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Abstract

The purpose of this paper is to develop a model which allows for
the study and optimization of arbitrarily complex supply networks,
including order policies and money flows. We propose a mathematical
description that captures the dynamic behavior of the system by a
coupled system of ordinary differential delay equations. The underlying
optimization problem is solved using discretization techniques yielding
a mixed–integer programming problem.
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1 Introduction

This paper is concerned with the modeling and optimization of supply net-
works. We consider a network of suppliers, each processing a product at
various stages. Each supplier receives orders for its output from the other
suppliers in the network, as well as from a final customer. Each supplier
orders its input from a select set of other suppliers in the network as well
as from a raw material supplier. Each supplier receives payments for deliv-
ered items at a certain fixed set of prices and has to pay production costs
at certain rates for each item produced. This setup is similar to the ones
studied in [4], [5] and [7], where it is shown that the resulting dynamics can
exhibit a quite complicated behavior. One of the key features of the model
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considered in this paper is the presence of limited production capacities. We
assume that each supplier has a certain limited capacity µ, i.e. it cannot
process more than µ∆t items in the infinitesimal time interval ∆t. We use
a generalization of the model employed in [1] to incorporate this additional
limitation. The inclusion of payments in the model allows for the definition
of capital flows through the network and, consequently, for the occurrence
of bankruptcies if the capitalization of a node in the network falls below a
certain threshold.

One of the key components of the work in this paper is the optimization
of profits, i.e., given a set of production costs, to choose ordering strategies to
maximize the income of each node. The optimization of routing strategies for
networks of almost arbitrary complexity has been investigated in [11] using
an adjoint calculus approach. In this paper, we use a different approach,
namely using a mixed integer program (MIP) [8] , [15]. To develop an
understanding of the structure of possible optimal solutions, all possible
steady states are first characterized and investigated analytically.

The rest of this paper is organized as follows: Since the resulting model
is relatively involved, we use Section 2 to explain the features and concepts
of the model in detail. Since the final goal is to construct steady states which
are in some sense optimal, i.e. which optimize a certain functional, we char-
acterize possible steady states of the model in Section 3. The formulation of
the resulting optimization problem as a mixed integer program is not com-
pletely straight forward. So, Section 4 is devoted to setting up the mixed
integer program. Section 5 is devoted to numerical experiments. We test
the optimization approach on two different sample problems. The first sce-
nario shows the strong connection betweeen money flows and order policies
with the objecive of maximizing the profit of each individual supplier. How-
ever, the second example describes how bankruptcy and production failures
influence orders in highly interconnected networks.

2 The model

2.1 The supplier model

The basic setup in this paper requires two inventories for each supplier,
namely

1. An input inventory, allowing for the storage of items the supplier has
ordered at a rate faster than it can process. (This might be a reason-
able strategy if the supplier expects shortages in the future.)
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2. An output inventory, allowing for the storage of items which have been
produced at a rate faster than ordered. (This might be a reasonable
strategy if the supplier anticipates a future demand larger than its
capacity.)

A simple deterministic inventory model:
We define a simple deterministic model for inventories. The inventory has
an influx ψ and an output µ. Thus the inventory position p would satisfy the
simple differential equation p′(t) = ψ−µ. On the other hand, the inventory
position cannot become negative. Thus, in addition to the simple ODE,
we also have to satisfy the constraint p ≥ 0, and are therefore faced with
an obstacle problem. We use a relaxation model for the obstacle problem,
replacing the differential equation by

dp

dt
= max{ψ − µ,−p

ε
} , (1)

where ε denotes a small relaxation parameter. Equation (1) has the following
features:

• As long as the inventory is growing (ψ − µ > 0) the inventory in the
model (1) grows according to dp

dt = ψ − µ.

• If the inventory position is decreasing (ψ − µ < 0), the inventory in
(1) decays until p = ε(µ − ψ) holds, i.e. until the inventory is almost
empty. From this point on equation (5) becomes dp

dt = −p
ε , and the

inventory position decays exponentially to zero on an O(1
ε ) time scale,

until the net flux ψ − µ becomes positive again, and we switch to the
previous regime.

Thus, the inventory position p(t) in (1) will remain always positive, and
represent an O(ε) approximation of the (deterministic) evolution of an ac-
tual inventory. Equation (1) represents an approximate relaxation model
where the actual depletion of the inventory in finite time is replaced by an
exponential decay to zero.

