
Scheduling Parallel Machines

with Inclusive Processing Set Restrictions

and Job Release Times

Chung-Lun Li

Department of Logistics and Maritime Studies

The Hong Kong Polytechnic University

Hung Hom, Kowloon, Hong Kong

Email: lgtclli@polyu.edu.hk

Xiuli Wang

School of Economics and Management

Nanjing University of Science and Technology

Nanjing, China

Email: wangdu0816@163.com

July 2008

Revised December 2008

This is the Pre-Published Version.

Abstract

We consider the problem of scheduling a set of jobs with different release times

on parallel machines so as to minimize the makespan of the schedule. The machines

have the same processing speed, but each job is compatible with only a subset of those

machines. The machines can be linearly ordered such that a higher-indexed machine

can process all those jobs that a lower-indexed machine can process. We present an

efficient algorithm for this problem with a worst-case performance ratio of 2. We also

develop a polynomial time approximation scheme (PTAS) for the problem, as well as a

fully polynomial time approximation scheme (FPTAS) for the case in which the number

of machines is fixed.

Keywords: Scheduling; parallel machines; release times; worst-case analysis; polynomial

time approximation scheme

1 Introduction

In many applications of parallel machine scheduling, machines have the same speed, but they differ

from each other in their functionality. As a result, every job has a restricted set of machines to which

it may be assigned, called its processing set, while the processing time of a job is independent of all

the machines assigned to it; see, for example, [6, 20, 23]. One particular type of parallel machine

scheduling problems with processing set restrictions, namely problems with inclusive processing sets,

have received increasing attention recently. In this type of scheduling problems, a job’s processing

set is either a subset or superset of another job’s processing set.

Scheduling problems with inclusive processing set restrictions have many applications. A classi-

cal application is in scheduling computer programs to multiple processors with memory constraints,

where a job can only be assigned to a processor with memory capacity no less than the job’s mem-

ory requirement [15, 16]. Inclusive processing sets also arise in the service industry when service

providers differentiate their customers by categorizing them as platinum, gold, silver, and regular

members. One method of providing differentiated service to these customers is to label customers

(i.e., jobs) and servers (i.e., machines) with grade of service (GoS) levels, and allow a customer

to be served by a server only when the GoS level of the customer is no less than the GoS level

of the server [10]. Ou et al. [23] have described an application in cargo loading, where multiple

loading/unloading cranes are working in parallel to load/unload cargoes of a vessel. The cranes

have identical operating speed but different weight capacity limits. Each piece of cargo (i.e., job)

can be handled by any crane (i.e., machine) with a weight capacity limit no less than the weight of

the cargo. The objective is to finish loading/unloading the vessel at a minimal time duration.

A number of studies of scheduling problems with inclusive processing set restrictions have

appeared in the literature. Most of those offline scheduling models with inclusive processing sets

assume that every job is available at time 0. However, it is quite common in practice that jobs

have different release dates/times. For example, in the cargo loading application mentioned above,

it is not uncommon to have some “late come cargoes” still on the way to the cargo loading area

(and therefore they are not yet available for loading) when the loading operations of a vessel have

1

already started. Therefore, in this paper we analyze a scheduling model with job release times

and inclusive processing set restrictions, and we focus on the development of polynomial-time

approximation algorithms for our model.

Our problem can be described formally as follows: Given a set of n jobs J = {J1, J2, . . . , Jn}

and a set of m parallel machines M = {M1, M2, . . . , Mm}. Associated with each job Jj are a

processing time pj > 0, a release time rj ≥ 0, and a machine index aj ∈ {1, 2, . . . , m}. Job Jj

becomes available for processing at its release time, and it can be processed by machine Mi if

i ≥ aj . In other words, the machines are linearly ordered in such a way that Mi can process all

those jobs that Mi−1 can process (i = 2, 3, . . . , m). We denote Si = {Jj | aj = i} for i = 1, 2, . . . , m.

Then, J = S1 ∪ S2 ∪ · · · ∪ Sm, and the jobs in Si can be processed by any of Mi, Mi+1, . . . , Mm.

Job preemption is not permitted. The objective is to determine a feasible schedule σ such that

the makespan, denoted Cmax(σ), is minimized. We assume that all processing times and release

times of jobs are integers. We denote our problem as P | rj, incl. proc. sets |Cmax. When all job

release times are zero, we denote the problem as P | incl. proc. sets |Cmax. When the number

of machines, m, is fixed, we denote P | rj, incl. proc. sets |Cmax and P | incl. proc. sets |Cmax as

Pm | rj, incl. proc. sets |Cmax and Pm | incl. proc. sets |Cmax, respectively.

Note that if m > n, then clearly, there exists an optimal solution to P | rj, incl. proc. sets |Cmax

in which no job is scheduled on M1, M2, . . . , Mm−n and therefore the m− n least flexible machines

can be completely ignored. Hence, throughout the paper, we assume that m ≤ n.

Scheduling with job release times have been studied by many researchers (see, for example,

[2, 17]). However, research on parallel machine problems with job release times is limited. Some of

these works focus on problems with a min-sum objective (see, for example, [3, 25]). For problems

with a min-max objective, Hall and Shmoys [7] have developed a polynomial time approximation

scheme (PTAS) for the strongly NP-hard problem P | rj |Lmax, where Lmax = max{sj + pj + qj},

sj is the processing start time of Jj, and qj is a given delivery time of Jj. Mastrolilli [21] has

developed a more efficient PTAS for the same problem. Note that P | rj |Cmax is a special case of

P | rj |Lmax, and therefore, both PTASs developed by [7, 21] are applicable to P | rj |Cmax.

It is well known that the classical parallel machine minimum makespan scheduling problem,

2

P | | Cmax, is NP-hard in the strong sense when the number of machines is not fixed [17]. Thus,

problems P | incl. proc. sets |Cmax and P | rj, incl. proc. sets |Cmax are also strongly NP-hard. The

strong NP-hardness of these problems not only indicates the difficulty of developing polynomial-

time optimal algorithms, but it also implies that it is impossible to develop fully polynomial

time approximation schemes (FPTASs) for these problems unless P = NP . A few researchers

have developed polynomial-time approximation algorithms for problem P | incl. proc. sets |Cmax.

