
Please do not remove this page

Multi-objective integer programming: A general
approach for generating all nondominated
solutions
Ozlen, Melih; Azizoglu, Meral
https://researchrepository.rmit.edu.au/esploro/outputs/journalArticle/Multi-objective-integer-programming-A-general-approach/9921864169201341/f
ilesAndLinks?index=0

Ozlen, M., & Azizoglu, M. (2009). Multi-objective integer programming: A general approach for generating
all nondominated solutions. European Journal of Operational Research, 199(1), 25–35.
https://doi.org/10.1016/j.ejor.2008.10.023

Published Version: https://doi.org/10.1016/j.ejor.2008.10.023

Document Version: Accepted Manuscript

Downloaded On 2024/04/25 18:32:34 +1000
© 2008 Elsevier B.V. All rights reserved.
Repository homepage: https://researchrepository.rmit.edu.au

Please do not remove this page

https://researchrepository.rmit.edu.au/esploro/outputs/journalArticle/Multi-objective-integer-programming-A-general-approach/9921864169201341/filesAndLinks?index=0
https://researchrepository.rmit.edu.au/esploro/outputs/journalArticle/Multi-objective-integer-programming-A-general-approach/9921864169201341
http://doi.org/doi:https://doi.org/10.1016/j.ejor.2008.10.023
https://researchrepository.rmit.edu.au

Thank you for downloading this document from the RMIT
Research Repository.

The RMIT Research Repository is an open access database showcasing
the research outputs of RMIT University researchers.

RMIT Research Repository: http://researchbank.rmit.edu.au/

PLEASE DO NOT REMOVE THIS PAGE

Citation:

https://researchbank.rmit.edu.au/view/rmit:8233

Accepted Manuscript

2009. This manuscript version is made available under the CC-BY-NC-ND 4.0 license.
http://creativecommons.org/licenses/by-nc-nd/4.0/

http://dx.doi.org/10.1016/j.ejor.2008.10.023

Ozlen, M and Azizoglu, M 2009, 'Multi-objective integer programming: A general approach for
generating all nondominated solutions', European Journal of Operational Research, vol. 199, no. 1,
pp. 25-35.

MULTI-OBJECTIVE INTEGER PROGRAMMING:

A GENERAL APPROACH FOR GENERATING ALL EFFICIENT SOLUTIONS

Melih Özlen1

Department of Industrial Engineering,

Hacettepe University, Ankara 06800, Turkey

Phone: +90 312 297 6885

Fax: +90 312 297 2078

E-Mail: mozlen@hacettepe.edu.tr

Meral Azizoğlu

Department of Industrial Engineering,

Middle East Technical University, Ankara 06531, Turkey

Phone: +90 312 210 22 81

Fax: +90 312 210 47 86

E-Mail: meral@ie.metu.edu.tr

Abstract

In this paper we develop a general approach to generate all efficient solutions of the

Multi-Objective Integer Programming (MOIP) Problem. Our approach, which is based on

identification of objective efficiency ranges, is an improvement over classical ε-constraint

method. Objective efficiency ranges are identified by solving simpler MOIP problems with

fewer objectives. We first provide the classical ε-constraint method on the Bi-Objective Integer

Programming problem for the sake of completeness and comment on its efficiency. Then present

our method on Tri-Objective Integer Programming problem and then extend it to the general

MOIP problem with k objectives. A numerical example considering Tri-Objective Assignment

problem is also provided.

Keywords: Multiple objective programming, Integer Programming

1 Corresponding Author

mailto:mozlen@hacettepe.edu.tr
mailto:mozlen@hacettepe.edu.tr
mailto:meral@ie.metu.edu.tr
mailto:meral@ie.metu.edu.tr

1. Introduction

 Multi-Objective Integer Programming (MOIP) is an important research area as many

practical situations require discrete representations by integer variables and many decision

makers have to deal with several objectives. Some note-worthy practical environments where

the MOIP problems find their applications are supply chain design, logistics planning,

scheduling and financial planning. The MOIP problems are theoretically challenging as well, as

most of them, even their single objective versions, fall into the class of computationally

intractable problems. Our aim in this study is to provide a general framework for the solution of

the MOIP problems with the hope of facilitating this involved decision making process.

Multi-Objective Combinatorial Optimization (MOCO) problems are special cases of the

MOIP problems that are distinguished due to their special structured constraint sets. Bi-

objective, tri-objective or multi-objective versions of scheduling, shortest path, assignment,

traveling salesman, minimum spanning tree are some noteworthy MOCO problems. Ehrgott and

Gandibleux (2000) and Ehrgott and Gandibleux (2004) review the MOCO literature on the exact

and approximate methods, respectively. They address some special problem types and discuss

their solution methodologies. Ehrgott and Gandibleux (2002) survey some other Multi Criteria

Optimization problems including, but not limited to, non-linear programming, scheduling, multi-

level programming.

In recent years, there have been many developments for some particular MOCO

problems. However the research on the MOIP problems, is still scarce. Klein and Hannan

(1982), Sylva and Crema (2004) and Sylva and Crema (2007) study the Multi-Objective Mixed

Integer Programming models. Klein and Hannan (1982) develop an approach based on the

sequential solutions of the Single-Objective models which use some additional constraints to

eliminate the known dominated solutions. Their algorithm generates a subset, but not necessarily

the whole set, of all efficient solutions. Sylva and Crema (2004) improve Klein and Hannan

(1982)’s approach by incorporating all objectives in a weighted function and guarantee to

generate all efficient solutions. Sylva and Crema (2007) propose a similar approach for the

problem of maximizing the infinity-norm distance from the set of known dominated solutions.

They show that their approach provides a more uniform representation of the efficient set when

compared to the approach by Sylva and Crema (2004). The major drawback of all three

approaches is the difficulty in solving the constrained problems due to the increasing number of

constraints and binary variables with an increase in the number of the efficient solutions.

