/
√

10 for the High Variance case, and to 1/
√

40 for Low

Variance case.

In addition to results that are similar to those that are obtained in the first step, the

second step provides an additional interesting observation. While the maximum revenue is

achieved when the estimate is accurate in No Learning model, the same is not necessarily true

for Learning model. When the initial inventory is 10 for both High and Low Variance, and

when the initial inventory is 20 for High Variance, the maximum revenue is achieved when

the decision maker is in fact overestimating the demand. By overestimating the demand,

the decision maker is less likely to charge lower than the maximum price in the second based

on a random sample.

4.2 The impact of the variance of the initial estimate

In this part of the study, we investigate the impact of the variance of the initial estimate on

the performance of Learning and No Learning models. Note again that the variance of the

initial estimate reflects the decision maker’s reliance on its initial estimate and how much

she is willing to update her estimate based on observed sales for Learning model.
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The analysis is summarized in Table 3 for an initial inventory level of 20, and Table 4 for

an initial inventory level of 30. For both tables, parameter α of the Gamma distribution is

taking on values 5, 10, 15, 25, 40 and 80 while the parameter β of the Gamma distribution

is taking on values 0.25, 0.5, 0.75, 1.25, 2 and 4, respectively. This keeps the mean of the

Gamma distribution constant at 20, while the variance of the Gamma distribution is taking

on values 80, 40, 26.67, 16, 10, and 5. The tables show the optimal first period price, expected

optimal second period price and optimal expected revenue for Perfect Information model

to form a benchmark. As mentioned earlier, No Learning model uses the same Negative

Binomial distribution when deciding the first period price and deriving a policy for the second

period price, while Learning model uses an updated Negative Binomial distribution for the

second period. However, the expected revenues and expected second period prices reported

in Table 3 and Table 4 use the true Poisson distribution when taking the expectations. In

the less likely case that the initial inventory is totally depleted in the first period, we take

the second period price to be 1.00 when calculating expected second period price.

When the initial inventory (I0) is 20, we note that No Learning and Learning models set

the initial price to 1.00 for all variance levels (Table 3). When the initial inventory (I0) is

20 and the true Poisson rate (λ) is 10, we observe that Perfect Information model sets the

initial price to 0.80, significantly lower than No Learning and Learning models. However,

as the variance gets higher, Learning model is better able to correct its estimate and thus

charges lower prices in the second period. This is in contrast to No Learning model where

the second period price and the revenue is insensitive to the variance.

When the initial inventory (I0) is 20 and the true Poisson rate (λ) is 20, we observe that

Perfect Information model sets the initial price to 1.00. The revenues of No Learning and

Learning models are also quite close to the optimal revenue obtained in Perfect Information

model. However, we note that when the variance is high for Learning model, the decision

maker runs the risk of charging a less than optimal price as she may interpret a randomly

low demand in the first period as a sign for low demand overall.

When the initial inventory (I0) is 20 and the true Poisson rate (λ) is 30, we again observe

that Perfect Information model sets the initial price to 1.00. Since the demand rate is quite

high as compared to the supply, expected optimal second price also needs to be close to 1.00.

Similar to the case when the true Poisson rate (λ) is 20, the decision maker still has the risk

of charging a less than optimal second period price, based on a randomly low demand in the

first period when he uses Learning model. This is especially true for High Variance case.
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Table 3: The impact of variance (initial inventory=20)

α
5 10 15 25 40 80

Learning p∗1 1.00 1.00 1.00 1.00 1.00 1.00
No earning p∗1 1.00 1.00 1.00 1.00 1.00 1.00

λ = 10 Perfect p∗1 0.80
Information E[p∗2] 0.7383

E[V ] 14.2552
Learning E[p∗2] 0.7128 0.7562 0.7670 0.7922 0.8129 0.8216

E[V ] 13.1040 12.7448 12.6378 12.3563 12.1111 12.0021
No Learning E[p∗2] 0.8345 0.8345 0.8345 0.8345 0.8349 0.8401

