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Abstract

Sometimes a complex stochastic decision system undertakes multiple tasks called
events, and the decision-maker wishes to maximize the chance functions which are
defined as the probabilities of satisfying these events. Originally introduced by Liu
and Iwamura [6], dependent-chance programming is aimed at maximizing some
chance functions of events in an uncertain environment. In this work we show that
the original dependent chance-programming framework needs to be extended in
order to capture an exact reliability measure for a given plan.
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1 Introduction

Chance-constrained programming, pioneered by Charnes and Cooper [1], pro-
vides a means of handling uncertainty by specifying a confidence level at
which it is desired that the stochastic constraint holds. Chance-constrained
programming models can be converted into deterministic equivalents only for
some special cases, and then solved by using solution methods of determin-
istic mathematical programming. In order to overcome this difficulty, Liu [4]
provided a new stochastic programming framework, called dependent-chance
programming, in which a complex stochastic decision system undertakes multi-
ple tasks called events, and the decision-maker wishes to maximize the chance
functions which are defined as the probabilities of satisfying these events. Liu
and Iwamura [6] proposed a stochastic simulation-based genetic algorithm for
solving general chance-constrained programming as well as chance-constrained
multi-objective programming, and chance-constrained goal programming (for
a more detailed discussion see [5]).

Roughly speaking, dependent-chance programming is aimed at maximizing
some chance functions of events in an uncertain environment. In deterministic
mathematical programming the feasible set is essentially assumed to be deter-
ministic and the optimal solution can always be implemented. However when
uncertainty is taken into account the given solution may be infeasible if the
realization of uncertain parameters is unfavorable. In other words, the feasible
set of dependent chance-programming is described by a so-called uncertain
environment. Although a deterministic solution is given by the dependent
chance-programming model, this solution needs to be as flexible as possible
with respect to the uncertain environment. This special feature of dependent
chance-programming is very different from other existing stochastic program-
ming frameworks. However, such problems do exist in the real world. Some
applications of dependent chance programming have been presented by Liu
and Ku [7], Liu [2,3], Liu and Iwamura [6], and more recently by Wu, Zhou
and Yang [8].

In this note we argue that the original dependent chance-programming frame-
work proposed by Liu and Iwamura needs to be extended in order to capture
an exact notion of reliability and we show that the way Liu and Iwamura
express constraint dependencies, without taking into account the values as-
signed to decision variables, does not guarantee optimal plans since in certain
instances common variables may take values which break the link between
dependent constraints.

This paper is organized as follows. In Section 2 we recall the dependent-chance
programming framework proposed by Liu and Iwamura. In Section 3 we de-
scribe a motivational water supply-allocation problem originally proposed in
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[4] and we analyze the reliability of different distribution plans according to
their framework. In Section 4 we propose an exact notion of reliability ob-
tained by expressing constraint dependencies taking into account the values
assigned to decision variables. An exact reliability measure is then proposed
for the distribution plans being analyzed. In Section 5 we draw conclusions.

2 Formal background

This section presents a summary of dependent-chance programming of Liu
[2,3] and underlying concepts.

If Ω is a collection of objects denoted generally by x, then the stochastic set
A in Ω is defined as a set of ordered pairs:

A = {(x, µA(x))|x ∈ Ω},

where µA(x) is called the probability function of x in A. In uncertain environ-
ments, the feasible set, represented by a series of stochastic constraints, may
be described by a stochastic set. In contrast to the deterministic case, we can
not say a point is feasible or not when our problem is defined on a stochastic
set. We have to say a point x∗ is feasible with probability α, where α is the
value of probability function µA(x∗).

Usually, a solution x is a vector composed of n components, x1, x2, . . . , xn.
We will suppose that we know the following relationship among the decision
components.

Stochastic Relationship: there is a known partition of n components of a
decision vector into k groups such that these k groups are mutually stochasti-
cally independent and in each group any elements are stochastically dependent
and have the same chance to appear if they require to be realized simultane-
ously.

Thus, in stochastic decision systems, the feasible set of decision vectors is
represented by a stochastic set, say S, whose probability function is µS(x).