In fact, P | incl. proc. sets |Cmax is a special case of the unrelated parallel machine scheduling

problem R | | Cmax, and a polynomial-time 2-approximation algorithm (i.e., an algorithm which

generates solutions with relative error guaranteed no more than 100%) have been developed by

Lenstra et al. [19]. Shchepin and Vakhania [26] have further developed a polynomial-time algo-

rithm for R | | Cmax with an improved worst-case performance ratio of 2 − 1
m . There are several

polynomial-time algorithms for problem P | incl. proc. sets |Cmax with worst-case performance ra-

tio better than 2 − 1
m . These include a (2 − 1

m−1)-approximation algorithm developed by Kafura

and Shen [15], a (2 − 1
m−1)-approximation algorithm developed by Hwang et al. [10], and a 3

2 -

approximation algorithm developed by Glass and Kellerer [5]. Ou et al.’s [23] have developed a

4
3 -approximation algorithm with a polynomial running time of O

(

(n + m)(lognm) log psum

)

, where

psum =
∑n

j=1 pj , and a (4
3 +ε)-approximation algorithm with a strongly polynomial running time of

O
(

(n+ m)(lognm) log 1
ε

)

, where ε is a positive constant which may be set arbitrarily close to zero.

Under the assumption of m ≤ n, their 4
3 -approximation algorithm and (4

3 + ε)-approximation al-

gorithm have running time of O(n logn log psum) and O(n logn log 1
ε), respectively. They have also

presented a PTAS for the problem. To the best of our knowledge, no research has been reported

on problem P | rj, incl. proc. sets |Cmax.

When the number of machines is fixed, problem Pm | incl. proc. sets |Cmax becomes NP-hard

in the ordinary sense. Horowitz and Sahni [8], Jansen and Porkolab [11], and Fishkin et al. [4] have

developed FPTASs for problem Rm | | Cmax (i.e., problem R | | Cmax when the number of machines

is fixed). Thus, their FPTASs can be applied to problem Pm | incl. proc. sets |Cmax. Ji and Cheng

[12] have also proposed a different FPTAS for the same problem. Mastrolilli [22] has developed

an FPTAS for the unrelated parallel machine scheduling problem when the number of machines

3

is fixed, with the objective of minimizing the maximum flow time of jobs, i.e., maxj{Cj − rj}.

However, there is no known FPTAS for problem Pm | rj, incl. proc. sets |Cmax.

A few researchers have developed online algorithms for various variants of problem

P | incl. proc. sets |Cmax; see [1, 13, 14, 24]. Some researchers have also studied preemptive schedul-

ing models with inclusive processing set restrictions; see [9].

The rest of this paper is organized as follows: In Section 2 we present some important properties

of problem P | rj, incl. proc. sets |Cmax and then develop an efficient 2-approximation algorithm for

the problem. In Section 3 we present a PTAS for the problem. In Section 4 we present an FPTAS

for the case where the number of machines is fixed. We draw some concluding remarks in Section 5.

2 Model Properties and Efficient Approximation Algorithms

We first present two lemmas, which cover some important properties of problem

P | rj, incl. proc. sets |Cmax:

Lemma 1 There exists an optimal solution to P | rj, incl. proc. sets |Cmax in which the jobs

processed by Mi are sequenced in nondecreasing order of release times for i = 1, 2, . . . , m.

Proof: The proof follows a straightforward adjacent job interchange argument, and the details are

omitted.

Lemma 2 Consider a machine Mi and a job subset {Jj1, Jj2, . . . , Jjh
}, where aju ≤ i (u =

1, 2, . . . , h) and rj1 ≤ rj2 ≤ · · · ≤ rjh
. Let D be a positive integer. Suppose jobs Jj2 , Jj3, . . . , Jjh

can all be scheduled on machine Mi with each job completion time no greater than D. Then, jobs

Jj1 , Jj2, . . . , Jjh
can all be scheduled on machine Mi with each job completion time no greater than

D if and only if rj1 + pj1 ≤ D − (pj2 + pj3 + · · ·+ pjh
).

Proof: Suppose that rj1 +pj1 ≤ D−(pj2 +pj3 +· · ·+pjh
). Since Jj2 , Jj3, . . . , Jjh

can all be scheduled

on machine Mi with each job completion time no greater than D, by Lemma 1, we can schedule

these jobs on Mi in nondecreasing order of release times with the completion time of the last job

4

no greater than D. Hence, if we schedule Jju to start at time D − (pju + pju+1 + · · · + pjh
) for

u = 1, 2, . . . , h, then jobs Jj1 , Jj2, . . . , Jjh
can all be processed by machine Mi with no time clash and

no violation of release time constraints. Conversely, suppose that rj1+pj1 > D−(pj2+pj3+· · ·+pjh
).

Then, rj1 ≥ D− (pj1 +pj2 + · · ·+pjh
)+1, which implies that Jj1 , Jj2, . . . , Jjh

must all be processed

within the time interval [D− (pj1 +pj2 + · · ·+pjh
)+1, D]. Hence, these jobs cannot be all assigned

to the same machine.

A straightforward approach to obtaining an approximation solution for problem

P | rj, incl. proc. sets |Cmax with a constant bound on the relative error is to apply the method

developed by Ou et al. [23]. Such an approach is described as follows:

Algorithm A1:

Step 1. Ignore all job release times and assign the jobs to machines using Ou et al.’s 4
3 -approximation

algorithm. Within each machine, sequence the jobs arbitrarily and do not allow any idle time

between jobs.

Step 2. Increase the start time of all jobs by rmax, where rmax = maxj=1,2,...,n{rj}.

Note that in Step 2, after increasing the start time of all jobs by rmax, each job Jj will start

processing no earlier than rj. Thus, algorithm A1 always generates a feasible schedule. Let CA1
max

denote the makespan of the schedule generated by A1, and let C∗
max denote the makespan of the

optimal schedule. Algorithm A1 has a running time of O(n logn log psum) and has a performance

guarantee stated in the following theorem.

Theorem 1 CA1
max/C∗

max ≤
7
3 .

Proof: Let C̄∗
max denote the optimal makespan of the problem when all the job release times are

replaced by 0. Clearly, C̄∗
max ≤ C∗

max. Let C̄A1
max denote the makespan of the schedule generated by

Step 1 of algorithm A1. Then, Ou et al.’s worst-case bound implies that C̄A1
max ≤

4
3 C̄∗

max. Note that

rmax ≤ C∗
max. Therefore, CA1

max = C̄A1
max + rmax ≤

4
3 C̄∗

max + C∗
max ≤

7
3C∗

max.

5

Remark 1: In Step 1 of algorithm A1, we can also choose to use Ou et al.’s (4
3 + ε)-approximation

algorithm. If we do so, A1 will have a strongly polynomial running time of O(n logn log 1
ε), and

the worst-case error bound will become CA1
max/C∗

max ≤
7
3 + ε, where ε is a positive constant which

may be set arbitrarily close to zero. For example, if we select ε = 2
3 , then this modified version of

algorithm A1, denoted A1′, is a 3-approximation algorithm with a running time of O(n logn).