Klamroth et al. (2004) and Ehrgott (2006) study the general MOIP problem. Klamroth et

al. (2004) define composite functions to obtain upper bounds on the objective function values of

the efficient solutions and discuss the use of the upper bounds in generating the efficient set. To

form the composite functions, they propose some classical optimization methods like cutting

plane method and branch and bound algorithm. Ehrgott (2006) develops some properties of the

efficient solutions and proposes a scalarization technique to identify any efficient solution.

In this study we develop a method to identify individual objective efficiency ranges for

problems with more than three objectives. To best of our knowledge our method is the first of its

kind to identify these ranges without generating whole set. We use the solutions of simpler

(having less objectives) multi-objective problems to obtain efficiency ranges for each objective.

We use these ranges in constrained multi-objective problems and develop a method to generate

all efficient solutions for the tri-objective integer programming (TOIP) problems and the general

multi-objective integer programming (MOIP) problems. In contrast to the classical methods that

search in feasibility ranges with incremental steps, our method searches within narrower

efficiency ranges jumping between efficient solutions with large steps.

We compare the theoretical worst case performances of our method and the classical ε-

constraint method. We illustrate the performances of the methods on a tri-objective assignment

problem.

The rest of the paper is presented s follows. In Section 2, we state the well known

classical ε-constraint method for Bi-Objective IP problems. In Section 3 we present our

algorithm for the Tri-Objective IP problems. We give the generalization of our method to the

MOIP problem with k objectives in Section 4. In Section 5, we illustrate our method on a tri-

objective assignment problem instance and compare it with the classical ε-constraint method.

We conclude in Section 6.

2. Bi-Objective Integer Programming (BOIP) Problem

The Bi-Objective Integer Programming (BOIP) problem is a special case of the Multi-

Objective Integer Programming (MOIP) problem with two objectives. The BOIP problem is

defined as:

(BOIP) Min f1(x)

Min f2(x)

s.t. x  X

where X is the set of feasible solutions in which xj ≥ 0 and integer for all {1,2,..., }j n .

The individual objectives are defined as 1

1

1

()
n

j j

j

f x c x
=

= and 2

2

1

()
n

j j

j

f x c x
=

= where ci
j

is integer for all {1,2}i and {1,2,..., }j n .

A solution 'x X is bi-objective efficient if and only if there is no x X such that

() (')i if x f x for {1,2}i and () (')i if x f x for at least one i.

 We provide classical ε-constraint method on BOIP for the sake of completeness and then

discuss its efficiency. Some theory on BOIP problems is provided to clarify the presentations in

Sections 3 and 4.

The Constrained Weighted Single Objective Integer Programming (CWSOIP) problem is

defined as:

(CWSOIP) Min 1 2 2() ()f x w f x+

s.t. 2 2()f x l

x  X

The optimal solution of the CWSOIP problem is bi-objective efficient for the properly set

values of w2 and l2 . Classical ε-constraint method to generate all efficient solutions initializes by

setting l2 to a general upper bound, and then decreases the l2 value systematically and stops

when l2 reaches the lower bound on f2(x).

Theorem 2.1 presents a property of an upper bound on the fi(x) value of all bi-objective

efficient solutions provided that fi(x) value is no more than li.

Theorem 2.1. A bi-objective efficient solution providing an upper bound on fi(x), for a

specified li value, gives a lower bound on the other objective, fj(x).

A range for w2 values that leads to an efficient solution when used in the CWSOIP model

is identified using f2
GUB and f2

GLB , the upper and lower bounds on the f2(x) value of any feasible

solution.

Using these bounds, Theorem 2.2 states a range for w2 that returns an efficient solution

when used in the CWSOIP model for a specified l2 value.

Theorem 2.2. The solution of the CWSOIP problem with w2=
2 2

1

1GUB GLBf f− +
 provides an

upper bound on f2(x) values of all bi-objective efficient solutions for a specified l2 value.

Theorem 2.3 states that for a properly selected w2 value, the following Weighted Single

Objective Integer Programming (WSOIP) problem gives an upper bound on f2(x) values of all

bi-objective efficient solutions

(WSOIP) Min 1 2 2() ()f x w f x+

s.t. x  X

Theorem 2.3. The optimal solution of the WSOIP problem with w2=
2 2

1

1GUB GLBf f− +
 provides

an upper bound on the f2(x) value of all bi-objective efficient solutions.

We now provide the stepwise description of classical ε-constraint method for the

generation of all efficient solutions for the BOIP problem.

Procedure 2.1. Generating all Efficient Solutions of a Bi-Objective Problem

 (classical ε-constraint method)

Step 0. Find f2
GUB and f2

GLB.

 Let w2=
2 2

1

1GUB GLBf f− +

Let l2=f2
GUB

Step 1. Solve the CWSOIP problem with l2.

If the solution is infeasible, then STOP.

Step 2. Let the optimal solution be x*.

 E = E  (f1(x
*), f2(x

*))

l2= f2(x
*) - 1

Go to Step 1

The first solution returned by the procedure is (f1
GLB, f2

BUB), and the last solution is (f1
BUB,

f2
GLB), where f1

BUB
, f2

BUB, f1
GLB

, f2
GLB

 are upper and lower bounds on the f1(x) and f2(x) values of

all bi-objective efficient solutions, respectively. In other words, f1(x) values of all efficient

solutions are between f1
GLB and f1

BUB, and their f2(x) values are between f2
GLB and f2

BUB.

The procedure iterates as the number of efficient solutions, which is upper bounded by

the pseudo-polynomial value,
1 1 2 2{ 1, 1}BUB GLB BUB GLBMin f f f f− + − + . Each iteration returns a

new efficient solution by solving the CWSOIP problem. Hence the complexity of Procedure 2.1

depends on the complexity of the specific CWSOIP problem solved in Step 1.

The classical ε-constraint method only iterates within objective efficiency ranges, and

each solved IP identifies a new efficient solution. The objective efficiency ranges are easy to find

for the BOIP problem using hierarchical optimization. However no similar efficient method is

available for the TOIP or general MOIP problems. For these problems, we present a way to

identify objective efficiency ranges and use the ranges in developing a new method to generate

all efficient solutions, in Sections 3 and 4.

