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Abstract
Production processes in a wide range of industries rely on modern mixed-model as-
sembly systems, which allow an efficient manufacture of various models of a common
base product on the same assembly line. In order to facilitate a just-in-time supply of
materials, the literature proposes various sequencing problems under the term “level
scheduling”, which all aim at evenly smoothing the part consumption induced by the
production sequence over time. Among these approaches, the popular Product Rate
Variation (PRV) problem is considered to be an appropriate approximate model, if
either (i) all products require approximately the same number and mix of parts or (ii)
part usages of all products are (almost completely) distinct. These statements are
(iii) further specified by analytical findings, which prove the equivalence of product
and material oriented level scheduling under certain conditions. These three prereq-
uisites commonly cited in the literature when justifying the practical relevance of
the PRV are evaluated by means of simple computational experiments and are then
discussed with regard to their relevance in practical settings. It is concluded that
the PRV is in fact inappropriate for use in today’s real-world mixed-model assembly
systems.

Keywords: Mixed-model assembly lines; Sequencing; Level scheduling; Product Rate
Variation problem
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1 Introduction

As part of the famous “Toyota Production System” the so called level scheduling problem received
wide attention in research (see the surveys by Kubiak, 1993; Dhamala and Kubiak, 2005; Boysen
et al., 2007) and practical applications (e.g. Monden, 1998; Duplaga et al., 1996) and is still
vividly discussed up to now (see the latest paper of Lebacque et al., 2007). This mixed-model
assembly sequencing approach aims at evenly smoothing the material consumption over time,
so that a just-in-time supply of material is facilitated and safety stocks are minimized. For
that purpose, each material receives a target demand rate, which is determined by distributing
the material’s overall demand evenly over the planning horizon. Thus, a sequence is sought
where actual demand rates of materials are as close as possible to the ideal target rates. Kubiak
(1993) refers to this case of level scheduling as Output Rate Variation (ORV) problem, because
materials constitute the outputs of preceding production levels, whose actual demand rates are
to be leveled.

Consider a set V of products each of which having a demand dv for copies of this product v to
be produced during a specific period (e.g. one day or shift) divided into T production cycles, with∑

v∈V dv = T . Each product v consists of different materials m (with m ∈ M). The production
coefficients avm specify the number of units of material m needed in the assembly of one unit
of product v. The matrix of coefficients A = (avm) is called “bill of material”. By means of the
total demand for material m required by all copies of all products v throughout the planning
horizon, the target demand rate rm per production cycle is calculated as follows:

rm =
∑

v∈V dv · avm

T
∀m ∈ M (1)

Together with the integer variables xvt, which represent the total cumulative production quantity
of product v up to cycle t, the ORV problem can be modeled as follows (Joo and Wilhelm, 1993;
Monden, 1998; Bautista et al., 1996):

Minimize ZORV (X) = G

(
Fm

(∑
v∈V

xvt · avm − t · rm

))
(2)

0 ≤ xvt − xvt−1 ≤ 1 ∀ v ∈ V ; t = 2, ..., T (3)∑
v∈V

xvt = t ∀ t = 1, ..., T (4)

xvT = dv ∀ v ∈ V (5)

Objective function (2) considers deviations of actual from ideal cumulative demands per pro-
duction cycle t and material m. These deviations are weighted by a (possibly material spe-
cific) penalty function Fm(·). Thus far, research especially investigated Euclidean, absolute, and
squared deviation functions. The separate deviations for all t and m are aggregated to a global
objective value by an aggregation function G(·), which is to be minimized. Typical aggregation
functions considered in the literature are the sum or maximum over all periods t and materials m.
Constraints (3) ensure that cumulative production quantities increase monotonically throughout
the planning horizon. The production of exactly one copy of a single product in each cycle t
is ensured by constraints (4), whereas constraints (5) force the products to be produced in the
demanded quantities.