Next, we present a more effective approximation algorithm for P | rj, incl. proc. sets |Cmax. This

algorithm guarantees that the solution generated has an objective function value no more than twice

the optimal solution value. The idea of our algorithm is to search for a feasible schedule via binary

search. In each iteration of the search procedure, we attempt to obtain a feasible schedule with

makespan no greater than a certain value D by assigning jobs to machines according to the following

rules: (a) Jobs are assigned one by one in nonincreasing order of release times. (b) Job Jj can be

assigned to a machine Mk (with k ≥ aj) only if Mk can process Jj, as well as all its existing jobs,

within the time interval [0, D]. (c) Among those machines that Jj can be assigned to, we select the

least flexible machine (i.e., machine Mk with the smallest possible k).

Let L = maxj=1,2,...,n{rj + pj} and U = rmax + psum. Clearly, L and U are lower and upper

bounds, respectively, on the optimal solution value of P | rj, incl. proc. sets |Cmax. The approxima-

tion algorithm is described formally as follows:

Algorithm A2:

Step 1. Re-index the jobs J1, J2, . . . , Jn in such a way that r1 ≤ r2 ≤ · · · ≤ rn. Set C′ ← L − 1,

C′′ ← U , C ←
⌈

(C′ + C′′)/2
⌉

, and D ← 2C.

Step 2. (i) For i = 1, 2, . . . , m, set Pi ← 0. For j = n, n−1, . . . , 1, attempt to assign Jj as follows: If

there exists machine index ` such that aj ≤ ` ≤ m and rj + pj ≤ D−P`, then assign Jj

to machine Mk and set Pk ← Pk + pj, where k = min{` | aj ≤ ` and rj + pj ≤ D − P`}.

Otherwise, we fail to assign all jobs to the machines; stop and go to (ii).

(ii) If we fail to assign all jobs to the machines in (i), then set C′ ← C, C ←
⌈

(C + C′′)/2
⌉

,

and D ← 2C. Otherwise, we have a feasible assignment in (i); in such a case, we set

6

C′′ ← C, C ←
⌈

(C + C′)/2
⌉

, and D← 2C.

(iii) If C < C′′, then go to (i).

Step 3. Select the last feasible job assignment obtained in Step 2. On each machine, sequence

the jobs in nondecreasing order of rj. Process each job as early as possible on its assigned

machine.

Step 1 of algorithm A2 is the initialization step. In each iteration of Step 2, the algorithm tests

if all jobs can get assigned to the m machines (with no job completed later than D = 2C) following

the abovementioned rules (a)–(c). By Lemma 2, a job Jj can be assigned to M` with ` ≥ aj if

and only if rj + pj ≤ D− P`, where P` is the total processing time of the existing jobs assigned to

that machine. Hence, in Step 2(i) we determine whether Jj can be assigned to M` by checking the

conditions “rj + pj ≤ D − P`” and “aj ≤ `.” The binary search procedure returns a feasible job

assignment corresponding to a certain value of C. Thus, if we decrease this value of C by 1, then

Step 2(i) will fail to assign all jobs to the machines. In Step 3, given a feasible job assignment, we

can determine the job schedule by arranging the jobs on each machine in nondecreasing order of

release times (see Lemma 1).

The running time of Steps 1 and 3 is dominated by the binary search. The number of iterations

in the binary search is bounded from above by O(logU) = O(log(rmax + psum)). In Step 2, for

a given integer D, it takes O(nm) time to determine a feasible assignment (or to confirm that

it fails to assign all jobs to the machines). Hence, the overall running time of algorithm A2 is

O(nm log(rmax + psum)), which is polynomial in the input size of the problem.

Let CA2
max denote the makespan of the schedule generated by algorithm A2. The following

theorem provides us with a performance guarantee on algorithm A2.

Theorem 2 CA2
max/C∗

max ≤ 2.

Proof: Suppose, to the contrary, that there exists a problem instance in which CA2
max/C∗

max > 2.

Since CA2
max is the makespan of the schedule generated by algorithm A2, Step 2(i) of algorithm A2

should fail to assign all jobs to the machines if C is selected in such a way that D < CA2
max (i.e.,

7

2C ≤ CA2
max−1). We consider the execution of Step 2(i) when C =

⌊

1
2 (CA2

max−1)
⌋

, and let Jv denote

the first job that fails to get assigned to any machine.

Let S ′ = {Jv+1, Jv+2, . . . , Jn}, which is the subset of jobs that are assigned to the machines

prior to the assignment of Jv . Let Bi = {Jj ∈ S ′ | Jj is assigned to Mi} and S ′
i = {Jj ∈ S ′ | aj = i}

for i = 1, 2, . . . , m. Define

λ = max{i | aj ≥ i for all Jj ∈ Bi ∪ Bi+1 ∪ · · · ∪ Bm}.

Thus, all the jobs assigned to machines Mλ, Mλ+1, . . . , Mm prior to the assignment of Jv have

machine indices no smaller than λ. However, for any µ = λ+1, λ+2, . . . , m, at least one job

assigned to machines Mµ, Mµ+1, . . . , Mm has a machine index smaller than µ. Note that the jobs

in Bλ∪Bλ+1∪· · ·∪Bm can only be assigned to machines Mλ, Mλ+1, . . . , Mm. Assigning all the jobs

in Bλ∪Bλ+1∪· · ·∪Bm to machines Mλ, Mλ+1, . . . , Mm is possible only if 1
m−λ+1

∑m
i=λ

∑

Jj∈Bi
pj ≤

C∗
max, which implies that

min
i=λ,λ+1,...,m

{
∑

Jj∈Bi
pj

}

≤ C∗
max. (1)

We now divide the analysis into two cases.

Case 1: λ ≥ av . In this case, Jv has a machine index no greater than λ but cannot get assigned

to any of Mλ, Mλ+1, . . . , Mm. Thus, by Lemma 2, rv + pv > 2C −
∑

Jj∈Bi
pj for i = λ, λ+1, . . . , m,

or equivalently, 2C < (rv + pv) + mini=λ,λ+1,...,m

{
∑

Jj∈Bi
pj

}

. Because C∗
max ≥ rv + pv, we have

2C < C∗
max + mini=λ,λ+1,...,m

{
∑

Jj∈Bi
pj

}

.