As mentioned above, we need two inventories to describe the evolution
of a single node, namely an input and an output inventory. We consider a
network of K nodes. The input inventory pk of node number k = 1 : K
receives an influx ψk, and has an outflux, given by the processing rate µk.
Thus we have

dpk

dt
= max{ψk − µk,−pk

ε
} = ψk − φk, φk = min{µk,

pk

ε
+ ψk} . (2)
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The term φk denotes the flux from the inventory into the processor. Obvi-
ously φk ≤ µk holds, since the processor cannot accept items at a rate larger
than µk. Assuming a (deterministic) processing time τk, the influx into the
output inventory is given by φk(t− τk), i.e. the time delayed outflux of the
input inventory. The evolution of the output inventory position qk is then
given in the same way by

dqk

dt
= max{φk(t− τk)− ωk,−qk

ε
} = φk(t− τk)− fk, (3)

fk = min{ωk,
qk

ε
+ φk(t− τk)} ,

with ωk the rate of orders received by processor k, and fk the total outflux
of node number k. Again, fk cannot exceed ωk, and node number k cannot
deliver at a faster rate than orders are received. The inventory model used
here essentially corresponds to replacing the inventory by a processor with
a very short cycle time ε, and then using a version of the model for a
production unit developed in [2] and [10]. Similar simple inventory models
have been used in [1] and [3] in a different context.

2.2 The network model

Given the evolution of the input and output inventories, defined in Section
2.1, we now have to define the interaction of the different nodes in the supply
network. This means, we have to define the influx ψk of node number k in
(2) in terms of the outfluxes fk of the other nodes, given by (3), and we have
to decide on a rule for the order rates ωk in (3). One of the key mechanisms,
governing the dynamics of the system is obviously the policy of placing
orders. In general, we will denote with Ωjk the rate at which node number
j places orders to node number k, and the total rate of orders received by
node number k in (3) is given by ωk =

∑
j Ωjk.

The second mechanism, governing the dynamics, is a distribution policy.
The need for this policy arises in the case that not all orders can be filled. We
define by Fjk the flux from node k into node j. Consequently, fk =

∑
j Fjk

is the total outflux of node number k. Because of (3) we already have that
fk ≤ ωk holds. The need for a distribution policy arises when fk is actually
strictly less than ωk, i.e. node number k cannot satisfy all its orders and has
to make a decision how to distribute its limited resources. We write the flux
from node number k to node number j as Fjk = Ajkfk, where the matrix
A = {Ajk} is a Markov matrix, i.e. a matrix with non - negative entries
whose column sums equal unity. For an admissible distribution policy, the
matrix A should satisfy the following two criteria:
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• Fjk = Ajkfk ≤ Ωjk, i.e. node k cannot deliver more to node j than
node j is ordering from node k.

• If fk = ωk holds in (3), then Fjk = Ωjk should hold, i.e. if node
number k can satisfy all its orders, then it will do so.

In addition, we have to define an external supplier of raw materials and a
final customer. We assume a single raw material supplier, defined as node
number k = 0, and a single customer, defined as node number k = K + 1.
So Ωj0 denote the rates at which raw materials are ordered, ΩK+1,k denote
the rates at which the final customer orders, and FK+1,k are the rates at
which product is delivered to the customer.

There are many different ways to define a distribution policy, i.e. a
matrix A, satisfying the two criteria above. In this paper, we will restrict
ourselves to the simplest one, namely a proportional policy, setting

Ajk =
Ωjk

ωk
, j = 1 : K + 1, k = 1 : K, ωk =

K+1∑

j=1

Ωjk, k = 1 : K . (4)

The distribution policy (4) satisfies the admissibility criteria since, by def-
inition, Fjk = Ωjkfk

ωk
holds. Thus the inequality is always satisfied because

of fk ≤ ωk, and equality holds in the case fk = ωk. The distribution policy
(4) means that, if not all orders can be satisfied, node number k distributes
the product proportionally according to the orders received.

In summary, the dynamics of the flow of the network is given by equations
(2) and (3) for all processor nodes k = 1 : K, where the influx functions ψk

in (2) are determined by the outflux rates fk in (3) through the connectivity
matrix A = {Ajk}. So

ψj =
K∑

k=1

Ajkfk + Ωj0, j = 1 : K (5)

holds. Ωj0 denote the external inputs into the system, from the raw material
supplier which, assuming an unlimited supply, equal the orders placed to the
raw material supplier. After choosing an order matrix Ω = {Ωjk, j = 1 :
K + 1, k = 0 : K} the dynamics of the system are therefore completely
defined.

The recycling trick
The system (2)-(5) represents an open system, i.e. mass is not conserved,
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due to the external influx and outflux at the supplier and the customer node.
For analytical purposes, it will be convenient to replace the open system by
a closed system by introducing an artificial ’recycling step’. That is we
artificially identify the raw material supplier with the customer, and feed
the delivered product back into the system as raw material. So, Ωj0 still
denote the order rates from the raw material supplier and Ω0k = ΩK+1,k

denote now the rates at which the customer orders. With this change in
notation, (4) and (5) become

(a) Ajk =
Ωjk

ωk
, j = 0 : K, k = 0 : K, ωk =

K∑

j=0

Ωjk, k = 0 : K , (6)

(b) ψj =
K∑

k=0

Ajkfk, j = 0 : K .