Among the solution methods available are the famous “Goal Chasing Methods” introduced by
Monden (1998), which are simple myopic heuristics practically employed at Toyota and an exact
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dynamic programming approach presented by Bautista et al. (1996). Related ORV models,
which explicitly include multiple production levels of parts, are reviewed by Kubiak (1993) as
well as Dhamala and Kubiak (2005).

In practical applications where products may include thousands of different materials, the
resulting problem instances of ORV are barely solvable (to optimality). Accordingly, literature
proposes a class of simplified approximate models, which, under specific prerequisites, are claimed
to be sufficient to level part usages without explicitly considering the materials contained in
products. The objective of these Product Rate Variation (PRV) problems is to achieve a constant
production rate rv for each product v: rv = dv/T ∀ v ∈ V . In the PRV problem, (2) is thus
replaced by the new objective function (6):

MinimizeZPRV (X) = G (Fv (xvt − t · rv)) (6)

The manifold research efforts on PRV with regard to different deviation Fv(·) and aggregation
functions G(·) are summarized by Kubiak (1993, 2004) as well as Dhamala and Kubiak (2005). In
the literature, it is stated that PRV should be used to approximate the original ORV whenever:

• “Products require approximately the same number and mix of parts.” (Miltenburg 1989,
p. 193).

• “Outputs [of preceding production levels] required for each different product are distinct.”
(Kubiak 1993, p. 261).

• These verbal statements are specified by an analytical proof of Zhu and Ding (2000),
who show that additional cases lead to an equivalence of ORV and PRV in the sum
of squared deviations-case (PRV: G (Fv(·)) =

∑T
t=1

∑
v∈V (·)2 and ORV: G (Fm(·)) =∑T

t=1

∑
m∈M (·)2). For this purpose, they define a so called relationship matrix Q of ele-

ments Qvv′ (with v, v′ ∈ V ) calculated as follows:

Qvv′ =
∑

m∈M

avm · av′m ∀ v, v′ ∈ V (7)

An equivalence between ORV and PRV instances holds (see Zhu and Ding, 2000) if the
equivalence-properties α and β of matrix Q amount to α = β = 0, where both properties
are derived as follows:

α =
1

Q1

√
1
|V |

∑
v∈V

(
Qv −Q1

)2, where Q1 =
1
|V |

∑
v∈V

Qv, Qv = Qvv ∀v ∈ V (8)

β =
1

Q2

√√√√ 2
|V |2 − |V |

∑
v,v′∈V
v<v′

(
Qvv′ −Q2

)2, where Q2 =
2

|V |2 − |V |

∑
v,v′∈V
v<v′

Qvv′ (9)

• In fact, Zhu and Ding (2000) merely consider a transformation of ORV instances to an
“unweighted” PRV, where the deviation function Fv(·) weights all deviations by the same
constant factor of one. Their argumentation can, however, be extended to show that an
ORV instance can be transformed to an equivalent weighted PRV (Fv = wv(·)2 with wv

being a model dependant weight) in the less restrincting case of β = 0 (see appendix).
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Figure 1: Bills of material for the statements of Miltenburg and Kubiak

These prerequisites for the appropriate use of the PRV are to be evaluated by means of simple
computational experiments in section 2. Section 3 further discusses their relevance with regard
to real world applications of mixed-model assembly lines.

2 Computational Experiments

The two statements of Miltenburg and Kubiak can be interpreted as marking the two extreme
points of the homogeneity of a product-portfolio with regard to material requirements as they
are said to be either (almost) homogeneous (Miltenburg) or completely heterogeneous (Kubiak).
Figure 1 shows how these two statements can be translated in simple bills of material or coefficient
matrices for an example with 10 products and 10 materials.