E[V ] 11.8433 11.8433 11.8433 11.8433 11.8396 11.7814

λ = 20 Perfect p∗1 1.00
Information E[p∗2] 0.9400

E[V ] 18.6529
Learning E[p∗2] 0.9088 0.9198 0.9208 0.9288 0.9330 0.9334

E[V ] 18.4570 18.5672 18.5799 18.6217 18.6448 18.6469
No Learning E[p∗2] 0.9298 0.9298 0.9298 0.9298 0.9355 0.9400

E[V ] 18.6484 18.6484 18.6484 18.6484 18.6510 18.6529

λ = 30 Perfect p∗1 1.00
Information E[p∗2] 0.9999

E[V ] 19.9511
Learning E[p∗2] 0.9872 0.9881 0.9882 0.9893 0.9895 0.9895

E[V ] 19.8367 19.8488 19.8494 19.8621 19.8660 19.8661
No Learning E[p∗2] 0.9863 0.9863 0.9863 0.9863 0.9896 0.9902

E[V ] 19.8411 19.8411 19.8411 19.8411 19.8675 19.8737

When the initial inventory (I0) is 30, we note that No Learning model sets the initial

price to 0.85 for all variance levels, while Learning model sets the initial price to 0.90 when

the variance is high and to 0.85 when the variance is low (Table 4). The difference between

the initial prices of Learning and No Learning models shows that the fact that the decision

maker will learn from observed sales may lead the decision maker to different decisions, even

before she observes sales.

Table 4 shows results similar to those in Table 3, except that now, Learning model pro-

vides significant benefits also when the true Poisson rate (λ) is 30. The value of learning is

more pronounced, when the starting inventory level is high, i.e., correcting an underestima-

tion pays more.
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Table 4: The impact of variance (initial inventory=30)

α
5 10 15 25 40 80

Learning p∗1 0.90 0.90 0.90 0.90 0.85 0.85
No Learning p∗1 0.85 0.85 0.85 0.85 0.85 0.85

λ = 10 Perfect p∗1 0.65
Information E[p∗2] 0.6327

E[V ] 17.8773
Learning E[p∗2] 0.5967 0.6215 0.6314 0.6582 0.6828 0.6995

E[V ] 15.9317 15.6680 15.5679 15.2358 15.4997 15.2789
No Learning E[p∗2] 0.8345 0.8345 0.8345 0.8345 0.8349 0.8401

E[V ] 14.8544 14.8758 14.8758 14.8758 14.8758 14.8748

λ = 20 Perfect p∗1 0.85
Information E[p∗2] 0.8565

E[V ] 24.4823
Learning E[p∗2] 0.8035 0.8081 0.8067 0.8091 0.8518 0.8541

E[V ] 24.2300 24.3064 24.3227 24.3962 24.4517 24.4685
No Learning E[p∗2] 0.8500 0.8500 0.8500 0.8500 0.8520 0.8565

E[V ] 24.4795 24.4795 24.4795 24.4795 24.4804 24.4823

λ = 30 Perfect p∗1 1.00
Information E[p∗2] 0.9496

E[V ] 28.3606
Learning E[p∗2] 0.9536 0.9536 0.9495 0.9466 0.9738 0.9739

E[V ] 27.1888 27.1922 27.1600 27.1293 26.1351 26.1360
No Learning E[p∗2] 0.9657 0.9657 0.9657 0.9657 0.9695 0.9712

E[V ] 26.0604 26.0604 26.0604 26.0604 26.0904 26.1116

4.3 The impact of price elasticity

In Table 5, the impact of price elasticity of demand is analyzed for Perfect Information,

Learning and No Learning models. In this specific analysis, the parameter α of the Gamma

distribution is taken as 10 and the parameter β of the Gamma distribution is taken as 0.5

leading to an initial estimate with mean 20. The γ, value which controls the price elasticity

of demand, takes on 7 values between 1.0 and 4.0, where γ = 1.0 models inelastic demand

(for this case, the optimal price is 1.00 since reducing the price will not modify demand).