3. Tri-Objective Integer Programming (TOIP) Problem

The Tri-Objective Integer Programming (TOIP) Problem is a special case of the MOIP

problem with three objectives. The TOIP problem is defined as:

(TOIP) Min f1(x)

Min f2(x)

Min f3(x)

s.t. x  X

where X is the set of feasible solutions in which xj ≥ 0 and integer for all {1,2,..., }j n .

The individual objectives are defined as 1

1

1

()
n

j j

j

f x c x
=

= , 2

2

1

()
n

j j

j

f x c x
=

= and

3

3

1

()
n

j j

j

f x c x
=

= where ci
j is integer for all {1,2,3}i and {1,2,..., }j n .

A solution 'x X is tri-objective efficient if and only if there is no x X such that

() (')i if x f x for all {1,2,3}i and () (')i if x f x for at least one i.

 We first present our method to solve TOIP problem, and then provide the classical ε-

constraint method extension, and then compare the two algorithms in terms of their efficiency.

The Constrained Weighted Bi-Objective Integer Programming (CWBOIP) Problem is

defined as:

(CWBOIP) Min 1 3 3() ()f x w f x+

Min 2 3 3() ()f x w f x+

s.t. 3 3()f x l

 x  X

Note that, we consider f3(x), together with f1(x) and f2(x) to ensure tri-objective efficiency.

Moreover we bound f3(x) by adding the constraint, 3 3()f x l . The solution of the CWBOIP

problem provides a set of bi-objective efficient solutions with respect to f1(x) and f2(x), that are

also tri-objective efficient, for the properly set w3 and l3 values. All tri-objective efficient

solutions can be found by solving the CWBOIP problem for all possible w3 and l3 values.

However, enumerating all possible values explicitly, may be very impractical, even infeasible, in

many cases. Recognizing this fact, we find the right way to set w3 and l3 values.

To generate the tri-objective efficient set, efficiently, we initially set l3 to the general

upper bound on f3(x) value of all feasible solutions and form the bi-objective efficient set with

respect to f1(x) and f2(x). We then generate the other bi-objective efficient solution sets by

decreasing l3 value systemically, towards the set of bi-objective efficient solutions that provide a

lower bound on f3(x).

Lemma 3.1 presents a property of an upper bound on the fi(x) value of all tri-objective

efficient solutions provided that fi(x) value is no more than li.

Lemma 3.1. A tri-objective efficient solution that provides an upper bound on objective fi(x),

for a specified li value, is bi-objective efficient with respect to other two objectives.

Proof. A tri-objective efficient solution 'x X providing an upper bound on fi(x), satisfies

(') ()i if x f x , for all x X , hence is not non-dominated in objective i. The definition of

efficiency follows that, an efficient solution has at least one non-dominated objective by any

other efficient solution. So, a solution dominated by all solutions in one objective should be bi-

objective efficient in other two objectives in order have at least one non-dominated objective. ▀

We next find a range for w3 values that leads to an efficient solution when used in the

CWBOIP problem. In doing so, we define f3
GUB and f3

GLB as the respective general upper and

lower bounds on f3(x) value of any feasible solution. As in bi-objective case, the general bounds

can be obtained by solving the individual single objective problems.

Using these bounds, Lemma 3.2 specifies a range for w3 that guarantees the generation of

tri-objective efficient solutions for a specified l3 value.

Lemma 3.2. The solution of the CWBOIP problem (by Procedure 2.1) with

w3=
2 2 3 3

1

(1)(1)GUB GLB GUB GLBf f f f− + − +
 provides an upper bound on the f3(x) value of all tri-

objective efficient solutions for a specified l3 value.

Proof. We solve the following CWBOIP problem in Step 1 of Procedure 2.1:

Min 1 2 3 3

2 2

1
() () ()

1GUB GLB
f x f x w f x

f f
+ +

− +

s.t. 2 2()f x l

 3 3()f x l

 x  X

From Lemma 3.1 we know that the tri-objective efficient solutions having the highest

f3(x) value should be bi-objective efficient with respect to f1(x) and f2(x). To find the tri-objective

upper bound on f3(x), one could generate the bi-objective efficient solutions with respect to f1(x)

and f2(x), thus guarantee bi-objective efficiency and minimize f3(x) over the bi-objective efficient

set. In place of this two-step hierarchical procedure, we use a single objective in the CWSOIP

problem and generate the bi-objective efficient solutions that are also tri-objective efficient.

The CWSOIP problem provides a bi-objective efficient set having the highest f3(x) value,

if w3 is defined such that the largest decrease in f3(x), will not contribute to the objective function

as much as the smallest increase in either f1(x) or f2(x). Since Procedure 2.1 hierarchically

optimizes f1(x) and then f2(x), the contribution of f2(x) is always smaller than that of f1(x), so one

can only consider the contribution by f2(x) rather than considering both objectives. The largest

decrease in f3(x) is no more than (f3
GUB – f3

GLB), and its contribution to the objective function is

no more than w3(f3
GUB – f3

GLB). The smallest increase in f2(x) is no less than
2 2

1

1GUB GLBf f− +
,

due to the integrality of the parameters and decision variables. This follows, when

3 3 3

2 2

1
()

1

GUB GLB

GUB GLB
w f f

f f
 −

− +
, equivalently 3

2 2 3 3

1

(1)()GUB GLB GUB GLB
w

f f f f


− + −
, the

largest decrease in f3(x) is no more than the smallest increase in f2(x). As,

2 2 3 3

1

(1)(1)GUB GLB GUB GLBf f f f− + − + 2 2 3 3

1

(1)()GUB GLB GUB GLBf f f f


− + −
, the CWBOIP problem

with w3=
2 2 3 3

1

(1)(1)GUB GLB GUB GLBf f f f− + − +
 provides an upper bound on the f3(x) values of the

tri-objective efficient solutions, for a specified l3 value. ▀

Through Lemma 3.3 we state that for a properly selected w3 value, the following

Weighted Bi-Objective Integer Programming (WBOIP) problem gives an upper bound on f3(x)

values of all tri-objective efficient solutions.

