Publié par : Published by: Publicación de la:

Édition électronique :
Electronic publishing:
Edición electrónica:
Disponible sur Internet :
Available on Internet Disponible por Internet :

Faculté des sciences de l’administration
Université Laval
Québec (Québec) Canada G1K 7P4
Tél. Ph. Tel.: (418) 656-3644
Télec. Fax : (418) 656-7047
Aline Guimont
Vice-décanat - Recherche et affaires académiques
Faculté des sciences de l'administration
http://www5.fsa.ulaval.ca/sgc/documentsdetravail rd@fsa.ulaval.ca

DOCUMENT DE TRAVAIL 2007-003

Offsetting inventory replenishment cycles to minimize storage space

Fayez F. BOCTOR

Version originale :
ISBN - 2-89524-283-6
Original manuscript:
Version original:
Série électronique mise à jour : 01-2007
On-line publication updated :
Seria electrónica, puesta al dia

Offsetting inventory replenishment cycles to minimize storage space

Fayez F. Boctor

Université Laval, Québec, Canada

Abstract

In a recent paper, Murthy, Benton and Rubin (2003) discussed the problem of offsetting inventory replenishment cycles of several items in order to minimize the maximum required storage space. They analyzed the case where replenishment cycles are given integer multiples of a basic period and proposed a heuristic to solve the problem. While they provided a good analysis of the considered problem, the proposed heuristic produces less interesting results. In the following, a simpler, more efficient and easier to implant heuristic is proposed. Numerical results are provided to prove its superiority.

INTRODUCTION

The problem addressed in this article, also called the replenishment staggering problem, is that of offsetting the replenishment cycles of N different items that share the same storage space (or any other commonly used resource) in order to minimize S, the maximum required space. Each item i is replenished in given cycles of length k_{i} which is an integer multiple of a known basic period that will be considered as the time unit. The demand rate of item i, denoted d_{i}, is known and constant. As no backlogs are allowed, the replenishment quantity Q_{i} is known and equals $k_{i} d_{i}$. Under these assumptions, the global replenishment cycle is composed of K basic periods, indexed t, where K is the least common multiple of all cycle lengths k_{i} and the number of replenishments of i within the global cycle, denoted m_{i}, equals K / k_{i}. Two more variables can be used: $x_{i f}$ which is a binary that takes the value 1 if item i is replenished at the beginning of period f and $I_{\text {itf }}$ which indicates the inventory level of i at period t if it is replenished at periods $f+m k_{i} ; m=0,1, \ldots, m_{i}-1$. Without loss of generality, it is assumed that each unit of i requires one space unit for its storage. We also assume that if the first replenishment of item i is scheduled to occur at period f_{i}, then we should manage to have enough initial inventory to cover the demand up to the beginning of f_{i}.

Very few published research work addressed this problem. Gallego, Shaw and Simchi-Levi (1992) showed that the problem is $N P$-hard even if only one cycle multiple is different from the
others. Hariga and Jackson (1995) proposed to solve the problem by varying lot sizes through time while no backlogs are allowed. Hall (1998) examined the problem in the case where all cycle lengths are equal, showed that the problem is $N P$-hard, compared two solution heuristics and provided the worst case ratios for the considered heuristics. More recently, Murthy, Benton and Rubin (2003) proposed a heuristic to solve the staggering problem under the assumption made in this note. However, this heuristic seems to provide solutions of average quality. This note provides a simpler, more efficient and easy to implement heuristic. It will be shown, based on a number of randomly generated instances, that the proposed heuristic outperforms the one by Murthy et al. for all tested problems.

Some related problems are studied in the open literature. Several authors proposed methods to minimize the sum of order and inventory holding costs while trying to stagger replenishment in order to satisfy space availability or other resource constraints. Zoller (1977) and Rosenblatt and Rothblum (1990) considered this problem under the assumption that all items have the same cycle length. Hartley and Thomas (1982) and Thomas and Hartley (1983) considered the two item case.