We first note that the optimal revenue is an increasing function of the price elasticity of

demand for Perfect Information model as the decision maker is better able to manipulate

the demand.

For λ = 10, the decision maker is initially overestimating the demand for both Learning

and No Learning models and charges an initial price higher than the optimal price in Perfect
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Table 5: The impact of price elasticity (initial inventory=20)
γ

1.0 1.5 2.0 2.5 3.0 3.5 4.0

Learning p∗
1

1.00 1.00 1.00 1.00 1.00 1.00 1.00
No learning p∗

1
1.00 1.00 1.00 1.00 1.00 1.00 1.00

λ = 10 Perfect p∗
1

1.00 0.75 0.70 0.75 0.80 0.80 0.80
Information E[p∗

2
] 1.0000 0.7338 0.7141 0.7204 0.7383 0.7764 0.8211

E[V ] 9.9972 10.8237 12.2038 13.3753 14.2552 14.9601 15.4778
Learning E[p∗

2
] 1.0000 0.8129 0.7509 0.7397 0.7562 0.7665 0.7799

E[V ] 9.9972 10.3495 11.1176 12.0069 12.7448 13.4707 14.0700
No Learning E[p∗

2
] 1.0000 0.9106 0.8622 0.8419 0.8345 0.8362 0.8451

E[V ] 9.9972 10.1957 10.6685 11.2426 11.8433 12.3988 12.8192

λ = 20 Perfect p∗
1

1.00 1.00 1.00 1.00 1.00 1.00 1.00
Information E[p∗

2
] 1.0000 0.9730 0.9524 0.9461 0.9400 0.9352 0.9356

E[V ] 18.2233 18.2669 18.3928 18.5295 18.6529 18.7620 18.8537
Learning E[p∗

2
] 1.0000 0.9609 0.9375 0.9148 0.9198 0.9151 0.9171

E[V ] 18.2233 18.2575 18.3586 18.4402 18.5672 18.6515 18.7302
No Learning E[p∗

2
] 1.0000 0.9851 0.9622 0.9462 0.9298 0.9298 0.9260

E[V ] 18.2233 18.2599 18.3843 18.5293 18.6484 18.7539 18.8318

λ = 30 Perfect p∗
1

1.00 1.00 1.00 1.00 1.00 1.00 1.00
Information E[p∗

2
] 1.0000 1.0000 1.0000 0.9999 0.9999 0.9996 0.9996

E[V ] 19.9505 19.9505 19.9506 19.9508 19.9511 19.9516 19.9521
Learning E[p∗

2
] 1.0000 0.9967 0.9932 0.9876 0.9881 0.9849 0.9850

E[V ] 19.9505 19.9230 19.8920 19.8410 19.8488 19.8239 19.8261
No Learning E[p∗

2
] 1.0000 0.9989 0.9955 0.9918 0.9863 0.9863 0.9822

E[V ] 19.9505 19.9437 19.9171 19.8875 19.8411 19.8424 19.8128

Information model. However, Learning model can partially correct its estimate based on

observed sales and improve its revenue by reducing the price in the second period. The rev-

enue of Learning model increases as the price sensitivity increases since the price reductions

are more effective with high price sensitivity. As the price sensitivity increases, we observe

that the difference between Perfect Information and Learning and the difference between

Learning and No Learning also increase as the information is more useful with a more elastic

demand.

For λ = 20, Learning model performs worse than No Learning model for all demand

elasticities. This is because the initial estimate is accurate, and the decision maker is better

off if she does not change her estimate based on observed sales. We also see that performance

of Learning and No Learning models improves as γ increases, which shows that when the

demand is accurately estimated, an elastic demand will always help.

For λ = 30, the decision maker is initially underestimating the demand for both Learning

and No Learning models. Note that with Perfect Information model, the initial price needs

to be 1.00, and we hardly need a reduction in price in the second period. However, with
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inaccurate information, both Learning and No Learning models can ask for price reductions

in the second period especially when the demand is highly elastic. However, we should see

that the relationship between γ and the performances of Learning and No Learning models

is not clear to have any further conclusions.