(WBOIP) Min 1 3 3() ()f x w f x+

Min 2 3 3() ()f x w f x+

s.t. x  X

Lemma 3.3. The optimal solution of the WBOIP problem (by Procedure 2.1) with

w3=
2 2 3 3

1

(1)(1)GUB GLB GUB GLBf f f f− + − +
 provides an upper bound on the f3(x) value of all tri-

objective efficient solutions.

Proof. Lemma 3.2 states that the optimal solution of the CWBOIP problem with

w3=
2 2 3 3

1

(1)(1)GUB GLB GUB GLBf f f f− + − +
 provides an upper bound on the f3(x) value of all tri-

objective efficient solutions for a specified l3 value. Once we set l3 to a very big number no less

than 3

GUBf , the CWBOIP problem does not skip any tri-objective efficient solution and the

optimal solution provides an upper bound on the f3(x) value of all tri-objective efficient solutions.

Moreover the CWBOIP problem reduces to the WBOIP problem, as the constraint

3 3()f x l becomes redundant. ▀

We now state the stepwise description of our procedure to generate all tri-objective

efficient solutions.

Procedure 3.1 Generating all Tri-Objective Efficient Solutions

Step 0. Find f2
GUB

, f2
GLB, f3

GUB and f3
GLB.

Let w3 =
2 2 3 3

1

(1)(1)GUB GLB GUB GLBf f f f− + − +

Let l3 = f3
GUB

Step 1. Solve the CWBOIP problem with l3 using Procedure 2.1.

If the solution is infeasible, then STOP.

Step 2. Let the bi-objective solutions set be BE*.

 E = E  BE*

Set l3 = *

3max{ (), }f x x BE - 1.

 Go to Step 1

Set E returned by Procedure 3.1 resides all tri-objective efficient solutions. Lemma 3.4 states

this result formally.

Lemma 3.4. Procedure 3.1 generates all tri-objective efficient solutions.

Proof. In Step 0, no feasible, hence efficient, solution is eliminated, as l3 is set to the general

upper bound value on f3(x). From Lemma 3.2 we know that, Step 1 provides an efficient

solution whose f3(x) value, *

3max{ (), }f x x BE , is an upper bound on the f3(x) value of all

efficient solutions for a specified l3 value, by identifying the bi-objective efficient set. As

*

3max{ (), }f x x BE is an upper bound, there cannot exist any tri-objective efficient solution

whose f3(x) value is between *

3max{ (), }f x x BE +1 and l3. Due to the integrality of the

parameters and decision variables, the next f3(x) value is upper bounded by *

3max{ (), }f x x BE -

1. So setting l3 to *

3max{ (), }f x x BE - 1 does not eliminate any tri-objective efficient solution,

and identify the next efficient solution if there exists any. Each iteration identifies a bi-objective

efficient solution set by solving the CWBOIP problem for a specified l3 value. The procedure

terminates when the CWBOIP problem returns an infeasible solution. An infeasible solution

shows that there is no tri-objective efficient solution having f3(x) value smaller than or equal to

the last specified l3 value, thus all tri-objective efficient solutions are identified. ▀

Procedure 3.1 starts with l3= f3
GUB and finds f3

TUB, i.e., an upper bound on the f3(x) values

of all tri-objective efficient solutions. The last f3(x) value returned by the algorithm, f3
GLB , is a

lower bound on the f3(x) value of all tri-objective efficient solutions. Hence the f3(x) values of all

tri-objective efficient solutions are between f3
GLB and f3

TUB.

The procedure iterates at most as the product of any two objective ranges which is upper

bounded by pseudo-polynomial value Max {(f1
TUB - f1

GLB +1) (f2
TUB – f2

GLB +1), (f1
TUB - f1

GLB

+1)(f3
TUB – f3

GLB +1), (f2
TUB – f2

GLB +1)(f3
TUB – f3

GLB +1)}. Hence the complexity of the

procedure depends on the complexity of the specific CWBOIP problem.

An upper bound on the number of iterations can also be expressed as a function of the

number of tri-objective efficient solutions, |E|. In Procedure 3.1, each update of l3 eliminates one

tri-objective efficient solution from the search space. The maximum number of bi-objective

efficient solutions that can be identified at iterations 1,2,…, |E | are |E|. |E|-1, …, 2, 1,

respectively. Hence, the total number of such solutions is
1

(1)

2

E

i

E E
i

=

+
= .

We now present the extension of classical ε-constraint method, consider the following

CWBOIP problem.

Min 1 2 3

2 2 2 2 3 3

1 1
() () ()

1 (1)(1)GUB GLB GUB GLB GUB GLB
f x f x f x

f f f f f f
+ +

− + − + − +

s.t. 2 2()f x l

 3 3()f x l

 x  X

Procedure 3.2. Generating all Efficient Solutions of a Tri-Objective Problem

 (classical ε-constraint method)

Step 0. Find f2
GUB, f2

GLB, f3
GUB and f3

GLB.

Let l2=f2
GUB

Step 1. Let l3=f3
GUB

Step 2. Solve the CWBOIP problem with l2, and l3.

Step 3. If the solution is infeasible, go to Step 5.

Step 4. Let the optimal solution be x*.

 E = E  (f1(x
*), f2(x

*) ,f3(x
*))

l3= l3 - 1

Go to Step 2

Step 5. If l2 ≥ f2
GLB, l2 = l2 -1, go to Step 1.

 Otherwise STOP.

The procedure iterates at most as the product of any two objective general ranges which

is upper bounded by pseudo-polynomial value Max {(f1
GUB - f1

GLB +1) (f2
GUB – f2

GLB +1), (f1
GUB -

f1
GLB +1)(f3

GUB – f3
GLB +1), (f2

GUB – f2
GLB +1)(f3

GUB – f3
GLB +1)}. Hence the complexity of the

procedure depends on the complexity of the specific CWBOIP problem.

The number of times Procedure 3.1 iterates is bounded by the tighter objective efficiency

ranges, whereas the same number for Procedure 3.2 is bounded by the general objective ranges.