Other researchers did not consider the staggering aspect of the problem and proposed to minimize the sum of order and inventory holding cost without exceeding the available storage space (Page and Paul 1976, Goyal 1978, Anily 1991, Gallego, Queyranne and Simchi-Levi 1996). Teo, Ou and Tan (1998) proposed to minimize the sum of order, inventory holding and space utilization costs.

MATHEMATICAL FORMULATION

The problem considered in this note can be formulated as follows:

Determine: $\quad x_{i f} \in\{0,1\}, i=1, \ldots, N, f=1, \ldots, k_{i}$ which

Minimize: $\quad S$
Subject to : (1) $\sum_{f=1}^{k_{i}} x_{i f}=1 \quad ; i=1, \ldots, N$
(2) $\sum_{i=1}^{N} \sum_{f=1}^{k_{i}} x_{i f} I_{i t f} \leq S \quad ; t=1, \ldots, K$.

Let $s=t \bmod \left(k_{i}\right)$, then $I_{i t f}$ can be calculated by:
$I_{i t f}=\left\{\begin{array}{ll}Q_{i}-(t-f) d_{i} & , f \leq t<f+k_{i} \\ I_{i s f} & , \text { for all other values of } t\end{array}\right\}$.

Unlike previously reported formulations, this one can be directly solved by commercial integer programming packages. Within this research work CPLEX was used to solve it. However, as this model contains $\sum_{i=1}^{N} k_{i}$ binary variables and $K+N$ constraints, it is obvious that it cannot be solved but for small problem instances.

THE PROPOSED HEURISTIC

The proposed heuristic is composed of two main parts: a solution construction procedure to construct an initial solution and a solution improvement procedure to improve the obtained solution. The following additional notations will be used to present the proposed heuristic:
$I_{k} \quad$ the replenishment schedule after the $k^{\text {th }}$ iteration of the construction procedure
$S_{i k f} \quad$ maximum storage space requirement if item i is added to I_{k} and its first replenishment is scheduled at period f

To construct an initial solution, the proposed heuristic proceeds as follows:

Initialisation: - Order the set of items in the ascending order of their lot sizes Q_{i},

- Schedule the first item, denoted u, in the obtained list to be replenished at periods $m k_{u}+1$ where $m=0,1, \ldots, m_{u}-1$.

Iteration \mathbf{k} : - Consider the next item in the list, denoted i,

- Schedule its replenishments at $f_{\mathrm{i}}+m k_{i}$ where $f_{\mathrm{i}}=\arg \min \left(S_{i k f}\right)$ and $m=0,1, \ldots, m_{i}-1$.

To improve the obtained solution, the proposed heuristic considers items one by one and eventually moves its replenishments to the periods that lead to the maximum storage space reduction. The procedure stops if no further improvement can be achieved.

A SIMULATED ANNEALING ALGORITHM

An adaptation of the simulated annealing (SA) algorithm was developed to solve the considered replenishment staggering problem. The solutions obtained by the above proposed heuristic will be compared to those obtained by the SA adaptation in order to provide a more complete assessment of its performance.

The initial solution used by the SA adaptation is obtained by the construction procedure given above. Neighbour solutions are obtained by randomly modifying the replenishment pattern of a randomly selected item and, as usual, the neighbour solution is accepted if it provides a reduction of the maximum required storage space or if a randomly drawn value is less than the standard Boltzman value. Figure 1 exhibit the main steps of the developed SA adaptation.

```
Call initial (find an initial solution)
Store as current solution
\(C:=0\) (initialize stopping counter)
Repeat until \(C=C M A X\)
        \(C:=C+1\)
        \(T=T_{0}\)
        \(r:=0\) (initialize repetition counter)
        Repeat until \(r=R M A X\)
            Call neighbour (generate a neighbour solution)
            \(r:=r+1\)
            \(d\) := max storage space(neighbour) - max storage space(current)
            If \(d<0\) or random \((0,1) \leq \operatorname{EXP}(-d / T)\) do
                Store the neighbour solution as the current one
                If max storage space(current) < max storage space(best) do
                    Store current solution as the best solution
                End if
            End if
            \(T:=\alpha * T\) (reduce cooling temperature)
        End repeat
End repeat
```

Figure 1: Pseudo code for the developed SA adaptation
In the numerical tests presented in the last section of this note, the following parameter values were used: $T_{0}=16, C M A X=5, R M A X=1000$ and $\alpha=0.5$.