Between these two extremes, all other possible matrices can be distinguished by means of how
many demand coefficients avm have to be altered until one of these extremes is reached. This way,
all possible bills of material can be assessed with respect to their homogeneity and plotted in a
continuum. In order to test the ability of the PRV approach to approximate solutions of ORV, the
resulting matrices can be evaluated for given demands by simply evaluating the optimal product
sequence of PRV with the objective function of ORV and comparing these result with the optimal
ORV solution. If the sum of squared variations is minimized, the equivalence properties of Zhu
and Ding can be tested upfront. If they apply, PRV-ORV equivalence is given for the respective
instance and an optimization is superfluous. This simple investigation allows a quantification of
the appropriateness of PRV solutions for solving the underlying ORV.

As there are too many possible problem instances for a given demand vector, a total enumer-
ation over all bills seems however inefficient and superfluous. Instead, our study is based on a
simple Monte Carlo simulation as described in the following:

(1) Randomly determine the products’ demand vectors, ensuring the following properties:
dv ≥ 1 ∀v ∈ V ∧

∑
v∈V dv = 20

(2) Solve the resulting PRV instance to optimality, e.g. with the algorithms of Kubiak and Sethi
(1991) or Steiner and Yeomans (1993) depending on the kind of PRV to be solved, and
determine the optimal product sequence πPRV .
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Figure 2: Results of the Monte Carlo experiments

(3) Initialize the bill of material in accordance with the Miltenburg case.

(4) Solve the current ORV instance to optimality, e.g. with the dynamic programming algorithm
of Bautista et al. (1996), and compare the product sequences πPRV and πORV by evaluating
them with objective function (2) of ORV. If the sum of squared deviations is employed,
additionally check if the equivalence-properties hold.

(5) If the Kubiak case is reached continue with (6), otherwise set a randomly chosen demand
coefficient avm from 1 to 0, while ensuring that products remain distinct and none of the
coefficients of the Kubiak case (avm|v = m) is chosen. Go to step (4).

(6) Continue with step (1) until 50 trajectories have been carried out.

This experiment was conducted for the three well-established forms of ORV and PRV objective
functions:

• Sum of squared deviations for both PRV: G (Fv(·)) =
∑T

t=1

∑
v∈V (·)2 and ORV: G (Fm(·)) =∑T

t=1

∑
m∈M (·)2

• Sum of absolute deviations for both PRV: G (Fv(·)) =
∑T

t=1

∑
v∈V |·| and ORV: G (Fm(·)) =∑T

t=1

∑
m∈M | · |

• Maximum absolute deviations for both PRV: G (Fv(·)) = maxT
t=1 maxv∈V | · | and ORV:

G (Fm(·)) = maxT
t=1 maxm∈M | · |

Figure 2 shows the relative deviations between optimal PRV and ORV sequences, both evalu-
ated by the ORV objective function (2) averaged over the 50 Monte Carlo runs. The parameter
constellation is restricted to |V | = 10, |M | = 10 and T = 20, so that in total 50 PRV and 12,150
ORV instances are solved to optimality. As other problem sizes with regard to the number of
products, materials and production periods as well as bills of materials with integer demand
coefficients show very similar mean relative deviation curves, further results are omitted.

Three major conclusions are drawn from the experiments:

Conclusion 1: For the bills of material of the Miltenburg and Kubiak cases the objective values
of optimal PRV and ORV product sequences are equal with respect to the ORV objective function
(2). Thus, PRV is a perfect approximation for ORV in these cases. This is obviously the case if
the sum of squared deviations is treated, as the equivalence-properties of Zhu and Ding hold for
both the Miltenburg and the Kubiak case.
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Conclusion 2: Already slight deviations from these extremes lead to considerable differences
between both approaches. Moreover, with the exception of the Miltenburg and Kubiak cases (2 ·
50 = 100) for none of the remaining 3,950 randomly generated bills of material the optimal PRV
solution was equal to the optimal ORV solution, which consequently also means that α = β = 0
did not hold for any of those instances. Thus, PRV is by no means an adequate approximation
of ORV, if products share common materials in diverging compositions.