5. Inventory flexibility

The analysis so far assumes that there are no further replenishment opportunities available

once the selling season starts. In the apparel industry, this corresponds to the case when the

retailer orders from overseas and is not able to order during the season because of the long

lead times relative to the selling seasons. Obviously, this limits the retailer’s control during

the selling season to pricing only, which sharply diminishes its responsiveness. As a result,

some retailers are willing to use domestic suppliers and be able to order frequently, even

though domestic suppliers are more costly. With domestic suppliers, the retailer is also able

to make its initial order much closer to the season, when there is more information, hence

less variance, about the demand process.

Some companies are using two (or sometimes even three) different suppliers for the very

same product: an off–shore low–cost supplier for the initial large orders, and a domestic

high–cost supplier for replenishments during the selling season (Apparel Industry Magazine

[1]).

We study the value of this additional flexibility in the context of our pricing model. In a

related study, Gurnani and Tang [23] study the impact of forecast improvements by having

the flexibility to order at two instances, one of them being closer to the season. Their model

differs from ours as they do not consider the possibility of ordering during the season by

utilizing a structured learning from observed sales. Also they do not consider any pricing

during the season. While their model allows the cost to go up or down as the merchandise

is ordered closer to the season, we always assume that the ordering later is more costly

reflecting the reality in the apparel industry.

In our model, the off–shore strategy will allow the company to order only once, but

possibly with a low unit cost co. The domestic strategy will allow the company to order

before and during the selling season, but possibly with a high unit cost cd. The blended

strategy, on the other hand, will allow the company to make its initial order at a unit cost

co, but later replenishments at the unit cost cd. We assume that there are no other costs
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involved, the pricing and inventory decisions are made simultaneously at the start of the each

period; period lengths are equal for each strategy and the lead time is zero for all strategies.

To be able to compare these three strategies, we need to extend our pricing model to

allow for inventory decisions. We suggest the following model.

The problem is determining prices and stock levels in periods 1, . . . , N so that total

expected profit is maximized. We use a discrete–time dynamic programming model.

Let Vn(In−1, Xn−1, Mn−1) be the maximum expected profit from period n through N where

the starting inventory is In−1 and the cumulative sales and cumulative price multipliers are

Xn−1 and Mn−1, respectively. Also let Bn be the starting inventory level for period n,

after the retailer receives its orders. Thus, the retailer acquires Bn − In−1 new units in the

beginning of period n. Let pn be the price set in period n and let an be the acquisition cost

per unit in period n.

Backward recursion can be written as

Vn(In−1, Xn−1, Mn−1) =

max
pn≥ps,Bn≥In−1

E
[

cn(Bn − In−1) + pn min{Dn, Bn}

+ Vn+1

(

(Bn − Dn)
+, Xn−1 + Dn, Mn−1 + m(pn)

)∣

∣

∣

∣

Xn−1, Mn−1, pn

]

.

Boundary conditions are

VN+1(IN , XN , MN) = psIN , for all IN , XN , MN .

X0 = M0 = I0 = 0.

The first condition states that any left over merchandise has only salvage value (ps) when

the season ends at the end of period N . The dynamic program can be solved by starting

with the Nth period and proceeding backwards.

For the off–shore strategy, the model can be used with the following acquisition costs.

c1 = co,

cn = ∞, n = 2, . . . , N.

For the domestic strategy, we simply have

cn = cd, n = 1, . . . , N.
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For the blended strategy, we have,

c1 = co,

cn = cd, n = 2, . . . , N.

Let V o(co, cd), V d(co, cd) and V b(co, cd) be the optimal profits for the off–shore, domestic and

blended strategies respectively. Without any analytical derivations, it is easy to see the

following.

Observation 1 When the off–shore cost is higher than or equal to the domestic cost (which

is not likely), domestic strategy outperforms the off–shore strategy. That is, for co ≥ cd,

V o(co, cd) ≤ V d(co, cd).