ψ0, the influx into the raw material supplier / customer is now the rate at
which final product is delivered. The advantage of this notational trick is,
that it allows for a uniform treatment of all the nodes and yields a mass
conserving system. In order not to change the dynamics of the system we
have to design node number k = 0 in such a way, that there is a limitless
supply. This is easily done by giving the raw material supplier / customer
formally an infinite production capacity and a zero processing time, and
by making its output inventory large enough at the beginning such, that
it never runs dry, i.e. we set formally µ0 = ∞, τ0 = 0 in (2) and make
q0(0) sufficiently large. This has the effect that all the product delivered
to the final customer immediately goes to the output inventory, and the
system is fed from this (sufficiently large) output inventory q0, i.e. we have
φ0 = ψ0, f0 = ω0 in (2). Alternatively, we could simply change the definition
of the fluxes in (2) and (3) for the node k = 0 to

φ0 = ψ0, f0 = ω0 ,

allowing the output inventory q0 to become negative. The system is now
closed and the total product is conserved, since the columns of the square
matrix A = {Ajk, j, k = 0 : K} all add up to unity. If we define the contents
of the processor number k at time t by rk(t) its evolution is given according
to (2)-(3) by drk

dt = φk(t) − φk(t − τk), and the evolution of the total mass
in the system is given by

d

dt

K∑

k=0

(pk + qk + rk) =
K∑

k=0

ψk − fk = 0 .
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We note that this modification of the system is done only for technical
convenience, and that, if the initial supply inventory q0(0) is chosen large
enough, the dynamics of the network remain unchanged.

2.3 Capital flows

In order to study the actual profitability of a given policy, it is necessary to
model the flow of capital through the network. We assume that each node in
the network charges a unit price βk, k = 0 : K per item delivered, and has
a unit production cost ck which is paid as soon as the item leaves the input
inventory and enters the processor. At the same time each node reaps a
certain profit pk per unit delivered, which is taken out of the capital. In the
absence of credit, i.e. each item is paid for instantaneously as it is delivered,
the flow of capital through the network is therefore given by the reverse of
the product flow, weighted by the price. So, the flow of capital from node
number j to node number k is given by Fjkβk. The evolution of the amount
of capital κk(t) of node number k is therefore given by the equation

dκk

dt
=

K∑

j=0

Fjkβk − Fkjβj − ckφk − pkfk = (7)

fkβk −
K∑

j=0

Akjfjβj − ckφk − pkfk, k = 0 : K .

Notice, that the amount of capital in the system is not conserved because of
the production costs and profits, given by the sink terms ckφk and pkfk in (7).
The introduction of the taken profits pk allows for the definition of a steady
state, which actually produces some income for the node. The role played by
production costs ck and the taken profits pk is actually very similar, except
that production costs are paid at production - and are therefore proportional
to φk, whereas profits are realized at delivery - and are therefore proportional
to fk. Because of the recycling trick in Section 2.2, production costs and
profits for node number k = 0, the supplier / customer are an artificial
quantity, and might as well beset to zero.

We note also, that the computation of capital flows is a post - processing
step, as long as the order policies are not influenced by the capitalization
of each supplier. A feedback between available capital and the dynamics
of the network is given by a bankruptcy mechanism (as studied in a more
specific network in [5] and [7]), i.e. when the rate of orders supplier number
k can place, given by γk =

∑K
j=0 Akjωj , is forced to zero as soon its capital
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κk falls below a certain threshold. The effects of such a mechanism will be
studied in Section 5.

3 Steady states

In this section, we investigate the possible steady states of the system, de-
fined in Section 2. More precisely, given a set of capacities, production costs
and a certain topography, we characterize the connection between orders
prices and fluxes by essentially parameterizing the possible steady states of
the system. The way we proceed is to characterize the system via its fluxes.
That is we prescribe the distribution matrix A in (5) first, compute all possi-
ble steady fluxes for a given A, and then find all possible time - independent
order and pricing strategies which would produces the given steady state.
This represents in a certain sense a backward analysis, since, in reality, the
orders will determine the fluxes and not vice versa. This form of backward
analysis provides, however, a useful tool to develop an analytical feeling for
possible optimal solutions. The corresponding forward analysis - computing
the fluxes from the orders, and trying to choose an optimal set of orders -
will be carried out on a numerical level in Sections 4 and 5.

3.1 Steady state fluxes and orders

Obviously a steady state of the system is characterized, via Kirchhoff’s law,
by the fact that the influx into each node equals the outflux. More precisely,
for pk, rk, qk in (2)-(3) to be time independent, the condition ψk = φk = fk

has to hold for time independent functions φk. The condition ψk = fk

implies, that the fluxes fk are eigenvectors of the connectivity matrix A,
satisfying

Af = f .

Because we have formulated the system as a closed system, the connectiv-
ity matrix A is a Markov matrix, i.e. a matrix with nonnegative entries
whose column sums equal unity. In the following, we employ some standard
properties of Markov matrices. We start with the following

Assumption 1 The matrix A = {Ajk, j, k = 0 : K} is primitive, that is,
there exists an index n such that all the values of An are strictly positive.