NUMERICAL EXAMPLE

Murthy, Benton and Rubin (2003) solved the numerical example of Table 1 and obtained a maximum space requirement of 875 storage units. This same example was solved by the heuristic proposed in this note giving an initial solution requiring 866 storage space units. The solution obtained after applying the improvement procedure requires 861 storage space units. This solution is the optimal solution obtained by solving the corresponding mathematical model.

Table 1: Numerical example and obtained solutions

Item i		1	2	3	4	5	6	7	8	9	Maximum storage space
Order size Q_{i}		100	200	81	144	150	160	90	60	50	
Cycle length k_{i}		4	5	9	12	15	8	6	12	2	
Period of first replenishment f	Murthy, Benton and Rubin's solution	1	5	1	1	1	7	6		2	875
	Proposed heuristic: Initial solution	1	1	2	6	1	1	5	8	2	866
	Proposed heuristic: improved solution	1	1	2	6	1	1	5	7	2	861

PERFORMANCE EVALUATION

To assess the performance of the proposed heuristic, 30 test instances were randomly generated. Each problem has 20 items to replenish with demand rates drawn from a uniform distribution between 5 and 30 units and cycles times drawn from a uniform distribution between 2 and 12 . Each instance was solved by the heuristic proposed by Murthy, Benton and Rubin, called hereafter the MBR heuristic, by the heuristic proposed in this note and by the developed adaptation of the simulated annealing algorithm. The obtained results are reported in Table 2.

It shows that the suggested construction procedure always outperformed the MBR heuristic. This procedure produced solutions 11.19% better while the whole heuristic produced solutions 11.56% better. Note that the average computation time for the proposed heuristic is only 0.2 seconds. The simulated annealing adaptation produced slightly better solutions but required much larger computation times. The average percentage deviation of the SA adaptation with respect to the MBR heuristic is 11.92% and its average computation time is 20.5 seconds. With respect to the proposed heuristic, the SA adaptation produced an average improvement of 0.41% but multiplies its computation time by 102.5 in average. The SA adaptation produced better solutions for 14 of the 30 instances and worst solutions for 6 instances.