2

1

Max # of iterations Procedure 3.1
~

Max # of iterations Procedure 3.2

GUB GLB

i i

TUB GLB
i i i

f f

f f=

 −
 

− 


The difference between these two ranges enlarges with the increase in the size of the

problem and the variability of the problem parameters. Moreover, l2 and l3 are decreased by unit

decrements in Procedure 3.2, however their values are decreased to the related value of the next

efficient solution in Procedure 3.1.

In Section 5, we provide a numerical example considering the Tri-Objective Assignment

Problem that also compares the efficiency of these two methods.

4. K-Objective (Multi Objective) Integer Programming (MOIP) Problem

The Multi-Objective Integer Programming problem with k-objectives (MOIP) is defined

as:

(MOIP) Min f1(x)

Min f2(x)

.

.

.

Min fk(x)

s.t. x  X

where X is the set of feasible solutions, where xj ≥ 0 and integer for all {1,2,..., }j n .

A solution 'x X is k-objective efficient if and only if there is no x X such that

() (')i if x f x for all {1,..., }i k and () (')i if x f x for at least one i.

The individual objectives are defined as 1

1

1

()
n

j j

j

f x c x
=

= , 2

2

1

()
n

j j

j

f x c x
=

= ,...,

1

()
n

k

k j j

j

f x c x
=

= where ci
j is integer for all i and j.

We first present our method to solve MOIP problem, and then provide the classical ε-

constraint method extension, and then compare the two algorithms in terms of their efficiency.

The Constrained Weighted (K-1)-Objective Integer Programming (CW(K-1)OIP) problem

is defined as:

(CW(K-1)OIP) Min 1() ()k kf x w f x+

Min 2() ()k kf x w f x+

.

.

.

Min 1() ()k k kf x w f x− +

s.t. ()k kf x l

x  X

Note that, we consider the kth objective fk(x) together with f1(x), f2(x),…, fk-1(x) to ensure

k-objective efficiency. Moreover we bound the fk(x) value via the constraint, ()k kf x l . The

solution of the CW(K-1)OIP problem provides a set of (k-1)-objective efficient solutions, that are

also k-objective efficient, for the properly set wk and lk values. All k-objective efficient solutions

can be found by solving the CW(K-1)OIP problem for all possible wk and lk values. However,

enumerating all possible values explicitly, may be very impractical, even infeasible, in many

cases. Recognizing this fact, we find the right way to set wk and lk values.

To generate the k-objective efficient set, efficiently, we initially set lk to the general upper

bound on fk(x) value of all feasible solutions and find the corresponding (k-1)-objective efficient

set. We then generate the other (k-1)-objective efficient solution sets by decreasing lk

systemically, towards the set of (k-1)-objective efficient solutions that provide a lower bound on

fk(x) value.

Lemma 4.1 presents a property of an upper bound on the fi(x) value of all k-objective

efficient solutions provided that fi(x) value is no more than li.

Lemma 4.1. A k-objective efficient solution that provides an upper bound on one objective

fi(x), for a specified li , is (k-1)-objective efficient with respect to other k-1 objectives.

Proof. A k-objective efficient solution providing an upper bound on fi(x), satisfies (') ()i if x f x ,

for all 'x X , hence is not non-dominated in objective i. The definition of efficiency follows

that, an efficient solution should have at least one non-dominated objective by any other efficient

solution. In order to have at least one non-dominated objective, an efficient solution not non-

dominated in objective i, should be (k-1)-objective efficient in other k-1 objectives. ▀

We next find a range for wk value that leads to an efficient solution when used in the

CW(K-1)OIP problem. In doing so, we define fk
GUB and fk

GLB as the respective general upper

and lower bounds on fk(x) value of any feasible solution. The general bounds can be obtained by

solving the individual single objective problems.

Using these bounds, Lemma 4.2 specifies a range for wk that guarantees the generation of

k-objective efficient solutions for a specified lk value.

Lemma 4.2. The solution of CW(K-1)OIP problem (by Procedure 4.1) with

 wk=
2 2 3 3

1

(1)(1)...(1)GUB GLB GUB GLB GUB GLB

k kf f f f f f− + − + − +
 provides an upper bound on the fk(x)

value of all k-efficient solutions for a specified lk value.

Proof. The CW(K-1)OIP problem solved within Procedure 4.1 can be stated as follows:

Min 1 2 3

2 2 2 2 3 3

1 1
() () () ...

1 (1)(1)GUB GLB GUB GLB GUB GLB
f x f x f x

f f f f f f
+ + +

− + − + − +

1

2 2 3 3 1 1

1
() ()

(1)(1)...(1)
k k kGUB GLB GUB GLB GUB GLB

k k

f x w f x
f f f f f f

−

− −

+ +
− + − + − +

s.t. 2 2()f x l

 3 3()f x l

.

.

 ()k kf x l

x  X

From Lemma 4.1 we know that the k-objective efficient solutions having the highest fk(x)

value should be (k-1)-objective efficient for other k-1 objectives. To find an upper bound on fk(x)

values of k-objective efficient solutions, one can generate the (k-1)-objective efficient solutions

with respect to objectives f1(x), f2(x), . . ., fk-1(x), thus guarantee (k-1)-objective efficiency and

minimize fk(x) over the (k-1)-objective efficient set. In place of this two-step hierarchical

procedure, we solve a single CW(K-1)OIP problem and generate the (k-1)-objective efficient

solutions which are also k-objective efficient.

The CW(K-1)OIP problem provides a (k-1)-objective efficient set having the highest fk(x)

value, if wk is defined such that the largest decrease in fk(x), will not contribute to the objective

function as much as the smallest increase in either f1(x) or f2(x)or ... or fk-1(x). Since f1(x), f2(x), .