Assumption 1 essentially excludes only trivial cases. It basically states that a
part starting out in node number k at time t = 0 has a nonzero probability
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to appear in all the other nodes after a sufficiently long time, i.e. after
iterating the matrix A sufficiently often. Given the recycling trick employed
in Section 2, this will be the case, since the part will eventually end up
at the final customer and re - enter the system as raw material. The only
possibility that Assumption 1 is violated arises for the (pathological) case
of closed loops, i.e. the existence of a self contained sub - graph which is
not connected to the rest of the network and the raw material supplier. As
a consequence, we have

Lemma 3.1 The matrix A, defined in (6) has an eigenvalue λmax equal to
unity. All other eigenvalues are strictly less than 1. The eigenspace to the
eigenvalue λmax = 1 is one dimensional. The unique normalized eigenvector
z to the eigenvalue λmax = 1 has only nonnegative elements.

Proof: The first statements - that there is a single eigenvector to the eigen-
value λmax = 1, and that all other eigenvalues are strictly less then λmax = 1
are well known features of primitive Markov matrices. We refer the reader
to c.f. [14]. Therefore, the eigenvector z can be computed via the vector
iteration yn+1 = Ayn, which will converge to the projection of the initial
vector y0 onto the eigenvector z. Starting with an initial vector y0 with
nonnegative elements, all iterates, and therefore also the limit z will only
have nonnegative components.

So, for any given primitive Markov matrix A we can find an admissible flux
vector ψ = f with nonnegative entries, yielding a steady state of the system.
We now proceed to characterize this vector. Given the flux definitions (2)-
(3), we have

ψk = φk = fk ⇒ fk = min{µk,
pk

ε
+ fk} = min{ωk,

qk

ε
+ fk}

or
min{µk − fk,

pk

ε
} = min{ωk − fk,

qk

ε
} = 0

This allows for 4 possible cases, namely

Case 1: fk < µk, fk < ωk and pk = qk = 0. The node runs below capacity and
cannot satisfy its orders because of insufficient influx. Consequently,
the inventories are empty.
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Case 2: fk = µk < ωk and qk = 0 and pk ≥ 0. The node runs at capacity.
However the orders exceed the capacity. Consequently, the output
inventory is empty and the size of the input inventory in steady state
is arbitrary, i.e. given by the history of the dynamics and the initial
condition.

Case 3: fk = ωk < µk and pk = 0 and qk ≥ 0. The node satisfies its orders
running below capacity. Consequently the input inventory is empty
and the output inventory in steady state is arbitrary.

Case 4: fk = ωk = µk and pk ≥ 0, qk ≥ 0. The orders precisely equal the
capacity. With the correct influx fk the position of the input and
output inventories is arbitrary.

This gives rise to the following Lemma, characterizing the possible steady
states of the system in terms of a scalar Ω and a vector α:

Lemma 3.2 Given a primitive distribution matrix A and, correspondingly,
a unique normalized eigenvector z with Az = z, all possible steady states of
the system are given by choosing a constant γ ≤ min{µk

zk
, k = 0 : K} and a

vector α = (α0, .., αK) with 0 < αk ≤ 1, k = 0 : K, and setting

fk = γzk, ωk =
γzk

αk
, Ωjk = Ajkωk .

All orders are satisfied in steady state if α = (1, .., 1) is chosen, and the
system runs at its optimal capacity if γ = min{µk

zk
, k = 0 : K} holds.

Proof: In all possible cases we have the inequalities fk ≤ µk and fk ≤ ωk

for each node k = 0 : K. The flux vector f has to be a multiple of the
normalized eigenvector z. So fk = γzk has to hold, with z the normalized
eigenvector to the eigenvalue problem. Since γzk ≤ µk, k = 0 : K has to
hold, we have γ ≤ mink=0:K{µk

zk
}.

For a given value of γ, we parameterize the solutions to the second
set of inequalities by setting fk = γzk = αkωk with 0 < αk ≤ 1. For a
given vector α, this determines ωk, the total rate of received orders. Given
the proportional distribution policy, the order matrix Ω is given by Ω =
A · diag(ω).

For each index k for which αk < 1 holds, we do not satisfy the orders in
steady state, and if γ < min{µk

zk
, k = 0 : K} the system is running below

its bottleneck capacity.
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Lemma 3.2 describes how to choose the optimal orders received, the quan-
tities ωk given a distribution policy matrix A. In this sub-optimal solution,
the nodes with index k, for which fk = γzk < µk holds, will run below capac-
ity. To construct an optimal solution, where all nodes run at their capacity,
would involve the construction of a matrix A such that the eigenvector z is
parallel to the capacity vector µ. In this case, setting α = (1, .., 1), we would
obtain fk = µk = ωk, k = 0 : K. So, all nodes would run at their capacity
and all orders would be satisfied. Given, that the network will in general not
allow a supplier to order from any other supplier, because not all suppliers
are equal, and there is some hierarchical structure in the production process,
finding the optimal matrix A will be impossible in general.