Conclusion 3: The goodness of fit of PRV approximating ORV heavily depends on the chosen
penalty and aggregation function.

Especially Conclusions 2 and 3 require further clarification. With respect to Conclusion 3 Figure 2
shows that the sum of absolute deviations leads to the smallest gap between ORV and PRV. This,
however, does not allow direct conclusions regarding the appropriateness of PRV for real world
problems, as ORV is already an approximate model in itself which merely roughly anticipates
the underlying costs of late and early material supplies or capacity adjustments at preceding
production levels (see Boysen et al., 2007). In order to finally assess the appropriateness of PRV,
further studies on the different penalty and aggregation functions of ORV and their effects on
the underlying cost factors are necessary, which have not been carried out by research thus far.
The similar distribution patterns of all three functions nevertheless show, that irrespective of the
penalty and aggregation functions employed, the goodness of fit strongly diminishes if neither of
the two extreme scenarios is met.

With regard to Conclusion 2, the magnitude of deviation is remarkable but less astounding as
it is in line with a previous computational study provided by Zhu and Ding (2000) (who, however,
merely compare optimal PRV solutions to heuristic ORV solutions).1 What needs even more
observance is the fact that except of the Miltenburg and Kubiak cases no other coefficient matrix
occurred for which the equivalence-properties of Zhu and Ding hold. To further investigate the
occurrence probability of such matrices, we conduct an additional experiment, where coefficient
matrices are systematically generated for varying numbers of models |V | and materials |M |. In
three independent test sets, demand coefficients are randomly drawn out of three intervals [0, 1],
[0, 2] and [0, 3]. Tables 1 and 2 display the relative occurrences of matrices for which α = β = 0
and β = 0 respectively, for up to 1 million matrices per test instance. (Note, that cases where
the number of different materials |M | is insufficient to derive |V | different models are denoted
by “-”.)

Conclusion 4: As it shows, with increasing number of products |V |, rising number of materials
|M | and a widening range of demand coefficients the probability of a PRV-ORV equivalence
diminishes dramatically. In the majority of tested parameter constellations the probability of a
PRV-ORV equivalence is negligible. Even if the equivalence properties are extended to consider
the weighted PRV (Table 2), the increase in occurrence is inconsiderable.

In the following section, we thus discuss the implications of these findings in light of today’s
real world assembly systems.

1A further computational study by Sumichrast and Clayton (1996) compares heuristic PRV solutions with
heuristic ORV solutions and concludes that no significant deviation exists. This study suffers however from
the fact that it can not be determined whether there is indeed no gap between both models or an existent gap
counterbalanced by the quality of heuristic solutions evaluated.
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3 Discussion

Miltenburg case: The sequencing of products which share (almost) the same number and mix
of parts will always tend to result in a more or less even distribution of materials over the
whole planning horizon irrespective of the exact formulation of the sequencing problem. This
raises the question of whether level scheduling in the Miltenburg case is generally subordinate
in comparison to other mixed-model sequencing objectives, e.g. the avoidance of work overloads
and utility work at stations (e.g Tsai, 1995).

Kubiak case: Due to the common trends of enhancing component commonality and standard-
ization, the occurrence of completely distinct products, as required in the Kubiak case, appear
to be limited to very exceptional situations. Products, which do not even share a single part,
are likely to be too heterogeneous to allow a joint assembly on a single production line without
large setup operations in a profitable manner. Thus, the Kubiak case appears to be of merely
theoretical interest, which might explain why the majority of research papers (except for Kubiak
himself) exclusively refer to Miltenburg (1989) when justifying the application of PRV.