Case 2: λ < av . In this case, Jv is the first job which cannot get assigned to any of

Mav , Mav+1, . . . , Mm. Thus, by Lemma 2, rv + pv > 2C −
∑

Jj∈Bi
pj for i = av , av +1, . . . , m,

or equivalently, 2C < (rv + pv) + mini=av,av+1,...,m

{
∑

Jj∈Bi
pj

}

. Since C∗
max ≥ rv + pv , we have

2C < C∗
max + min

i=av,av+1,...,m

{
∑

Jj∈Bi
pj

}

. (2)

By definition of λ, for every i = λ, λ+1, . . . , av−1, there exist ` ∈ {i+1, i+2, . . . , m} and a job

Jk ∈ B` such that ak ≤ i (otherwise, aj ≥ i + 1 for all Jj ∈ Bi+1 ∪ Bi+2 ∪ · · · ∪ Bm). Note that

(rk + pk) > 2C −
∑

Jj∈B̄i
pj, where B̄i is the set of jobs that have been assigned to Mi before the

assignment of Jk takes place, since otherwise Jk would be assigned to one of Mak
, Mak+1, . . . , Mi

8

instead of M`. Note also that C∗
max ≥ rk + pk. Thus, C∗

max > 2C −
∑

Jj∈B̄i
pj, which implies that

C∗
max > 2C −

∑

Jj∈Bi
pj. Hence,

2C < C∗
max + min

i=λ,λ+1,...,av−1

{
∑

Jj∈Bi
pj

}

. (3)

Combining (2) and (3), we have 2C < C∗
max + mini=λ,λ+1,...,m

{
∑

Jj∈Bi
pj

}

.

In both Cases 1 and 2, we have 2C < C∗
max + mini=λ,λ+1,...,m

{
∑

Jj∈Bi
pj

}

. By (1), this implies

that 2C < 2C∗
max. Therefore, C < C∗

max; that is,
⌊

1
2 (CA2

max − 1)
⌋

< C∗
max. Because CA2

max and C∗
max

are integers, this inequality implies that CA2
max ≤ 2C∗

max, which is a contradiction. This completes

the proof of the theorem.

Remark 2: The worst-case error bound presented in Theorem 2 is asymptotically tight as m→∞.

To see this, consider an example with n = 2m, p1 = p2 = · · · = pm = m, pm+1 = pm+2 = · · · =

p2m = 1, r1 = r2 = · · · = rm = 0, rm+1 = rm+2 = · · · = r2m = 1, ai = i for i = 1, 2, . . . , m, and

am+1 = am+2 = · · · = a2m = 1. It is easy to check that when C = m− 1, Step 2(i) of algorithm A2

fails to assign all 2m jobs to M1, M2, . . . , Mm. When C = m (i.e., D = 2m), Step 2(i) of A2 can

assign all jobs to the machines, and the corresponding schedule is depicted in Figure 1(a). Thus,

CA2
max = 2m. An optimal schedule to this problem instance, which has a makespan of C∗

max = m+1,

is shown in Figure 1(b). Hence, CA2
max/C∗

max = 2m/(m + 1)→ 2 as m→∞.

Remark 3: The running time of algorithm A2 is not strongly polynomial. A strongly polyno-

mial time approximation algorithm can be obtained by modifying A2 slightly using the method

presented in [23]. First, as mentioned in Remark 1, we can use algorithm A1′ to obtain a 3-

approximation solution to problem P | rj, incl. proc. sets |Cmax in O(n logn) time. So, instead of

using L = maxj=1,2,...,n{rj + pj} and U = rmax + psum, we let U be the makespan of this 3-

approximation solution and let L = 1
3U . Then, L ≤ C∗

max ≤ U . Next, in algorithm A2, instead

of applying binary search on the integer set {L, L+1, . . . , U}, we divide the interval [L, U] into K

subintervals: [L, ξL], (ξL, ξ2L], . . . , (ξK−2L, ξK−1L], (ξK−1L, U], where ξ = 1 + ε′

2 , K = dlogξ 3e,

and ε′ is a prespecified positive constant. We use binary search to search these subintervals. For

each subinterval (C(u−1), C(u)] (or [C(u−1), C(u)]) involved in the binary search, we apply Step 2(i)

9

of algorithm A2 with D = 2C(u). This modified version of algorithm A2 is a (2+ ε′)-approximation

algorithm, and ε′ may be set arbitrarily close to zero. The binary search procedure takes O(logK)

iterations. It is easy to check that O(K) ≤ O(1
ε′). Therefore, the running time of the modified

algorithm is O(n logn + nm log 1
ε′).

3 A Polynomial Time Approximation Scheme

In this section we develop a PTAS for problem P | rj, incl. proc. sets |Cmax. As mentioned in

Section 1, Mastrolilli [21] has developed a PTAS for P | rj |Cmax. We will make use of Mastrolilli’s

technique of merging small jobs, but we carefully extend his method so that it can be applied

to machines with inclusive processing set restrictions. The major differences between our PTAS

and Mastrolilli’s PTAS are as follows: (i) Mastrolilli categorizes the jobs based on their release

times, while we categorizes them based on their release times as well as their machine indices.

(ii) When we assign the small jobs to machines, we assign them according to their machine indices.

(iii) Mastrolilli uses an integer linear program (ILP) to generate a schedule after rounding the job

processing times, while we use a dynamic program to do so (see Remark 6 below).

In our PTAS, we first apply algorithm A2 to obtain a 2-approximation solution to the given

problem instance, and let UB denote the makespan of the schedule obtained. Then, UB/2 is

a lower bound on C∗
max. Note that rmax + 1 and pmax are also lower bounds on C∗

max, where

rmax = maxj=1,2,...,n{rj} and pmax = maxj=1,2,...,n{pj}. Let LB = max{rmax+1, pmax, UB/2}. We

have LB ≤ C∗
max ≤ 2LB. Next, we divide each release time and processing time by LB. Then,

rmax < 1, pmax ≤ 1, and

1 ≤ C∗
max ≤ 2. (4)

Let ε̄ be an arbitrary small rational number, where 0 < ε̄ < 1. For simplicity, we assume that 1/ε̄

is integral. (For a given ε̄, if 1/ε̄ is not integral, then we replace ε̄ by ε′ = 1
d1/ε̄e . We have ε′ < ε̄ and

O(1/ε′) = O(1/ε̄). Thus, replacing ε̄ by ε′ does not affect the validity of our PTAS.)

We consider a “release time rounding procedure.” In this procedure, we round every release time

10

down to the nearest multiple of ε̄, obtain an approximation solution to the problem with rounded

release times (using a method described later), and then add ε̄ to each job’s start time. Clearly,

this procedure will generate a feasible schedule (i.e., a schedule in which every job starts no earlier

than its release time). Let σ∗
1 denote the schedule generated by this procedure when we solve the

rounded release time problem optimally. We have the following lemma:

Lemma 3 C∗
max ≤ Cmax(σ

∗
1) ≤ (1 + ε̄)C∗

max.