3.2 Steady state money flows

Computing steady states in the capital flow is complicated by the fact that
the evolution of the capital, as given by (7) is not conservative. We repeat the
’recycling trick’ of Section 2.2 for capital flows by assuming that production
costs as well as profits incurred by the actual nodes k = 1 : K are deposited
at node k = 0, the virtual supplier / customer node. We therefore replace
(7) by

dκk

dt
= fkβk −

∑

j

Akjfjβj − ckφk − pkfk + δk0

∑

j

cjφj + pjfj , (8)

i.e. the profits pkfk and the production costs ckφk are virtually paid to
the node k = 0. The capital κ0 of the supplier / customer node is an
artificial quantity anyway, and therefore the definition (8) does not change
the dynamics of the actual flow, The advantage of the formulation (8) is, of
course, that the capital flows now also form a conservative system, i.e. the
quantity

∑K
k=0 κk remains constant in time. This allows us to formulate the

following question:
Given a certain set of production costs ck and a certain amount of desired

profits pk for each node, is there a set of unit prices βk to achieve a steady
state? The answer to this question is given in the following

Lemma 3.3 For any primitive distribution matrix A, and for any set of
production costs ck, k = 1 : K and profits pk, k = 1 : K there exists a
pricing strategy βk, k = 0 : K such that the steady state product flow, given
in Lemma 3.2, produces steady state capitals κk, k = 0 : K, as defined in
(8).
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Proof: Given a steady state, as defined in Lemma 3.2, we have that the
vector f = φ is a multiple of the unique eigenvector z of the primitive matrix
A to the eigenvalue λ = 1. Therefore, the equations (8) reduce in steady
state to

0 = zkβk −
∑

j

Akjzjβj − (ck + pk)zk + δk0

∑

j

(cj + pj)zj , k = 0 : K (9)

We define the vectors y and b by

yk = βkzk, k = 0 : K, b = (−b, (c1 + p1)z1, ..., (cK + pK)zK),

b =
K∑

j=1

(cj + pj)zj .

With this definition, equation (9) becomes

(I −A)y = b .

Since the vector b is orthogonal to the left eigenvector (1, .., 1)T of the prim-
itive Markov matrix A, and therefore to the nullspace of I −A, there is a
solution. This solution is given by y = yp + ρz, i.e. by a particular solution
yp and an arbitrary multiple of the eigenvector z. This implies that, given a
set of ck’s and pk’s, any set of prices βk, k = 0 : K satisfying (9) is given by

βk =
yP

k

zk
+ ρ k = 0 : K, ,

for an arbitrary value of ρ. ρ has to be chosen large enough, such that the
unit prices βk are positive.

So, in summary, prescribing a certain distribution matrix A uniquely defines
- up to a multiplicative constant - the steady state flows in the system. Given
the flow, we can always create an order policy by, choosing a matrix Ω, that
produces this flow. Given the flow and the orders, we can always create a
price structure, by choosing the vector β which yields an arbitrary amount
of profit - at the expense of the final customer.
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4 A mixed integer programming approach

In this section we take, in some sense, the opposite approach as in Section
3. Given the profit as a cost functional, we choose the distribution matrix
A and the order matrix Ω dynamically optimize the functional. The so-
lution to this problem can of course only be given numerically. We start,
by discretizing the dynamical system defined in Section 2. On the discrete
time level, the dynamics will actually appear as a large set of nonlinear con-
straints for a given cost functional. There are essentially two ways to treat
the the resulting constrained optimization problem: Either the constraints
are formulated on a continuous level using an adjoint calculus to compute
a restricted gradient direction as in [11] ,[13], or a nonlinear programming
approach is used, introducing additional binary variables. The latter leads
to a mixed integer program MIP [6], [9].

4.1 Discretization

We start with a proper discretization of the differential equations (2) and (3)
for the inventories pk and qk. We discretize on a uniform mesh in time setting
pn

k = pk(n∆t), n = 0 : N with T = N∆t the final time of the simulation.
As is almost always the case in relaxation models, we have introduced an
artificial O(1

ε ) time scale in the system, and thus artificially created a stiff
system. In order not to impose too severe a restriction on the time step ∆t
we discretize equation (2) implicitly, giving

pn
k = pn−1

k + ∆t max{ψn−1
k − µk,−

pn
k

ε
}, n = 1 : N , (10)

with ψn−1
k the influx at the previous time step. Equation (10) can be inverted

explicitly for pn
k , by using the following

Lemma 4.1 The function u(x) = min{ax + b, cx + d} is invertible for a >
0, c > 0. This inverse is given by u−1(y) = max{y−b

a , y−d
c }.

Proof: The function u is strictly monotonically increasing, and therefore
has a functional inverse u−1. Let w.l.o.g. a > c > 0 hold. Then we have

u(x) = cx + d for x ≤ x0 =
d− b

a− c
, u(x) = ax + b for x ≥ x0,

The inverse u−1(y) is therefore given by

u−1(y) =

(
y−d

c for y ≤ y0 = u(x0) = ad−cb
a−c

y−b
a for y ≥ y0

)
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or, equivalently

u−1(y) =
(y−d

c for y−d
c ≥ y−b

a
y−b
a for y−b

a ≥ y−d
c

)
.

Therefore, we have

u−1(y) = max{y − b

a
,
y − d

c
} .