Equivalence-properties: If part demands occur more or less randomly (as assumed by in the
second computational experiment), e.g. caused by unpredictable customer choices, there is hardly
any chance to obtain a matrix of real world size for which equivalence-properties hold. All
practical applications of mixed-model assembly lines reported in literature (e.g. automobile
industry and many segments of consumer goods industries, like consumer electronics, white
goods, furniture and clothing, see Sarker and Pan, 2001; Boysen et al., 2006) should exceed 10
products and 10 relevant material types, which is the upper limit of our second computational
experiment, by far. Furthermore, technical dependencies between the materials contained in
any product which systematically evoke equivalence-properties are not apparent. Thus, the
equivalence-properties are not able to justify the use of the PRV in real world cases.

Moreover, all three cases fail to reflect another major trend in industries which operate mixed-
model assembly systems, where an assembly-to-order strategy (Mather, 1989) is increasingly
aspired to avoid the problems associated with the anticipation of customer demand. As part of
an assembly-to-order strategy, customers are not completely free in specifying their individual
products, but may rather choose from a pre-selected range of product options (e.g. air condition-
ing, sun roof) which modify a common base product (mass customization; Pine, 1993). In such
a setting, there is no compelling reason why customers’ choices should either result in products
requiring (almost) the same number and mix of parts, completely different parts, or a part mix
for which equivalence-properties hold.

Finally, a reasonable application of PRV presupposes that actually more than one copy at least
of some products is to be produced. Otherwise all products compete for the same middle position
within the sequence, so that a meaningful regulation of part usage is ruled out. In one of the
most important fields of application the product variety is so extraordinary large, e.g. 1032 and
227 theoretical possible car models at German automobile producers BMW (Meyr, 2004) and
Daimler-Chrysler (Röder and Tibken, 2006), that within a day virtually never two completely
identical cars are produced (Meyr, 2004).

To conclude, the authors think that while PRV might have its justification within different
computer scheduling problems (see Kubiak, 2004; Corominas et al., 2007) in real world applica-
tions of mixed-model assembly lines it hardly has any and is rather to be seen as a stylized yet
mathematically interesting base model of theoretical value only.
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Appendix
Zhu and Ding (2000, p. 209) show the following equivalence:

ZORV (X) =
T∑

t=1

∑
m∈M

(∑
v∈V

xvt · avm − t · rm

)2

=
T∑

t=1

∑
v∈V

Qv (xvt − t · rv)
2 + 2 ·

T∑
t=1

∑
v,v′∈V
v<v′

Qvv′ (xvt − t · rv) (xv′t − t · rv′) (10)

Let β = 0 so that Qvv′ = Q2 (constant) ∀v, v′ ∈ V . We then get:

ZORV (X) =
T∑

t=1

∑
v∈V

Qv (xvt − t · rv)
2 + 2Q2 ·

T∑
t=1

∑
v,v′∈V
v<v′

(xvt − t · rv) (xv′t − t · rv′)

=
T∑

t=1

∑
v∈V

Qv (xvt − t · rv)
2 −Q2

T∑
t=1

∑
v∈V

(xvt − t · rv)
2

+Q2

T∑
t=1

∑
v∈V

(xvt − t · rv)
2 + 2Q2 ·

T∑
t=1

∑
v,v′∈V
v<v′

(xvt − t · rv) (xv′t − t · rv′)

=
T∑

t=1

∑
v∈V

(
Qv −Q2

)
(xvt − t · rv)

2 + Q2

T∑
t=1

[∑
v∈V

(xvt − t · rv)

]2

=
T∑

t=1

∑
v∈V

(
Qv −Q2

)
(xvt − t · rv)

2 (11)

It follows that minimizing such an ORV instance for which β = 0 is true becomes equivalent to
minimizing a weighted PRV with objective function (12) where the vector

(
Qv −Q2

)
represents

the model specific weights of the deviation function.

ZPRV (X) =
T∑

t=1

∑
v∈V

(
Qv −Q2

)
(xvt − t · rv)

2 (12)

Note that Qv ≥ Q2 ∀v ∈ V not necessarily holds, so that weighting factors can be negative.
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