Proof: The inequality “C∗
max ≤ Cmax(σ

∗
1)” is obvious. Note that after rounding every release time

down and solving the problem optimally, the makespan of the solution is no greater than C∗
max.

When we add ε̄ to each job’s start time, the makespan of the schedule increases by no more than

ε̄. Thus, Cmax(σ
∗
1) ≤ C∗

max + ε̄ ≤ (1 + ε̄)C∗
max.

We now focus on problem instances with rounded release times and discuss how to obtain

approximation solutions to those instances. Since rmax < 1, the number of different release times

is bounded from above by 1/ε̄. We refer to those jobs with processing times less than ε̄2 as “small

jobs” and the other jobs as “big jobs.” Let h be the number of distinct release times in the problem

instance, where h ≤ 1/ε̄. Let r(1), r(2), . . . , r(h) be those release times. We refer to a job with

release time r(k) as a “type-k job” (k = 1, 2, . . . , h). Recall that the job set J is partitioned

into S1, S2, . . . , Sm according to the machine indices of the jobs. We now further partition each

Si into subsets S
(1)
i , S

(2)
i , . . . , S

(h)
i , where the jobs in S

(k)
i are type-k jobs with machine index i

(k = 1, 2, . . . , h; i = 1, 2, . . . , m).

To obtain an approximation solution to a problem instance with rounded release times, we use

the following “job merging procedure”: For each i and k, let Ja and Jb be any two small jobs in

S
(k)
i . We merge these two small jobs to form a composed job Jc such that Jc has the same release

time as Ja (and Jb), and that pc = pa + pb (see [21]). In other words, we require Ja and Jb to be

processed together on the same machine one immediately after the other. We repeat this merging

process until each subset S
(k)
i contains at most one small job. Then, we obtain an approximation

solution to the resulting problem instance (using a method described later).

11

We denote the subset S
(k)
i after the merging process as S̄

(k)
i . Clearly, the processing time of

a composed job is less than 2ε̄2, and there is at most one small job in each S̄
(k)
i . Let σ∗

2 denote

the schedule generated by the job merging procedure when we solve the resulting problem instance

optimally.

Lemma 4 Cmax(σ
∗
1) ≤ Cmax(σ

∗
2) ≤ (1 + 2ε̄)Cmax(σ

∗
1).

Proof: The inequality “Cmax(σ
∗
1) ≤ Cmax(σ

∗
2)” is obvious. To prove the lemma, it suffices to show

that there exists a feasible schedule σ2 for the instance obtained from the job merging process such

that Cmax(σ2) ≤ (1 + 2ε̄)Cmax(σ
∗
1). For simplicity, we assume that in schedule σ∗

1 the jobs on each

machine are sequenced in nondecreasing order of release times (see Lemma 1). Let A
(k)
i denote the

set of type-k small jobs that are processed by Mi in schedule σ∗
1 (k = 1, 2, . . . , h; i = 1, 2, . . . , m).

Let B denote the set of non-composed big jobs after the job merging process, and A = J \B denote

the set of composed jobs and small jobs.

We construct σ2 as follows: (i) For each k = 1, 2, . . . , h, we assign the jobs in A ∩ (
⋃m

i=1 S̄
(k)
i)

one by one to the machines, starting from those jobs with the smallest machine index. We first

assign them to M1 until either the total processing time of the assigned type-k jobs on M1 exceeds

∑

Jj∈A
(k)
1

pj or there is no more unassigned job in A∩ S̄
(k)
1 . We then assign them to M2 until either

the total processing time of the assigned type-k jobs on M2 exceeds
∑

Jj∈A
(k)
2

pj or there is no more

unassigned job in A ∩ (S̄
(k)
1 ∪ S̄

(k)
2). Next, we assign them to M3 until either the total processing

time of the assigned type-k jobs on M3 exceeds
∑

Jj∈A
(k)
3

pj or there is no more unassigned job in

A∩(S̄
(k)
1 ∪ S̄

(k)
2 ∪ S̄

(k)
3), and so on. (ii) For each Jj ∈ B, we assign Jj to the machine which processes

Jj in schedule σ∗
1. (iii) On each machine, we sequence the jobs in nondecreasing order of release

times, and schedule each job to start as soon as the job has been released and the machine has

completed the previous job.

Note that in Step (i), when we assign type-k jobs to a machine Mi, we always assign enough

type-k jobs so that their total processing time is greater than the total type-k job processing time

in A
(k)
i , unless we run out of type-k jobs that can be processed by Mi. Hence, all type-k jobs must

get assigned to the m machines.

12

On the other hand, the total processing time of the composed type-k jobs and small type-k jobs

assigned to Mi in Step (i) cannot exceed the total processing time of the small type-k jobs on Mi

in σ∗
1 by more than 2ε̄2 (because each composed job has a processing time less than 2ε̄2). Hence,

the completion time of the last job on Mi in σ2 cannot exceed the completion time of the last job

on Mi in σ∗
1 by more than 2hε̄2 (i = 1, 2, . . . , m). This implies that Cmax(σ2) ≤ Cmax(σ

∗
1) + 2hε̄2 ≤

Cmax(σ
∗
1) + 2ε̄. Since Cmax(σ

∗
1) ≥ C∗

max ≥ 1, we have Cmax(σ
∗
2) ≤ (1 + 2ε̄)Cmax(σ

∗
1).

We now focus on problem instances resulted from the job merging process and discuss how

to obtain approximation solutions to those instances. We consider the following “processing time

rounding procedure”: First, for each big job Jj, let yj = max
{

`
∣

∣ ε̄2(1 + ε̄)` ≤ pj; ` = 0, 1, 2, . . .
}

.

Then, ε̄2(1 + ε̄)yj ≤ pj < ε̄2(1 + ε̄)yj+1, and we round pj down to ε̄2(1 + ε̄)yj . Next, we ignore the

small jobs and obtain an optimal solution to the problem instance with rounded processing times

(using a method described later). Then, we restore the big jobs’ original processing times and

replace the composed jobs by their original small jobs. After that, we assign each remaining small

job Jj to machine Maj
. Finally, on each machine, we sequence the jobs in nondecreasing order of

release times, and schedule each job to start as soon as the job has been released and the machine

has completed the previous job.

Let σ∗
3 denote the schedule generated by the processing time rounding procedure.

Lemma 5 Cmax(σ
∗
2) ≤ Cmax(σ

∗
3) ≤ (1 + 2ε̄)Cmax(σ

∗
2).