Reordering equation (10), we have

min{pn
k −∆t(ψn−1

k − µk), (1 +
∆t

ε
)pn

k} = pn−1
k

and therefore, setting a = 1, b = −∆t(ψn−1
k − µk), c = 1 + ∆t

ε , d = 0 in
Lemma 4.1, we obtain

pn
k = max{pn−1

k +∆t(ψn−1
k −µk),

pn−1
k

1 + ∆t
ε

} = pn−1
k +∆tmax{ψn−1

k −µk,− 1
ε + ∆t

pn−1
k }

which we write as
pn

k = pn−1
k + ∆t(ψn−1

k − φn−1
k )

with
φn−1

k = min{µk, ψ
n−1
k +

1
ε + ∆t

pn−1
k } (11)

Therefore the implicit discretization of equation (2) can be written in explicit
form as

pn
k = pn−1

k + ∆t(ψn−1
k − φn−1

k )

with the numerical outflux φn−1
k given by (11). Note, that this eliminates

any restriction on the time step, since the flux function φn−1
k , as defined

in (11), is well defined in the limit ε → 0. We employ the same implicit
discretization strategy for the evolution of the output inventory qk in (3).
To avoid any additional interpolation procedure, we assume that all the
processing times τk, k = 0 : K are integer multiples of the time step ∆t. So
τk
∆t ∈ N holds. Thus, we obtain, setting

ψn
k → φ

n−τk/∆t
k , µk → ωn−1

k ,

(a) qn
k = qn−1

k + ∆t(φn−τk/∆t
k − fn−1

k ), (12)
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(b) fn−1
k = min{ωn−1

k , φ
n−τk/∆t
k +

1
ε + ∆t

qn−1
k }

Any optimization problem, involving the discretization of the dynamical sys-
tem, as formulated above, will still be nonlinear, because of the nonlinear
(or, more precisely, piecewise linear) definition of the flux functions in (11)
and (12). The goal of this section is to formulate an optimization prob-
lem for the dynamics defined in Section 2 in a framework close to a linear
programming problem, i.e. as a mixed integer programming problem. A
mixed integer program (MIP [6]) is a linear program which includes binary
switches, i.e. variables taking only values in {0, 1}. The advantage of linear
and mixed integer programming approaches is, that they are capable of deal-
ing with an enormous amount of free variables. The basic tool to convert
an optimization problem involving the piecewise linear flux functions (11) -
(12) into a MIP is given by the following Lemma (see [9]):

Lemma 4.2 Let ξ ∈ {0, 1} be a binary variable. Let M > |a − b| be a
sufficiently large constant. Then, for a given constant M , the solution of
the inequalities

a−Mξ ≤ φ ≤ a, b−M(1− ξ) ≤ φ ≤ b (13)

is given by
φ = min{a, b} .

Proof: Since ξ is a binary variable, there are two ways to satisfy the in-
equalities (13), namely

• For ξ = 0: a = φ, b−M ≤ φ = a ≤ b.

• For ξ = 1: b = φ, a−M ≤ φ = b ≤ a.

In both cases, we have φ = min{a, b}.

Using Lemma 4.2, we replace the definition (11)-(12) of the fluxes φn
k , fn

k by
the constraints

(a) µk −Mξn
k ≤ φn

k ≤ µk, (14)

(b) ψn
k +

pn
k

ε + ∆t
−M(1− ξn

k ) ≤ φn
k ≤ ψn

k +
pn

k

ε + ∆t

(c) ωn
k −Mηn

k ≤ fn
k ≤ ωn

k ,
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(d) φ
n−τk/∆t
k +

qn
k

ε + ∆t
−M(1− ηn

k ) ≤ fn
k ≤ φ

n−τk/∆t
k +

qn
k

ε + ∆t

with the binary variables ξn
k , ηn

k ∈ {0, 1}, k = 0 : K, n = 0 : N , and a
constant M , chosen a priori sufficiently large.

The MIP approach allows us to optimize the order strategies, given by
the matrix Ω, as well as the distribution strategies, given by the matrix
A dynamically at the same time. In order to encode the topology of the
network, we define the elements of the order matrix Ω as Ωn

jk = θjkΩ̃n
jk,

where the matrix Θ = {θjk, j, k = 0 : K} denotes the adjacency matrix
of the graph defining the network topology, i.e. θjk = 1 if node number j
can order from node number k, and θjk = 0 otherwise. Similarly, we define
Fn

jk = θjkF̃
n
jk for the fluxes. In the context of the MIP approach, the orders

and fluxes Ω̃n
jk, F̃

n
jk at each time step are treated as free variables to be

optimized. In order to guarantee conservation of product, we have to add
the constraint

fn
k =

K∑

j=0

θjkF̃
n
jk, ψn

k =
K∑

j=0

θkjF̃
n
kj , k = 0 : K, n = 0 : N , (15)

and in order to guarantee that fluxes cannot exceed orders, we enforce the
constraints

0 ≤ F̃n
jk ≤ Ω̃n

jk, k = 0 : K, n = 0 : N . (16)

Of course, only the orders and fluxes for adjacent nodes, i.e. for nodes j
and k for which θjk = 1 holds, have to be used in the actual program.
The solution of the MIP implicitly defines an, adaptive and time dependent,
distribution policy matrix A, given by

An
jk =

θjkF̃
n
jk

fn
k

,

and the amount of orders received by node number k, which is used in the
constraint (14)(b), is given by

ωn
k =

∑

j

θkjΩ̃n
kj . (17)

So, altogether, the external variables, which have to be supplied to the MIP,
are

• µk the processor capacities.