Intuition: A domestic policy can simply imitate the the optimal off–shore policy by ordering

as much as the optimal off–shore policy does in the first period and ordering zero units in later

periods. Since the acquisition costs are lower for the domestic orders, this policy generates

more profit than the optimal off–shore policy.

Observation 2 When the off–shore cost is lower than the domestic cost (which is typical),

blended strategy outperforms both strategies. That is, for co < cd, V b(co, cd) ≥ V o(co, cd) and

V b(co, cd) > V d(co, cd).

Intuition: A blended policy can imitate the optimal off–shore policy by simply ordering

as much as the off–shore policy does in the first period and ordering zero units in later

periods. Since the acquisition costs are the same for blended and off–shore strategies in the

first period, this policy generates the same profit with the optimal off–shore profit. Likewise,

another blended policy can imitate the optimal domestic policy by simply ordering as much

as the optimal domestic policy does in each period. Since first period’s acquisition costs are

lower for the blended strategy, this policy generates more profit than the optimal domestic

policy.

While these comparisons are trivial, a question of interest is under which other circum-

stances the retailers should favor domestic policies over off–shore policies and under which

circumstances the gap between the blended and domestic and off–shore policies are minimal.

This is important as acquisition costs may not be the only concern for a retailer. For ex-

ample, using an additional supplier may involve additional fixed setup costs and complicate

the coordination of the sourcing process which disadvantage the blended strategies. Also,
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in our study we do not consider the inventory holding and other logistics costs that may be

incurred within the selling season. Inclusion of inventory holding costs to the model may

favor domestic and blended strategies against the off–shore strategy as domestic purchases

may be used for frequent replenishments and may reduce inventory levels. However, if unit

inventory holding costs are proportional to the unit cost and domestic cost is excessively

higher than the import cost, inventory reduction effect will be less apparent.

We use the computational design in Section 4 to answer above questions. Again, the

mean demand is α/β = 20 and we have two periods of equal length. Different from the

analysis in Section 4, the starting inventory level is optimized for all strategies. We assume

that the maximum price to charge is 1.00. We set the off–shore acquisition cost to 0.5

and vary the domestic acquisition cost to study the effect of acquisition costs on different

strategies. We note that in this analysis, we use Learning model as described in Section 3,

and the expected profits are evaluated using the Negative Binomial distribution (with initial

parameters in the first period and with updated parameters in the second period). We do

not use the evaluations based on the true Poisson rate, as this is not available to the decision

maker until after the season, and the decision maker makes her sourcing decisions based on

her prior beliefs and how she updates her beliefs based on sales during the season. Figure

1 shows the (expected) optimal profits of off–shore, domestic and blended strategies when

γ = 2 and when variance equals 1.5µ or 3µ. The optimal profits are normalized with the

profit of the optimal off–shore policy when variance equals to 3 µ. We first note that the

optimal off–shore profits do not vary with the domestic acquisition costs. Blended strategies,

as shown above, outperform the domestic and off–shore strategies. Clearly, optimal blended

and domestic profits decrease with acquisition costs. However, optimal blended profit curves

are rather flat, as blended strategies prefers to order more from the off–shore supplier as

the domestic supplier becomes more expensive. In fact, optimal blended profits approach

optimal off–shore profits as domestic acquisition costs increase. The reduction in profits

is more dramatic for domestic policies as they have to live with the expensive domestic

suppliers. While domestic policies outperform off–shore policies for low domestic acquisition

costs, off–shore policies are favorable as the domestic suppliers become more costly.

For this particular example, domestic and off–shore profit curves intersect when the

normalized domestic cost is 1.1 for σ2 = 3µ. This means that the “break–even” point where

off–shore profit equals domestic profit is when the unit domestic acquisition cost is 10%

more than the unit off–shore acquisition cost. Any unit domestic acquisition cost 10% more
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Figure 1: Comparison of off-shore, domestic and blended strategies (γ = 2)
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than the unit off–shore acquisition cost will lead the retailers to source their merchandise

off–shore.