. ., fk-1(x) are hierarchically optimized in that order, the contribution of fk-1(x) is always smaller

than those of f1(x), f2(x), . . ., fk-2(x), so one can only consider the contribution by fk-1(x) and

ignore the other contributions. The largest decrease in fk(x) is no more than (fk
GUB – fk

GLB), and

its contribution to the objective function is no more than wk(fk
GUB–fk

GLB). The smallest increase

in fk-1(x) is no less than
2 2 3 3 1 1

1

(1)(1)...(1)GUB GLB GUB GLB GUB GLB

k kf f f f f f− −− + − + − +
, due to the

integrality of the parameters and decision variables. This follows, when

2 2 3 3 1 1

1
()

(1)(1)...(1)

GUB GLB

k k kGUB GLB GUB GLB GUB GLB

k k

w f f
f f f f f f− −

 −
− + − + − +

, equivalently

2 2 3 3 1 1

1

(1)(1)...(1)()
k GUB GLB GUB GLB GUB GLB GUB GLB

k k k k

w
f f f f f f f f− −


− + − + − + −

, the (k-1)-

objective efficient solutions are also k-objective efficient for a specified lk, are found. As

2 2 3 3

1

(1)(1)...(1)GUB GLB GUB GLB GUB GLB

k kf f f f f f− + − + − +
<

2 2 3 3 1 1

1

(1)(1)...(1)()GUB GLB GUB GLB GUB GLB GUB GLB

k k k kf f f f f f f f− −− + − + − + −
, the CW(K-1)OIP

problem with wk=
2 2 3 3

1

(1)(1)...(1)GUB GLB GUB GLB GUB GLB

k kf f f f f f− + − + − +
 provides an upper

bound on the fk(x) values of the k -objective efficient solutions for a specified lk value. ▀

Through Lemma 4.3 we state that for a properly selected wk value, the following

Weighted (K-1)-Objective Integer Programming (W(K-1)OIP) problem gives an upper bound on

fk(x) values of all k-objective efficient solutions.

(W(K-1)OIP) Min 1() ()k kf x w f x+

Min 2() ()k kf x w f x+

.

.

.

Min 1() ()k k kf x w f x− +

s.t. x  X

Lemma 4.3. The optimal solution of the W(K-1)OIP problem (by Procedure 4.1) with

wk=
2 2 3 3

1

(1)(1)...(1)GUB GLB GUB GLB GUB GLB

k kf f f f f f− + − + − +
 provides an upper bound on the fk(x)

value of all k-efficient solutions.

Proof. Lemma 4.2 states that the optimal solution of the CW(K-1)OIP problem (by Procedure

4.1) with wk=
2 2 3 3

1

(1)(1)...(1)GUB GLB GUB GLB GUB GLB

k kf f f f f f− + − + − +
provides an upper bound on

the fk(x) value of all k-efficient solutions for a specified lk value. Once we set lk to a very big

number no less than GUB

kf , the CW(K-1)OIP problem does not skip any k-objective efficient

solution and the optimal solution provides an upper bound on the fk(x) value of all k-objective

efficient solutions. Moreover the CW(K-1)OIP problem reduces to the W(K-1)OIP problem, as

the constraint ()k kf x l becomes redundant. ▀

We now state the stepwise description of our algorithm to generate all k-objective

efficient solutions. The procedure uses the solution of CW(K-1)OIP problem using the same

procedure with the first (k-1)-objective in each iteration.

Procedure 4.1 Generating all K-Objective Efficient Solutions

Step 0. Find the general bounds f2
GUB

, f2
GLB, f3

GUB, f3
GLB,…, fk

GUB , fk
GLB

Let wk=
2 2 3 3

1

(1)(1)...(1)GUB GLB GUB GLB GUB GLB

k kf f f f f f− + − + − +

Let lk=fk
GUB

Step 1. Solve the CW(K-1)OIP problem with lk using this procedure with the first k-1 objectives.

If the solution is infeasible, STOP.

Step 2. Let the (k-1)-objective solutions set be ME*.

 E = E  ME*

lk= *max{ (), }kf x x ME - 1

Go to Step 1

Set E returned by the above procedure resides all k-objective efficient solutions. Lemma 4.4

states this result formally.

Lemma 4.4. Procedure 4.1 generates all k-objective efficient solutions.

Proof. In Step 0, no feasible, hence efficient, solution is eliminated as lk is set to the general

upper bound value of fk(x). From Lemma 4.2 we know that, Step 1 provides an efficient solution

whose fk value, *max{ (), }kf x x ME , is an upper bound on the fk(x) values of all efficient

solutions for a specified lk value, by identifying the (k-1)-objective efficient set. As

*max{ (), }kf x x ME is an upper bound, there cannot exist any k-objective efficient solution

whose fk(x) value is between *max{ (), }kf x x ME + 1 and lk. Due to the integrality of the

parameters and decision variables, the next fk(x) value cannot be higher than

*max{ (), }kf x x ME -1. So setting lk to *max{ (), }kf x x ME -1 does not eliminate any k-

objective efficient solution, and identifies the next one if there exists any. Each iteration

identifies a (k-1)-objective efficient solution set by solving the CW(K-1)OIP problem with an

updated lk value. The procedure terminates when the associated CW(K-1)OIP problem returns

an infeasible solution. An infeasible solution implies that there is no k-objective efficient

solution having fk(x) value smaller than or equal to the specified lk value, thus all k-objective

efficient solutions are generated. ▀

Procedure 4.1 starts with lk = fk
GUB and provides an upper bound on the fk(x) values of the

k-objective efficient solutions, i.e., fk
kUB. The last feasible solution returned by the algorithm

gives a lower bound on the fk(x) value, i.e., fk
GLB. Hence the fk(x) values of all k-objective

efficient solutions are between fk
GLB and fk

kUB.

The procedure iterates at most as the product of any k-1 objective ranges which is upper

bounded by pseudo-polynomial value Max {g1 . g2 .…, gk} where gi = [(f1
kUB - f1

GLB +1) (f2
kUB –

f2
GLB +1) … (fk

kUB – fk
GLB +1)]/ (fi

kUB – fi
GLB +1). Hence the complexity of the procedure depends

on the complexity of the specific CW(K-1)OIP problem.