Next we consider the purpose of our system. Usually there are multiple pur-
poses, functions or tasks of a complex system. Liu denotes the actions meeting
the purposes or performing the tasks as events. Each event is represented by
a set E which is composed of all the possible decisions meeting certain condi-
tions. Let V (E) denote the set of all components of x which are necessary to
the event E and D(E) be the set of all components which are stochastically
dependent of any elements in V (E). It is clear that V (E) ⊂ D(E).
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For each element of an event E, we have to give an evaluation, i.e. criterion
function, of a decision vector. In view of the uncertainty of the stochastic
decision system, we are not certain whether a decision is feasible before know-
ing the realization of stochastic parameters, so we employ chance functions
as objective functions to evaluate some of the events. Generally, the chance
function, denoted by f(x), is the probability function on the event E.

Thus, for single event case, the dependent-chance programming (DCP) is given
as follows:

max
x∈S

f(x), (1)

where x is an n-dimensional decision vector, S is a stochastic set on Rn with
probability function µS(x), f(x) is a chance function of a certain event, bor-
rowing the symbol ∈ from classical set theory, x ∈ S means x is feasible with
probability µS(x). A point x∗ ∈ S is called an optimal solution of the problem
in Eq. 1 if f(x∗) ≥ f(x) for any x ∈ S.

As an extension, the dependent-chance multiobjective programming (DC-
MOP) for multiple events case is given as follows,

max
x∈S

f(x) = [f1(x), f2(x), . . . , fm(x)] , (2)

where f(x) is a vector of real-valued functions fi which are chance or deter-
ministic functions.

In [6] the authors highlight that the key aspect of algorithm for solving DCP,
DCMOP and DCGP (i.e. dependent-chance goal programs, for a detailed
discussion refer to [6]) consists in constructing the relationship between the
decision vectors and chance functions. They consider a set of t objectives
fi(x), i = 1, 2, . . . , t. They assume that every fi(x) is a chance function that
represents a probability of a certain event which is represented by Ei. Then
they define

E = E1 ∩ E2 ∩ . . . ∩ Et

and

V (E) = V (E1) ∪ V (E2) ∪ . . . ∪ V (Et).

In order to realize each event Ei, as far as possible without sacrificing the
chances of other events, they treat all elements in the stochastically dependent
set D(Ei) of V (Ei) at an equitable level, i.e., these elements would have the
same chance to be realized. On the other hand they disregard elements out
of V (E) because they do not make any contribution to the events that have
to be realized. Thus the authors consider all the elements in and only in
D(Ei)∩V (E) simultaneously for the event Ei. From the stochastic relationship
it follows that all the elements in D(Ei)∩ V (E) are independent of any other
elements in V (E), therefore we can perform the elements in D(Ei)∩ V (E) as
far as possible.
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It has to be noted that the relationship between the decision vectors and
chance functions is defined by the authors in [6] without taking into account
the values assigned to decision variables. For this reason we shall see that their
definition does not guarantee optimal plans, since in certain instances com-
mon variables may take values which break the link between two dependent
constraints. In order to show this, in the following section we recall the water
supply-allocation problem presented in Liu and Iwamura [6] to demonstrate
the subtleties inherent in dependent-chance programming.

3 A Dependent-Chance Programming Example
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Fig. 1. Water Supply-Allocation Problem

Fig. 1 depicts a water supply system with three suppliers S1, S2, S3 with their
given probabilistic supply capacities and three different customers, denoted
by C1, C2, C3, with known demands. The scopes of the suppliers are S1 Ã
{C1, C2}, S2 Ã {C1, C2, C3}, S3 Ã {C2, C3}. The deterministic customer
demands are [8, 7, 4]. The suppliers’ probabilistic capacities are expressed as
discrete probability density functions:

φS1 = {3(0.3), 7(0.5), 12(0.2)},
φS2 = {6(0.4), 7(0.2), 10(0.4)},
φS3 = {3(0.3), 8(0.7)},

where values in parentheses represent probabilities. We must answer the fol-
lowing two types of question.