16



• θjk the adjacency matrix of the graph.

• Ω̃n
Kj the time dependent orders of the final customer.

• p0
k, q

0
k, the initial inventory positions.

• φn
k , n = −τk/∆t : 0, the past influx of the processors, defining the

processor contents at time t = 0.

The free variables, to be optimized consist of

• Ω̃n
jk, j = 1 : K − 1, k = 1 : K: the internal orders

• F̃n
jk, f

n
k , ψn

k , φn
k , ωn

k : the partial and total fluxes and total orders re-
ceived for each node, given in terms of the Ω̃n

kj by the constraints
(14)-(17)

• ξn
k , ηn

k : the auxiliary binary variables, used in the MIP formulation.

There are various possible goals to be followed when defining the cost func-
tional to be optimized. The simplest one, which is the only one considered
in this paper, is to optimize the capitalization of all the interior nodes at
the final time. So, the cost functional is of the form

J =
K∑

k=1

κN
k (18)

where the capital κn
k of node k at time t = n∆t satisfies, according to (7),

κn
k = κn−1

k + ∆t(βkf
n−1
k −

K∑

j=0

Akjβjf
n−1
j − αkφ

n−1
k ), n = 1 : N . (19)

In order to model bankruptcies, we make the possible orders dependent of
the capitalization rates of the individual nodes, and force each node to cease
ordering as soon as its capital falls below a certain threshold κk. In the
context of the MIP approach, we implement this by introducing another
binary variable νn

k ∈ {0, 1} and by defining the total rate at which node k
orders as

σn
k =

K∑

j=0

θkjΩ̃n
kj . (20)
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To force the node into bankruptcy as soon as its capital falls below the
threshold, we add the constraints

σn
k ≤ Mνn

k , M(νn
k − 1) ≤ κn

k − κk ≤ Mνn
k , (21)

where M again denotes a sufficiently large a priori constant. Again, as in
the Lemma 4.2, there are two ways to satisfy the constraint (21). For νn

k = 1
we have 0 ≤ κn

k − κk and essentially no constraint for σn
k (provided that M

is sufficiently large). For νn
k = 0, the bankruptcy case, we have κn

k − κk ≤ 0
and σn

k = 0. Adding the variables κn
k and σn

k to the the system together
with the constraints (19)-(21), allows now for the optimization of the cost
functional (18) together with the possibilities of bankruptcies.

Combining all discretization we observe that the optimization problem
is in a fact mixed–integer programming problem and given by

max (18) subject to (10)− (21). (22)

5 Numerical results

For a numerical study of the optimal controls we consider three different
scenarios I− III.

I As ’benchmark’ scenario we denote the problem as stated in equation
(22). This solution yields the maximal possible profit since there are
no additional constraints on the distribution and order rates.

II We require the order policies to be time–independent. This amounts
to add the constraints

Ωn+1
jk = Ωn

jk. (23)

This choice is reasonable if the suppliers do not want to change there
policy dynamical. Clearly, this additional constraint restricts the set
of possible solutions. The optimization problem hence reads

max (18) subject to (10)− (21) and (23) (24)

and this scenario will be called ’time–independent orders’ in the nu-
merical results.

III We impose the following rule: Whenever the supplier Sk is not bankrupt,
the supplier has to order up to his capacity µk:

∑

j

Ωn
jk ≤ νn

k µk. (25)
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This rule is motivated by the fact that the complete production line
should have the highest possible utilization. Therefore, whenever a
supplier has a positive cash flow, he should order as much goods as
possible. The optimization problem hence reads

max (18) subject to (10)− (21) and (25) (26)

and this scenario will be called ’order–up to capacity’ for short.

The optimization problem is solved using a mixed–integer formulation of
the previous model. The mixed–integer problem is solved using the commer-
cial software ILOG CPLEX V11.0 [12] with default parameters. We study
the behavior of the optimal controls Ωjk and Ajk on two different networks
and the three different cases I− III. We use default parameters when run-
ning the commercial solver and require a maximum computation time of
24h. All computations are done on a AMD 2 Ghz personal computer. We
further set τk ≡ ∆t ≡ ε ≡ 1 for all examples. The further parameters are
given in the subsequent sections.