Proof: The inequality “Cmax(σ
∗
2) ≤ Cmax(σ

∗
3)” is obvious. Note that after rounding the processing

times down and solving the problem optimally, the makespan of the solution is no greater than

Cmax(σ
∗
2). When we restore the original processing times of the big jobs, the makespan of the

schedule increases by a factor of no more than 1 + ε̄ (i.e., increases by an absolute amount of no

more than ε̄Cmax(σ
∗
2)). Since there is at most one small job in each S̄

(k)
i , the number of small

jobs in S̄
(1)
i ∪ S̄

(2)
i ∪ · · · ∪ S̄

(h)
i is at most 1/ε̄. Hence, inserting the remaining small jobs into

the schedule increases the makespan by no more than (1/ε̄) · ε̄2 = ε̄ ≤ ε̄Cmax(σ
∗
2). Therefore,

Cmax(σ
∗
3) ≤ (1 + 2ε̄)Cmax(σ

∗
2).

13

Finally, we describe a dynamic program for obtaining an optimal solution to the problem with

rounded processing times. We first categorize the jobs in such a way that two jobs belong to the

same category if they have the same release time and the same processing time. Let τ denote the

number of job categories.

Lemma 6 τ ≤ (1/ε̄)
⌊

1 + log1+ε̄(1/ε̄2)
⌋

.

Proof: Since pmax ≤ 1, each job processing time ε̄2(1 + ε̄)yj is at most 1, which implies that

yj ≤ log1+ε̄(1/ε̄2). Thus, the number of possible values of yj is no more than
⌊

1 + log1+ε̄(1/ε̄2)
⌋

.

The number of distinct job release times is no more than 1/ε̄. Therefore, the number of job

categories is no more than (1/ε̄)
⌊

1 + log1+ε̄(1/ε̄2)
⌋

.

We index the job categories as 1, 2, . . . , τ . Let n` denote the number of jobs in category `

(` = 1, 2, . . . , τ). Let n`(i) denote the number of jobs with machine index i in category `. Thus,

∑m
i=1 n`(i) = n`. Let n`i =

∑i
k=1 n`(k), which is the maximum number of jobs from category ` that

can be assigned to machine Mi (i = 1, 2, . . . , m). Let x`i be a decision variable representing the

number of jobs from category ` that are assigned to Mi. Clearly, we have a constraint of “x`i ≤ n`i”

for ` = 1, 2, . . . , τ and i = 1, 2, . . . , m. Hence, we call (x1i, x2i, . . . , xτ i) a “feasible assignment” for

Mi if x`i ≤ n`i for ` = 1, 2, . . . , τ . Let

Xi =
{

(x1i, x2i, . . . , xτ i)
∣

∣ x`i = 0, 1, . . . , n`i for ` = 1, 2, . . . , τ
}

,

which is the set of all feasible assignments for Mi. By Lemma 1, we may assume that the assigned

jobs are processed in nondecreasing order of their release times and are processed as early as

possible. Let C(x1i, x2i, . . . , xτ i) denote the completion time of the last job on Mi if the feasible

assignment (x1i, x2i, . . . , xτ i) is adopted. It is easy to see that for each (x1i, x2i, . . . , xτ i) ∈ Xi,

C(x1i, x2i, . . . , xτ i) can be determined in O(τ) time if the job categories are indexed in nondecreasing

order of job release times. Note that X1 ⊆ X2 ⊆ · · · ⊆ Xm and |Xm| =
∏τ

`=1(n` + 1) ≤ O(nτ).

Let Yi =
{

(x1i, x2i, . . . , xτ i) ∈ Xi | C(x1i, x2i, . . . , xτ i) ≤ 2
}

for i = 1, 2, . . . , m. Since the

processing time of each job is no less than ε̄2, an assignment (x1i, x2i, . . . , xτ i) in Yi consists of at

most 2/ε̄2 jobs. Thus, |Yi| ≤ (τ + 1)2/ε̄2 (to see this inequality, consider 2/ε̄2 job positions, where

14

each position may either be occupied by a job of any of the τ categories or remain empty). From

(4), C∗
max ≤ 2. Hence, it suffices to consider assignments in Yi when we select feasible assignments

for Mi.

Define Fi(v1, v2, . . . , vτ) as the minimum possible makespan if we schedule v` jobs of category

` (for ` = 1, 2, . . . , τ) to machines M1, M2, . . . , Mi, subject to the constraint that only assignments

in Yk can be used for Mk (for k = 1, 2, . . . , i). We have the following recurrence relation:

Fi(v1, v2, . . . , vτ) = min
(x1,x2,...,xτ)∈Yi s.t.

(x1,x2,...,xτ)≤(v1,v2,...,vτ)

{

max
{

C(x1, x2, . . . , xτ), Fi−1(v1−x1, v2−x2, . . . , vτ−xτ)
}

}

for i = 2, 3, . . . , m and (v1, v2, . . . , vτ) ∈ Xi. The boundary conditions are:

F1(v1, v2, . . . , vτ) =











C(v1, v2, . . . , vτ), if (v1, v2, . . . , vτ) ∈ Y1;

+∞, otherwise;

and

Fi(v1, v2, . . . , vτ) = +∞ if (v1, v2, . . . , vτ) /∈ Xi (i = 2, 3, . . . , m).

The makespan of the optimal schedule is given as Fm(n1, n2, . . . , nτ).

Indexing the job categories in nondecreasing order of job release times takes O(τ log τ) time. Pre-

determining the values of C(x1i, x2i, . . . , xτ i) for all (x1i, x2i, . . . , xτ i) ∈ Yi and all i = 1, 2, . . . , m

takes O(τ |Ym|) time. Executing the above dynamic program takes O(m|Xm||Ym|) time. Thus,

the overall running time required for obtaining an optimal solution to the problem with rounded

processing times is O
(

nτm(τ + 1)2/ε̄2
)

. Hence, the running time of the overall solution proce-

dure, including the determination of LB, the release time rounding process, the job merging pro-

cess, the processing time rounding process, and the above dynamic programming procedure, is

O
(

nm log(rmax + psum)+ nτm(τ + 1)2/ε̄2
)

. Note that by Lemma 6, τ is a constant for fixed ε̄. This

result is summarized in the following theorem:

Theorem 3 Problem P | rj, incl. proc. sets |Cmax admits a PTAS.

Remark 4: In the above PTAS, the computational time needed for determining LB is

O
(

nm log(rmax + psum)
)

. An alternative way to determine a lower bound on C∗
max is to use the

15

strongly polynomial time (2 + ε′)-approximation algorithm described in Remark 3. Let UB′ de-

note the makespan of the schedule obtained by that algorithm, and let LB′ = max{rmax + 1,

pmax, UB′/(2 + ε′)}. Then, LB′ ≤ C∗
max ≤ (2 + ε′)LB′. If we use LB′ instead of LB in the above

PTAS development, then the running time of the PTAS becomes O
(

nm log 1
ε′ +nτm(τ +1)(2+ε′)/ε̄2

)

.