• Supply problems. In order to achieve certain objectives in the future, deci-
sions must be made concerning present actions to be taken. That is, we must
determine the optimal combination of inputs, for example to determine the
quantities ordered from the 3 inputs.

• Allocation problems. One of the basic allocation problems is the optimal
allocation of the resources. Here the task is to determine the outputs that
result from various combinations of resources such that certain objectives
are achieved.

5



Certainly, in this system supply and allocation decisions should not be sepa-
rate.

Let S be the set of suppliers and C the set of customers. Define decision
variables xs,c ∈ Z+ ⋃ {0} denoting the planned non-negative supply from
supplier s to customer c. Also define random variables ξs, with probability
density function φs, denoting the uncertain supply available to supplier s.
First we have the following constraints,

∑

c∈Cs

xs,c ≤ ξs, ∀ s ∈ S

where Cs is the set of customers for supplier s. A constant ζc denotes the
deterministic demand of customer c. Event Ec is defined as follows,

Ec :
∑

s∈Sc

xs,c = ζc

where Sc is the set of suppliers for customer c. Event Ec means that the
decision should satisfy the demand of customer c. In view of the uncertainty
of this system, we are not sure whether a decision is feasible before knowing the
realization of stochastic variables, so we employ chance functions to evaluate
these events. Let

fc(x) = Pr



Ec :

∑

s∈Sc

xs,c = ζc



 ,

where Pr denotes the probability of the event in {·}. Usually we hope to
maximize all the chance functions, i.e. increase the reliability levels of all the
events as much as possible.

Without loss of generality we will now assume that all the events have the same
priority and we will formulate the problem as DCGP. The model is therefore,

max
∑

c∈C

fc(x) (3)

subject to, (4)∑

c∈Cs

xs,c ≤ ξs s ∈ S, (5)

xs,c ∈ Z+
⋃ {0} s ∈ S, c ∈ C. (6)

The stochastic feasible set S will be defined by a probability function

µS(x) = Pr





∑

c∈Cs

xs,c ≤ ξs, ∀ s ∈ S



 . (7)

The authors in [6] divide the decision components into three groups {xs,c|s =
S1}, {xs,c|s = S2} and {xs,c|s = S3} which are mutually stochastically inde-
pendent and in each group any element has the same probability of occurring.
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From the water supply-allocation problem definition it follows that

V (E1) = {xS1,C1 , xS2,C1}, (8)

V (E2) = {xS1,C2 , xS2,C2 , xS3,C2}, (9)

V (E3) = {xS2,C3 , xS3,C3}, (10)

and

D(E1) = {xS1,C1 , xS1,C2 , xS2,C1 , xS2,C2 , xS2,C3}, (11)

D(E2) = {xS1,C1 , xS1,C2 , xS2,C1 , xS2,C2 , xS2,C3 , xS3,C2 , xS3,C3}, (12)

D(E3) = {xS2,C1 , xS2,C2 , xS2,C3 , xS3,C2 , xS3,C3}, (13)

therefore the induced constraint on D(E1)∩V (E) is then, according to Liu and
Iwamura, {xS1,C1+xS1,C2 ≤ ξS1 , xS2,C1+xS2,C2+xS2,C3 ≤ ξS2}; on D(E2)∩V (E)
it is {xS1,C1 +xS1,C2 ≤ ξS1 , xS2,C1 +xS2,C2 +xS2,C3 ≤ ξS2 , xS3,C2 +xS3,C3 ≤ ξS3};
and finally on D(E3)∩V (E) it is {xS2,C1+xS2,C2+xS2,C3 ≤ ξS2 , xS3,C2+xS3,C3 ≤
ξS3}. Hence

fC1(x) = Pr{(ξS1 , ξS2)|xS1,C1 + xS1,C2 ≤ ξS1 , xS2,C1 + xS2,C2 + xS2,C3 ≤ ξS2},
(14)

fC2(x) = Pr{(ξS1 , ξS2 , ξS3)|xS1,C1 + xS1,C2 ≤ ξS1 , xS2,C1 + xS2,C2 + xS2,C3 ≤ ξS2 ,
(15)

xS3,C2 + xS3,C3 ≤ ξS3},
fC3(x) = Pr{(ξS2 , ξS3)|xS2,C1 + xS2,C2 + xS2,C3 ≤ ξS2 , xS3,C2 + xS3,C3 ≤ ξS3}.