Another important factor for the efficiency of the off–shore, domestic and blended policies

is the variance of the demand process. Typically, apparel retailers choose domestic suppliers

for their high fashion content–high variance merchandise, while standard low fashion content–

low variance merchandise can be sourced overseas. Also, the policy itself may help to reduce

the variance as the domestic strategies can order closer to the season. Figure 2 shows the

optimal profits for domestic, off–shore and blended strategies for three different domestic

acquisition costs (1.00, 1.06 or 1.12 times the off–shore acquisition cost). Again, the profits

are normalized with the optimal off–shore profit for σ2 = 3µ. Note that blended and domestic

policies are equivalent when the cost equals 1.00. These policies outperform any other policy.

As the variance increases, all profits decrease. The off–shore optimal profit curve is steeper as

off–shore policies are subject to more variance since they order only once. Optimal domestic

policy when the cost equals 1.06 is inferior to the off–shore policy for low variance levels, but

becomes favorable as the variance increases. Note again that the base line is the optimal

off–shore profit when the variance is 3 µ. If we can reduce the variance to 1.75 µ by using a

domestic policy, even the domestic acquisition costs of 1.06 can be desirable.

Finally, the price sensitivity of the customers also affects the relative efficiency of these
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Figure 2: Comparison of off-shore, domestic and blended strategies (γ = 2)
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policies. We expect the off–shore strategy to be more sensitive to price sensitivity (γ) as

pricing is the only control for such strategy once the season starts. Figure 3 shows the

optimal profits for varying levels of γ. Note that when γ = 1, the demand is inelastic and

it is optimal to keep the price at its maximum. Thus, optimal profits at γ = 1 represent

the optimal profits when the only control over the process is through inventory. All profits

increase, as the price sensitivity increases. As expected, optimal off–shore profit increases

faster with the price sensitivity. The off–shore strategy outperforms the domestic strategy

with cost 1.06 when γ is close to 3.

Combining these ideas, we generate the regions in which one strategy is favorable to the

other. Figure 4 shows the trade–off curves for off–shore and domestic strategies for γ = 2

and γ = 3. For variances and domestic costs on these lines, off–shore and domestic strategies

generate the same profit. As domestic cost increases and/or variance decreases, off–shore

strategy becomes more desirable and vice versa. Note that, the region for which off–shore

strategy is more profitable is larger when γ = 3, reflecting the increased strength of off–shore

strategies with price sensitive demand. In general, as γ increases, the trade–off curve moves

to southeast. Although it is difficult to detect visually, we observe that the trade–off curves

are concave in variance, possibly becoming flatter as variance gets larger. This means that if

the variance gets excessively high, variance differences would have less impact and supplier

selection decisions would depend more on cost differences and price sensitivity of demand.
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Figure 3: Comparison of off-shore, domestic and blended strategies as a function of price
sensitivity
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Figure 4: Trade-off curves for off-shore and domestic production
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Figure 5: Trade-off between domestic and off-shore production
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The above analysis is based on the fact that the products are subject to same level of

uncertainty under both strategies. However, in most cases, the choice of strategy itself may

affect the level of uncertainty. As the retailers are able to order closer to the season with

domestic strategies, they are able to know more about the consumer tastes that will shape

the demand in the coming season and hence they face a more stable demand when they

make their ordering decisions. To incorporate the possible reductions in variance, we choose

a base case which is an off–shore strategy with acquisition cost equals 0.5 and variance (σ2)

equals 3 µ. The trade–off curves in Figure 5 shows the increases in cost and reductions in

variance with domestic strategy for which domestic and off–shore strategies generate equal

profits. For example, for γ = 3, if the domestic cost is about 7% higher than off–shore cost,

the domestic strategy will still result in higher profits, if the variance is reduced by more

than 30% as a result. Alternatively, if the variance is reduced about 30%, the domestic

strategy will generate higher profits only if the cost does not increase by more than 7%.

Again, optimality region is larger for off–shore strategy for more price sensitive demand.