An upper bound on number of iterations can also be expressed by the number of k-

objective efficient solutions, |E|. In procedure 4.1, each update of li eliminates one k-objective

efficient solution from the search space. The sum of maximum number of (k-1)-objective

efficient solutions that can identified by solving C(K-1)BOIP problem is,

3 2

2 2 1

1

1 1 1

(1) (2)

2.3 (1)
k

E i i

i i i

E E E k
i

k
− = = =

+ + −
=

−
  .

We now present the extension of classical ε-constraint method, consider the following

CW(K-1)OIP problem.

Min 1 2 3

2 2 2 2 3 3

1 1
() () () ...

1 (1)(1)GUB GLB GUB GLB GUB GLB
f x f x f x

f f f f f f
+ + +

− + − + − +

2 2 3 3

1
... ()

(1)(1)...(1)
kGUB GLB GUB GLB GUB GLB

k k

f x
f f f f f f

+
− + − + − +

s.t. 2 2()f x l

 3 3()f x l

.

.

 ()k kf x l

x  X

Procedure 4.2. Generating all Efficient Solutions of a Multi-Objective Problem

 (classical ε-constraint method)

Step 0. Find f2
GUB, f2

GLB, …, fk
GUB and fk

GLB.

Let l2=f2
GUB

Step 1.1. Let l3=f3
GUB

Step 1.2. Let l4=f4
GUB

…

Step 1.k-2. Let lk=fk
GUB

Step 2. Solve the CW(K-1)BOIP problem with l2, l3, …, and lk.

Step 3. If the solution is infeasible, go to Step 5.

Step 4. Let the optimal solution be x*.

 E = E  (f1(x
*), f2(x

*), ..., fk(x
*))

lk= lk - 1

Go to Step 2

Step 5.1. If lk-1 ≥ fk-1
GLB, lk-1 = lk-1 -1, go to Step 1.k-2.

Step 5.2. If lk-2 ≥ fk-2
GLB, lk-2 = lk-2 -1, go to Step 1.k-1.

…

Step 5.k-1. If l3 ≥ f3
GLB, l3 = l3 -1, go to Step 1.2.

Step 5.k-2. If l2 ≥ f2
GLB, l2 = l2 -1, go to Step 1.1.

 Otherwise STOP.

The procedure iterates at most as the product of any k-1 objective general ranges which is

upper bounded by pseudo-polynomial value Max {g1 . g2 .…, gk} where gi = [(f1
GUB - f1

GLB +1)

(f2
GUB – f2

GLB +1) … (fk
GUB – fk

GLB +1)]/ (fi
GUB – fi

GLB +1). Hence the complexity of the

procedure depends on the complexity of the specific CW(K-1)OIP problem.

The number of times Procedure 4.1 iterates is bounded by the tighter objective efficiency

ranges, whereas the same number for Procedure 4.2 is bounded by the general objective ranges.

1

1

Max # of iterations Procedure 4.1
~

Max # of iterations Procedure 4.2

GUB GLBk
i i

kUB GLB
i i i

f f

f f

−

=

 −
 

− 


The difference between two ranges increases with an increase in the size of the problem

and the variability of the problem parameters. In Procedure 4.2, l2, l3, … lk decrease by one unit,

however, in Procedure 4.1, these values decrease by the value of the next efficient solution.

 In the next section, we provide a numerical example to demonstrate the efficiency of our

procedure in comparison with the classical ε-constraint method.

5. An Example Problem

 In this section we compare the performance of our procedure with the extension of

classical ε-constraint method, on a Tri-Objective Assignment Problem (TAP) instance. We

consider a 5 by 5 problem instance and generate the objective function coefficients randomly

from a discrete uniform distribution between 1 and 100. Table 5.1 has the three objective

coefficients for assigning each row to each column. We represent each solution by a sequence of

column index values assigned to rows 1 through 5. Accordingly in sequence 5-4-3-2-1, row 1 is

assigned to column 5 and row 2 is assigned to column 5.

Table 5.1 Three objective coefficients for the example problem instance

c1 1 2 3 4 5 c2 1 2 3 4 5 c3 1 2 3 4 5

1 99 19 74 55 41 1 28 39 19 42 7 1 29 67 2 90 7

2 23 81 93 39 49 2 66 98 49 83 42 2 84 37 64 64 87

3 66 21 63 24 38 3 73 26 42 13 54 3 54 11 100 83 61

4 65 41 7 39 66 4 46 42 28 27 99 4 75 63 69 96 3

5 93 30 5 4 13 5 80 17 99 59 68 5 66 99 34 33 21

 Using the single objective assignment solutions one can identify general upper and lower

bounds on individual objectives as;

f1
GLB= 86, 2-1-4-3-5

f2
GLB= 128, 1-5-4-3-2

f3
GLB= 129, 3-2-1-5-4

f1
GUB=358, 4-2-3-5-1

f2
GUB=411, 4-2-1-5-3

f3
GUB=451, 4-5-3-1-2

We now give the iteration details of Procedure 3.1. We report the number of IPs solved,

the l2 and l3 bound values. The objective function values of the bi-objective solutions are staed in

groups each representing a single execution of Step 1.

 l3 ≤ 451 l2 ≤ l3 ≤ 366 l2 ≤ l3 ≤ 341 l2 ≤

f1(x) f2(x) f3(x) # f1(x) f2(x) f3(x) # f1(x) f2(x) f3(x)

1 86 214 324 411 6 86 214 324 411 10 86 214 324 411

2 96 186 204 213 7 96 186 204 213 11 96 186 204 213

3 125 131 342 185 8 125 131 342 185 12 180 183 229 185

4 209 128 367 130 9 Infeasible 130 13 253 132 328 182

5 Infeasible 127 14 Infeasible 131

 Max(f3(x)) 367 Max(f3(x)) 342 Max(f3(x)) 328

 l3 ≤ 327 l2 ≤ l3 ≤ 323 l2 ≤ l3 ≤ 319 l2 ≤

f1(x) f2(x) f3(x) # f1(x) f2(x) f3(x) # f1(x) f2(x) f3(x)