(16)

Table 1 presents some representative distribution plans (columns 2–8) and
their corresponding reliability measures according to Liu and Iwamura (col-
umn under heading “Liu–Iwamura”).

Table 1
Representative distribution plans
Plan Planned Delivery Si Ã Dj : (i, j) Reliability Measures
No (1, 1) (1, 2) (2, 1) (2, 2) (2, 3) (3, 2) (3, 3) Liu–Iwamura New
1 3 5 5 1 1 1 3 0.624 0.624
2 4 7 4 0 4 0 0 0.560 0.680
3 6 2 2 5 0 0 4 0.624 0.940
4 5 0 3 3 4 4 0 0.756 0.960
5 7 5 1 1 1 1 3 1.040 1.040
6 2 5 6 0 4 2 0 0.960 1.380
7 8 2 0 2 4 3 0 1.400 1.400
8 0 7 8 0 0 0 4 0.756 1.800
9 5 0 3 3 0 4 4 1.890 2.100
10 6 0 2 0 4 7 0 1.890 2.400
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4 Decision Variable Value Based Dependency

Liu–Iwamura’s framework ignores the important dependency between con-
straints and values of decision variables.

Consider a plan in which xS1,C1 = 0 so that C1 must receive all supplies
from S2. The reliability of the satisfaction of C1 (event E1) should now be
independent of the ability of S1 to meet its demand. But the dependent-chance
programming, in its current form which does not take variable assignments
into account, always relates the demand satisfaction of C1 to S1 and S2 (Eq.
14), which is not necessarily correct. Therefore one should refine the objectives
(Eqs. 14, 15 and 16) via further logical connectives between constraints:

fc(x) = Pr



xs,c 6= 0 → ∑

c′∈Cs

xs,c′ ≤ ξs, ∀ s ∈ Sc



 , (17)

where → denotes logical implication: C → C′ is the sum of the probabilities of
the scenarios in which either C is violated or C′ is satisfied, or both. Because
of this modification, under a decision in which xS1,C1 = 0 there is no longer a
penalty if ∑

c′∈C1

xs,c′ ≤ ξ1

is violated.

The new reliability measures calculated using Eq.(17) are listed in the last
column in Table 1.

To gain more insight into this problem class we examine allocation plans given
in Table 1 in three categories: Plans {1,5}, Plans {2,3,4,6,8,9,10}, and Plan
{7}.

In the first category (Plans 1 and 5) the plans have non-zero values assigned
to all decision variables and, therefore, as expected the results of Liu-Iwamura
and those produced by the extended model proposed here are the same (in
Eq.(17), xs,c 6= 0 becomes redundant). In the second group, however, since
certain variables have zero assignments now a discrepancy between the Liu–
Iwamura model and the extended model proposed here is observed. As ex-
plained above, this difference in probabilistic measure values is due to the
broken constraint dependencies that arise when decision variables are as-
signed value zero. In the third group we have only one plan (Plan 7). In
this case, although two decision variables are assigned zero values the two
frameworks produce the same result. To understand the reason behind this
observation we need to look at the amounts committed by suppliers S2 and
S3 according to Plan 7. Supplier S2 (S3) is expected to provide in total
xS2,C1 + xS2,C2 + xS2,C3 = 6 (xS3,C2 + xS3,C3 = 3) units. When we look at
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the uncertain supply capacities for suppliers S2 and S3, it is clear that these
units can be provided in full even under the worst-case scenarios. In other
words, the zero assignment does not make any difference in Plan 7, because
breaking the dependency is important only if there is a chance of failure in
complying with supply commitments.

5 Conclusion

We showed how to extend Liu and Iwamura’s original dependent-chance pro-
gramming framework in order to obtain an exact reliability measure. Our ex-
periments show that in most cases expressing constraint dependency without
taking into account the values assigned to decision variables does not guar-
antee optimal plans, in fact in certain instances common variables may take
values which break the link between two dependent constraints.
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