Each retailer faces its own trade–off curve for each apparel item it offers and makes its

decision to source it overseas or domestically. An aggregation of these individual decisions

determines the market share of imports and domestic production in the domestic market.

In Table 6, we provide the average unit import and domestic costs and the market share of
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imports for selected apparel in the U.S. market in 2002.

Table 6: Market Share and Cost of Imports in Apparel in 2002

Average Domestic Average Import Ratio Market Share of
Price1 Price2 Imports3

(cd) (co) (cd/co)
Men’s

Sweaters 15.27 10.42 1.47 98.3
Swimwear 12.93 4.52 2.86 100.04

Suits 100.64 62.71 1.60 74.0
Women’s

Sweaters 12.24 9.69 1.26 86.1
Swimwear 13.61 6.10 2.23 70.8
Dresses 20.10 9.08 2.21 64.0

Data compiled from U.S. Census Bureau [39]. Prices are per dozen in U.S. dollars.

1 Average cost ($) per unit for manufacturers’ shipments.
2 Average cost ($) (cost+insurance+freight) per unit from imports for consumption.
3 Derived by dividing imports for consumption to apparent consumption in the U.S. market.
4 Missing quantity data for 2002 imports is estimated using data from 2001.

We observe that for all product categories, imports have a substantial cost advantage.

This is particularly true for men’s and women’s swim–wear. While this translates into a per-

fect market domination of imports in men’s swim–wear, domestic manufacturers still control

70.8% of the market for women’s swim–wear. Similar arguments are valid for sweaters for

men and women and suits for men and dresses for women. This shows that the cost advantage

is not the only factor in supplier selection. Although it is very difficult to find an aggregate

measure for the variance of demand in apparel, we are certainly aware of the importance

of fashion in women’s apparel. Popular styles and colors change every year, making it very

difficult to forecast demand for a particular SKU. From both our computational analysis

and industry data, we see that predictability of demand plays a considerable role in sourcing

decisions. When the variance effect is less apparent (as in sweaters product category, or as in

men’s apparel in general as compared to women’s apparel), we observe that cost difference

is the main driver for such decisions.

6. Conclusion

In this paper, we study the pricing decisions of a perishable products retailer in the existence

of demand learning. This is one of the first studies that incorporate “structured” Bayesian

updating in the context of pricing for perishable products. The resulting model is computa-
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tionally feasible and easy to understand and implement. We think that our model is most

useful for apparel retailers, as this industry is identified with high levels of uncertainty, most

of which can be resolved after observing sales during the earlier weeks of the selling season.

Moreover, information required for the application of our model is readily available through

point–of–sales scanners.

Through our computational study, we are able to understand the economics of pricing in

this context. First, we observe that the optimal price in a given period is a non–decreasing

function of sales in the earlier periods when demand learning takes place. Second, we pinpoint

the circumstances under which this learning based on observed sales has the most value.

We study the impact of the accuracy and the variance of the initial estimate and the price

elasticity of demand. Our major finding here is that demand learning is most beneficial when

the initial estimate is inaccurate, the demand/supply mismatches necessitates price changes

and demand is sensitive to price changes. Finally, we study the impact of an opportunity

to procure merchandise during the season, in addition to the up-front procurement before

the selling season. This helps us to see how supplier selection decisions are affected by

the volatility and price–sensitivity of demand and the procurement costs. We support our

conclusions with aggregate data from the apparel industry.

We note that our model with inventory flexibility can be extended to incorporate lead

times, inventory holding costs and set–ups (cost and/or time) that may be attached to each

purchase. We refrain from doing so, as their effects on costs are fairly trivial and their

inclusion may complicate the presentation of the model.

Several avenues for future research are in order. First, the model could be extended to

allow for the case where the time to switch price is also a decision variable. This way, one can

study the impact of learning on optimal markdown times. An interesting question is whether

the Learning model will always delay the pricing decisions in an effort to learn more about

the underlying demand. Second, the impact of more than two periods and mark–down only

restrictions can be studied. Finally, the model can be modified to incorporate structured

learning about the price elasticity of demand.
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