Remark 5: Another way to determine a lower bound on C∗
max is as follows: Note that the jobs

in Sm ∪ Sm−1 ∪ · · · ∪ Sm−k+1 must be processed by machines Mm−k+1, Mm−k+2, . . . , Mm. Thus,

C∗
max ≥

1
k

∑

Jj∈Sm∪Sm−1∪···∪Sm−k+1
pj for k = 1, 2, . . . , m. Let

L = max
k=1,2,...,m

{

1

k

∑

Jj∈Sm∪Sm−1∪···∪Sm−k+1

pj

}

and LB′′ = max{rmax + 1, pmax, L}. Then, LB′′ ≤ C∗
max. Determining LB′′ requires O(n) time.

Note that a feasible solution to the problem with a makespan guaranteed no more than 3LB′′ can

be constructed as follows: (i) Replace all job release times by 0. (ii) For k = m, m−1, . . . , 1,

assign the jobs in Sk one by one to machines Mk, Mk+1, . . . , Mm; every time a job is assigned, it

is put on a machine with the minimal current workload. (iii) Increase the start time of all jobs by

rmax. Using the same argument as in Section 9.0 of [17], it is easy to show that the makespan of

the schedule generated by steps (i)–(iii) must be no more than L + pmax + rmax ≤ 3LB′′. Hence,

LB′′ ≤ C∗
max ≤ 3LB′′. If we use LB′′ instead of LB in the above PTAS development, then the

running time of the PTAS becomes O(nτm(τ + 1)3/ε̄2).

Remark 6: As mentioned earlier, Mastrolilli [21] has developed a PTAS for problem P | rj |Lmax.

His PTAS is “efficient” in the sense that it can generate a (1 + ε)-approximation solution in

O(n+ f̄ (ε)) time, where f̄(ε) is a constant for fixed ε. Such a computational complexity is achieved

by solving the rounded processing time problem as an ILP with a constant number of variables and

a constant number of constraints using Lenstra’s [18] algorithm. For our problem with inclusive

processing sets, if we formulate the rounded processing time problem as an ILP, the number of

constraints will depend on m, and if we solve the ILP using Lenstra’s algorithm, the computational

complexity will be very high.

16

4 When the Number of Machines Is Fixed

In this section we develop an FPTAS for problem Pm | rj, incl. proc. sets |Cmax. First, we solve the

given instance of Pm | rj, incl. proc. sets |Cmax using algorithm A1′ (see Remark 1), and let UB be

the makespan of the schedule obtained. Then, C∗
max ≤ UB. Note that Pm | rj, incl. proc. sets |Cmax

is a special case of Rm | rj |Cmax. In problem Rm | rj |Cmax, each job Jj has a nonnegative release

time rj, and it has a processing time pij if it is assigned to machine Mi. Given a problem instance

of Pm | rj, incl. proc. sets |Cmax, we can convert it into an instance of Rm | rj |Cmax by defining

pij = pj if i ≥ aj , and pij = UB + 1 if i < aj, for i = 1, 2, . . . , m and j = 1, 2, . . . , n. Note that

Rm | rj |Cmax is a generalization Rm | |Cmax, which is known to be NP-hard [17]. However, to the

best of our knowledge, no pseudo-polynomial time algorithm has been developed for Rm | rj |Cmax.

Next, we present a dynamic program which can determine an optimal solution to Rm | rj |Cmax

in pseudo-polynomial time. Let Ū be any upper bound on the makespan of the optimal schedule of

Rm | rj |Cmax (e.g., if the problem is converted from an instance of Pm | rj, incl. proc. sets |Cmax,

then we may set Ū = UB). We re-index the jobs in such a way that r1 ≤ r2 ≤ · · · ≤ rn. Define

G(j; x1, x2, . . . , xm) =























1, if J1, J2, . . . , Jj can be scheduled on M1, M2, . . . , Mm such

that the makespan of Mi is no more than xi (i = 1, 2, . . . , m);

0, otherwise;

for j = 0, 1, . . . , n and any nonnegative integer xi (i = 1, 2, . . . , m). The recurrence relation is

G(j; x1, x2, . . . , xm) = max
i=1,2,...,m

s.t. xi≥rj+pij

{

G(j − 1; x1, . . . , xi−1, xi − pij, xi+1, . . . , xm)
}

for all j = 1, 2, . . . , n and 0 ≤ xi ≤ Ū (i = 1, 2, . . . , m) such that maxi=1,2,...,m{xi − rj − pij} ≥ 0.

The boundary conditions are

G(0; x1, x2, . . . , xm) = 1 for all (x1, x2, . . . , xm) ≥ (0, 0, . . . , 0),

and for j = 1, 2, . . . , n,

G(j; x1, x2, . . . , xm) = 0 if xi < rj + pij for i = 1, 2, . . . , m.

17

The optimal makespan of the schedule is given as

min
{

max{x1, x2, . . . , xm}
∣

∣ G(n; x1, x2, . . . , xm) = 1; 0 ≤ x1, x2, . . . , xm ≤ Ū
}

.

The running time of this dynamic program is O(nŪm), which is pseudo-polynomial when m is

fixed.

Let ε be a given constant, where 0 < ε < 1. We now construct a polynomial-time ε-approximation

algorithm for Pm | rj, incl. proc. sets |Cmax. Let LB′ = UB/3. Then, by Remark 1, LB′ ≤ C∗
max ≤

UB. We replace all job release times rj by
⌊ rj(n+1)

ε·LB′

⌋

ε·LB′

n+1 and all job processing times pij by

⌊pij (n+1)

ε·LB′

⌋

ε·LB′

n+1 , and then obtain an optimal schedule σ to the problem with these rounded data.

We obtain an approximated solution to the original problem by taking schedule σ and restoring the

original release times and processing times. It is easy to see that the makespan of this approximated

solution, CA
max, cannot be greater than the makespan of σ by more than (n + 1) · ε·LB′

n+1 = ε ·LB′.

Hence, CA
max ≤ (1 + ε)C∗

max.

To obtain an optimal schedule σ to the problem with the rounded data, we do the following:

Since all release times and processing times are integer multiples of ε·LB′

n+1 , we divide these parameters

by ε·LB′

n+1 and then apply the above dynamic program (with Ū = UB · n+1
ε·LB′). Then, we take the

dynamic programming solution and multiply all job start times by ε·LB′

n+1 . The running time of

this dynamic programming procedure is O(nŪm) = O
(

n
(

UB · n+1
ε·LB′

)m)

= O
(

nm+1
(

1
ε

)m)

. The

computational time required to obtain UB is O(n logn), which is dominated by the running time

of the dynamic programming procedure. The running time O
(

nm+1
(

1
ε

)m)

is polynomial in both

1/ε and the input size of the problem. Therefore, we have the following result:

Theorem 4 Problem Pm | rj, incl. proc. sets |Cmax admits an FPTAS.