15 86 214 324 411 20 91 246 314 411 25 91 246 314 411

16 96 186 204 213 21 96 186 204 245 26 96 186 204 245

17 180 183 229 185 22 180 183 229 185 27 180 183 229 185

18 269 173 320 182 23 269 173 320 182 28 Infeasible 182

19 Infeasible 172 24 Infeasible 172

 Max(f3(x)) 324 Max(f3(x)) 320 Max(f3(x)) 314

 l3 ≤ 313 l2 ≤ l3 ≤ 228 l2 ≤ l3 ≤ 204 l2 ≤

f1(x) f2(x) f3(x) # f1(x) f2(x) f3(x) # f1(x) f2(x) f3(x)

29 96 186 204 411 32 96 186 204 411 34 171 261 191 411

30 180 183 229 185 33 Infeasible 185 35 179 233 194 260

31 Infeasible 182 36 224 187 190 232

 37 Infeasible 186

 Max(f3(x)) 229 Max(f3(x)) 204 Max(f3(x)) 194

 l3 ≤ 193 l2 ≤ l3 ≤ 190 l2 ≤ l3 ≤ 189 l2 ≤

f1(x) f2(x) f3(x) # f1(x) f2(x) f3(x) # f1(x) f2(x) f3(x)

38 171 261 191 411 42 188 269 133 411 46 188 269 133 411

39 212 242 173 260 43 212 242 173 268 47 212 242 173 268

40 224 187 190 241 44 224 187 190 241 48 Infeasible 241

41 Infeasible 186 45 Infeasible 186

 Max(f3(x)) 191 Max(f3(x)) 190 Max(f3(x)) 173

 l3 ≤ 172 l2 ≤ l3 ≤ 139 l2 ≤ l3 ≤ 132 l2 ≤

f1(x) f2(x) f3(x) # f1(x) f2(x) f3(x) # f1(x) f2(x) f3(x)

49 188 269 133 411 52 188 269 133 411 54 291 348 129 411

50 283 261 140 268 53 Infeasible 268 55 Infeasible 347

51 Infeasible 260

 Max(f3(x)) 140 Max(f3(x)) 133 Max(f3(x)) 129

 l3 ≤ 128 l2 ≤

f1(x) f2(x) f3(x)

56 Infeasible 411

Table 5.2, below, lists the efficient solutions.

Table 5.2 The efficient solutions for the example problem

f1(x) f2(x) f3(x) r1 r2 r3 r4 r5

86 214 324 2 1 4 3 5

91 246 314 2 1 5 3 4

96 186 204 5 1 2 3 4

125 131 342 5 1 4 3 2

171 261 191 5 4 2 1 3

179 233 194 1 4 2 3 5

180 183 229 1 5 2 3 4

188 269 133 3 1 2 5 4

209 128 367 1 5 4 3 2

212 242 173 3 4 2 1 5

224 187 190 5 3 2 1 4

253 132 328 5 3 4 1 2

269 173 320 5 3 1 4 2

283 261 140 1 3 2 5 4

291 348 129 3 2 1 5 4

A total of 56 IPs are solved to identify 15 tri-objective efficient solutions. If Procedure

3.2, an extension of classical ε-constraint method, was used then Min {(f1
GUB - f1

GLB +1) (f2
GUB –

f2
GLB +1), (f1

GUB - f1
GLB +1)(f3

GUB – f3
GLB +1), (f2

GUB – f2
GLB +1)(f3

GUB – f3
GLB +1)}= 77532 IP

problems would be solved. Note that for this example problem, our proposed method provides

1400 folds improvement over the classical method, in the number of IPs solved. For larger

problem instances with wider feasibility ranges, the improvements can be much more significant.

6. Conclusions

In this study we develop a method to identify individual objective efficiency ranges for

multi objective problems. Our method uses simpler (having less objectives) multi-objective

problems to obtain efficiency ranges of the individual objectives. By modifying and generalizing

this range identification method to the constrained problems we develop a method to generate all

efficient solutions for tri-objective and general multi-objective integer programming problems.

We also present the classical ε-constraint method for the bi-objective integer

programming (BOIP) problem, and provide its extensions for the tri-objective (TOIP) and multi-

objective (MOIP) integer programming problems.

We compare the theoretical worst case performances of two algorithms based on the

number of IPs solved for generating the efficient set. We demonstrate our method on a small

size tri-objective assignment problem, and observe significant improvement over the classical ε-

constraint method in the number of IPs solved. The amount of improvement mainly depends on

the difference between feasibility and efficiency ranges, and the number of the efficient

solutions.

We hope our study helps to stimulate future work on the Multi-Objective Integer

Programming area. Future work may include the applications to some practical problems like

supply chain design, scheduling, logistics and location. Our general results when applied to

these special problems may trigger the development of some specialized procedures. Another

promising research area may include the development of the procedures for the optimal solution

of the pre-specified function of the k-objectives.

References

Ehrgott. M., X. Gandibleux. 2000. A survey and annotated bibliography of multiobjective

combinatorial optimization. OR Spec. 22 425-460.

Ehrgott, M. X. Gandibleux (Eds.). 2002. Multiple Criteria Optimization State of the Art

Annotated Bibliographic Surveys: International Series in Operations Research & Management

Science, Vol. 52. Springer.

Ehrgott. M., X. Gandibleux. 2004. Approximative solution methods for multiobjective

combinatorial optimization. TOP 12 1-63

Ehrgott, M. 2006. A discussion of scalarization techniques for multiple objective integer

programming. Ann. Oper. Res. 147 343-360.

Klamroth, K., J. Tind, S. Zust. 2004. Integer Programming Duality in Multiple Objective

Programming. J. Glob. Opt. 29 1-18.

Klein, D., E. Hannan. 1982. An algorithm for the multiple objective integer linear programming

problem. Eur. J. Oper. Res. 9 378-385.

Sylva J., A. Crema. 2004. A method for finding the set of nondominated vectors for multiple

objective integer linear programs. Eur. J. Oper. Res. 158 46-55.

Sylva J., A. Crema. 2007. A method for finding well-dispersed subsets of non-dominated vectors

for multiple objective mixed integer linear programs. Eur. J. Oper. Res. 180 1011-1027.