5.1 Computational results for a diamond network

We consider a network with seven suppliers and six vertices. We have a single
customer and a single raw material supplier. The possible distribution rates
are shown in figure 5.1.
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Each supplier (except for customer k = 7 and raw material supplier
k = 1) has specific prices, production capacities and production costs as
given in table 1. For each scenario we consider a constant inflow ψn

1 = 2 and
a threshold for going bankrupt of κk = −5. The total simulation time is T =
40. Note that, for the data given the processing chain ’raw material supplier
→ supplier 2 → supplier 6 → customer’ is the preferred one. However, the
inflow of two parts per time cannot be passed through supplier 6 and there
is the possibility to either store the goods in the input inventory of 6 or
redistribute along suppliers 4 and 5.
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Processor k βk µk αk

2 1 2 0
3 2 1 1
4 1 1 1
5 1 1 10
6 1 1 10

Table 1: Specification of suppliers Sk present in the diamond network.

We give computational results for the scenarios I-III by solving (22),
(24) and (26), respectively. In table 2 we report on the size of the optimiza-
tion problem (non–zero variables), the computational time used by CPLEX
(CPU time), the optimal profit

∑
k κk(T ) and the amount of delivered parts

over time at customer, i.e.,
∫ T
0 f7(t)dt. In table 3 we report on percentage

of the time the supplier has been bankrupt during the simulation. Finally,
we present the dynamic behavior of the total money flow and the delivered
parts in figure 1 for all three cases. The total number of delivered parts as
reported in table 2 is the integral of the corresponding functions over time.

We offer the following interpretation of the results: Clearly, the bench-
mark solution yields the maximal profit, but the number of delivered parts
is the highest in case III, since the policy requires to order as many parts
as possible. In the benchmark case some internal suppliers go bankrupt for
a very long time. However, the total profit for this choice of orders and
distribution is still higher than for all other cases. The optimal choice in the
benchmark case is to accept the bankruptcy of most of suppliers in order to
maximize the total profit. In the case of the time–dependent policy most of
the suppliers to do not go bankrupt, however, there is nearly no part deliv-
ered and the overall profit is the least of all cases. In figure 1 we observe
that it takes some time for the parts to be processed in the supply chain
and there are frequently regions where no part is delivered. This regions
correspond to bankrupt suppliers who cannot order any further parts and
the production stops.

5.2 Computational results for cascade network as in [5]

We consider a network as introduced by Battiston et. al. in [5], Sec-
tion 2.1. Therein, they introduced a network of connected suppliers, de-
picted schematically in Figure 2, and studied bankruptcy and production
failures. We adopt their geometry, adding a raw material supplier and a
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Benchmark (I) Time–independent orders (II) Order up to capacity (III)

# nonzero vars 1497 1907 1600
CPU–times [sec] 3480 406 140
Optimal profit 260,4 16,72 31,00
Delivered parts 3,6 1,54 4,00

Table 2: Comparison of computation results for the diamond network.

Supplier Benchmark (I) Time–independent orders (II) Order up to capacity (III)

2 72,5% 0 % 57,5 %
3 37,5 % 0 % 0 %
4 0 % 0 % 0 %
5 5 % 2,5 % 7,5 %
6 5 % 2,5 % 7,5 %

Table 3: Percentage of time a supplier has been bankrupt.

customer to simplify the presentation of the results. We have a total of 74
suppliers at three stages. Each supplier is connected to three other suppliers
as in [5]. We note that this rather specific topology, where nodes can only
order from ’neighboring’ nodes at the previous production level, corresponds
essentially to the rudimentary discretization of a diffusion equation. The pa-
rameters of the supplier are as follows: All suppliers Sk have a processing
capacity of µk = 1, production and prices of βk = αk = 1 except for those
five suppliers represented by a dashed line in figure 2. Those five suppliers
have production costs βk = 5, capacities µk = 1 and prices αk = 1. The raw
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Figure 1: Profit t → ∑
k κk(t) over time and delivered parts to the customer

over time t → f7(t)
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material supply is ψn
1 = 9 and T = 40. We show a non–optimal and an opti-

mal situation in figure 3 for the benchmark problem (22). Depending on the
cumulative load of the supplier Sk, i.e.,

∫ T
0 fk(t)dt, the arcs are displayed in

bold or light type. Unused suppliers are not shown. We observe that the op-
timal distribution prevents using the expensive suppliers at the bottom right
of the network (indicated by a red dashed line in figure 2). The discretized
optimization consists of 17908 real variables and 8880 binary variables. In
the non–optimal case we have 11807 non–zero variables in the solution and
the feasible solution is determined in 13,94 seconds. The optimal solution
has 6047 non–zero variables and solution time has been 50,89 seconds.

Figure 2: A cascade of three levels with a total of 74 suppliers. Every
supplier is connected to three further suppliers. The suppliers represented
by a dashed red line have different production costs.

6 Summary

In this paper we presented a model for a production network including or-
der and distribution policies and money flow. The model is an extension
to recently proposed continuous production network models. The policies
are determined by an optimization problem for maximizing the money flow
where the discretized maximization problem is solved by mixed–integer pro-
gramming. We compared the optimal policies to other a priori given policies.
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Figure 3: Non–optimal (left) and optimal load (right) of each supplier over
time. Load is represented as cumulative flow

∫ T
0 fk(t)dt. A bold type arrow

corresponds to high production load.
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