Table 2: Results for the 30 test instances

Instance	MBR Heuristic	Proposed heuristic				Simulated annealing	
		Initial solution	Percentage ${ }^{1}$ improvement	Improved solution	Percentage ${ }^{1}$ improvement	Solution	Percentage ${ }^{1}$ improvement
1	1688	1567	7,17\%	1551	8,12\%	1567	7,17\%
2	1634	1444	11,63\%	1444	11,63\%	1444	11,63\%
3	1250	1157	7,44\%	1157	7,44\%	1148	8,16\%
4	1458	1268	13,03\%	1268	13,03\%	1268	13,03\%
5	1377	1305	5,23\%	1295	5,95\%	1295	5,95\%
6	1551	1443	6,96\%	1443	6,96\%	1443	6,96\%
7	1767	1595	9,73\%	1576	10,81\%	1555	12,00\%
8	1295	1136	12,28\%	1127	12,97\%	1136	12,28\%
9	1637	1488	9,10\%	1488	9,10\%	1478	9,71\%
10	1172	1067	8,96\%	1067	8,96\%	1066	9,04\%
11	1549	1387	10,46\%	1387	10,46\%	1386	10,52\%
12	2000	1658	17,10\%	1658	17,10\%	1658	17,10\%
13	1551	1317	15,09\%	1293	16,63\%	1285	17,15\%
14	1554	1356	12,74\%	1355	12,81\%	1314	15,44\%
15	2044	1695	17,07\%	1684	17,61\%	1687	17,47\%
16	1668	1416	15,11\%	1416	15,11\%	1402	15,95\%
17	1789	1608	10,12\%	1608	10,12\%	1565	12,52\%
18	2028	1782	12,13\%	1782	12,13\%	1782	12,13\%
19	1804	1631	9,59\%	1630	9,65\%	1580	12,42\%
20	1704	1553	8,86\%	1528	10,33\%	1544	9,39\%
21	1750	1558	10,97\%	1549	11,49\%	1541	11,94\%
22	1377	1268	7,92\%	1268	7,92\%	1268	7,92\%
23	1254	1131	9,81\%	1131	9,81\%	1121	10,61\%
24	1521	1358	10,72\%	1358	10,72\%	1358	10,72\%
25	1938	1679	13,36\%	1653	14,71\%	1664	14,14\%
26	1434	1263	11,92\%	1263	11,92\%	1263	11,92\%
27	2463	2088	15,23\%	2088	15,23\%	2062	16,28\%
28	1412	1289	8,71\%	1278	9,49\%	1274	9,77\%
29	1321	1117	15,44\%	1117	15,44\%	1117	15,44\%
30	1668	1473	11,69\%	1449	13,13\%	1453	12,89\%
Average			11.19\%		11.56\%		11.92\%
Standard deviation			3.01\%		3.04\%		3.14\%
Minimum			5.23\%		5.95\%		5.95\%
Maximum			17.10\%		17.61\%		17.47
Sec. ${ }^{2}$	0.03		0.07		$0.20{ }^{3}$		20.50^{3}

[^0]
REFERENCES

Anily, S., 1991, Multi-item replenishment and storage problem (MIRSP): heuristics and bounds, Operations Research, 39, 233-243.
Gallego, G., D. Shaw, and D. Simchi-Levi, 1992.The complexity of the staggering problem and other classical inventory problems, Operations Research Letters 12, 47-52.
Gallego, G., M. Queyranne, and D. Simchi-Levi, 1996, Single resource multi-item inventory systems, Operations Research 44, 580-595.

Goyal, S.K., 1978, A note on 'Multi-production inventory situation with one restriction', Journal of Operational Research Society 29, 269-271.

Hall, N. G., 1998, A comparison of inventory replenishment heuristics for minimizing maximum storage, American Journal of Mathematical and Management Sciences 18, 245-258.
Hariga, M.A. and P.L. Jackson, 1995, Time variant lot sizing models for the warehouse scheduling problem, IIE Transaction 27, 162-170.
Hariga, M.A. and P.L. Jackson, 1996, The warehouse scheduling problem: formulation and algorithm, IIE Transaction 28, 115-127.
Murthy, N. N., W. C. Benton and P. A. Rubin, 2003, Offsetting inventory cycles of items sharing storage, European Journal of Operational Research 150, 304-319.
Page, E. and R.J. Paul, 1976, Multi-production inventory situation with one restriction, Journal of Operational Research Society 27, 815-834.
Rosenblatt; M.J. and U.G. Rothblum, 1990, On the Single Resource Capacity Problem for MultiItem Inventory Systems, Operations Research, 38, 686-693.
Teo, C.P., J. Ou and K. Tan, 1998, Multi-Item Inventory Staggering Problems: Heuristics and Bounds, Proceedings of the ninth annual ACM-SIAM symposium on discrete algorithms, 1998, 584-593.

Zoller, K., 1977, Deterministic multi-item inventory systems with limited capacity, Management Science 24, 451-455.

[^0]: ${ }^{1}$ With respect to the MBR solution.
 ${ }^{2}$ Average computation time in seconds using a centurion microprocessor paced at 1.86 MHz .
 ${ }^{3}$ Including the time to obtain the initial solution.