5 Conclusions

We have presented an efficient 2-approximation algorithm for our parallel machine scheduling prob-

lem with inclusive set restrictions and job release times. We have also presented a PTAS for the

18

problem, as well as an FPTAS for the case in which the number of machines is fixed.

An interesting future research direction is to investigate other parallel machine scheduling mod-

els with inclusive processing sets, job release times, and other objective functions, such as mini-

mizing total (unweighted) job completion times, minimizing total weighted job completion times,

and bicriterion objectives. Further extensions to uniform machines are also worth investigating,

because in some applications, machines with different processing capabilities may be operated at

different speeds.

Acknowledgments

The work of the second author was done in part in the Department of Logistics at The Hong Kong

Polytechnic University. This research was supported in part by the Research Grants Council of

Hong Kong under grant PolyU5222/06E. The second author was also supported in part by the

National Nature Science Foundation of China under grant 70871059.

References

[1] Bar-Noy, A., Freund, A., Naor, J., On-line load balancing in a hierarchical server topology.

SIAM Journal on Computing 31 (2001) 527–549.

[2] Chen, B., Potts, C.N., Woeginger, G.J., A review of machine scheduling: Complexity, algo-

rithms and approximability. Handbook of Combinatorial Optimization, Volume 3, Du, D.-Z.,

Pardalos, P.M. (Editors), Kluwer Academic Publishers, Boston, 1998, pp. 21–169.

[3] Chekuri, C., Motwani, R., Natarajan, B., Stein, C., Approximation techniques for average

completion time scheduling. SIAM Journal on Computing 31 (2001) 146–166.

[4] Fishkin, A.V., Jansen, K., Mastrolilli, M., Grouping techniques for scheduling problems: Sim-

pler and faster. Algorithmica 51 (2008) 183–199.

19

[5] Glass, C.A., Kellerer, H., Parallel machine scheduling with job assignment restrictions. Naval

Research Logistics 54 (2007) 250–257.

[6] Glass, C.A., Mills, H.R., Scheduling unit length jobs with parallel nested machine processing

set restrictions. Computers and Operations Research 33 (2006) 620–638.

[7] Hall, L.A., Shmoys, D.B., Approximation schemes for constrained scheduling problems. Pro-

ceedings of the 30th IEEE Symposium on Foundations of Computer Science (1989) 134–139.

[8] Horowitz, E., Sahni, S., Exact and approximate algorithms for scheduling nonidentical proces-

sors. Journal of the Association for Computing Machinery 23 (1976) 317–327.

[9] Huo, Y., Leung, J.Y.-T., Wang, X., Preemptive scheduling algorithms with nested and inclusive

processing set restrictions. Working paper, Department of Computer Science, New Jersey

Institute of Technology.

[10] Hwang, H.-C., Chang, S.Y., Lee, K., Parallel machine scheduling under a grade of service

provision. Computers and Operations Research 31 (2004) 2055–2061.

[11] Jansen, K., Porkolab, L., Improved approximation schemes for scheduling unrelated parallel

machines. Mathematics of Operations Research 26 (2001) 324–338.

[12] Ji, M., Cheng, T.C.E., An FPTAS for parallel-machine scheduling under a grade of service

provision to minimize makespan. Information Processing Letters 108 (2008) 171-174.

[13] Jiang, Y., Online scheduling on parallel machines with two GoS levels. Journal of Combinato-

rial Optimization 16 (2008) 28–38.

[14] Jiang, Y.-W., He, Y., Tang, C.-M., Optimal online algorithms for scheduling on two identical

machines under a grade of service. Journal of Zhejiang University SCIENCE A 7 (2006) 309–

314.

[15] Kafura, D.G., Shen, V.Y., Task scheduling on a multiprocessor system with independent

memories. SIAM Journal on Computing 6 (1977) 167–187.

20

[16] Lai, T.-H., Sahni, S., Preemptive scheduling of a multiprocessor system with memories to

minimize maximum lateness. SIAM Journal on Computing 13 (1984) 690–704.

[17] Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B., Sequencing and scheduling:

Algorithms and complexity. Handbooks in Operations Research and Management Science, Vol-

ume 4: Logistics of Production and Inventory, Graves, S.C., Rinnooy Kan, A.H.G., Zipkin,

P.H. (Editors), North-Holland, Amsterdam, 1993, pp. 445–522.

[18] Lenstra, H.W., Jr., Integer programming with a fixed number of variables. Mathematics of

Operations Research 8 (1983) 538–548.

[19] Lenstra, J.K., Shmoys, D.B., Tardos, E., Approximation algorithms for scheduling unrelated

parallel machines. Mathematical Programming 46 (1990) 259–271.

[20] Leung, J.Y.-T., Li, C.-L., Scheduling with processing set restrictions: A survey. International

Journal of Production Economics 116 (2008) 251–262.

[21] Mastrolilli, M., Efficient approximation schemes for scheduling problems with release dates

and delivery times. Journal of Scheduling 6 (2003) 521–531.

[22] Mastrolilli, M., Scheduling to minimize max flow time: Off-line and on-line algorithms. Inter-

national Journal of Foundations of Computer Science 15 (2004) 385–401.

[23] Ou, J., Leung, J.Y.-T., Li, C.-L., Scheduling parallel machines with inclusive processing set

restrictions. Naval Research Logistics 55 (2008) 328–338.

[24] Park, J., Chang, S.Y., Lee, K., Online and semi-online scheduling of two machines under a

grade of service provision. Operations Research Letters 34 (2006) 692–696.

[25] Schulz, A.S., Skutella, M., Scheduling unrelated machines by randomized rounding. SIAM

Journal on Discrete Mathematics 15 (2002) 450–469.

[26] Shchepin, E.V., Vakhania, N., An optimal rounding gives a better approximation for scheduling

unrelated machines. Operations Research Letters 33 (2005) 127–133.

21

(a) Schedule obtained by Algorithm A2

(b) Optimal schedule

Figure 1. A worst-case example.

M1:

M2:

M3:

Mm:

…

…

… Jm+1 Jm+2 Jm+3 J2m J1

J2

J3

Jm

0 m 2m

M1:

M2:

M3:

Mm:

…

…

Jm+1

Jm+2

Jm+3

J2m

J1

J2

J3

Jm

0 m m+1

