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Offsetting inventory replenishment cycles to minimize storage space 

Fayez F. Boctor 
Université Laval, Québec, Canada 

Abstract 

In a recent paper, Murthy, Benton and Rubin (2003) discussed the problem of 
offsetting inventory replenishment cycles of several items in order to minimize the 
maximum required storage space. They analyzed the case where replenishment cycles 
are given integer multiples of a basic period and proposed a heuristic to solve the 
problem. While they provided a good analysis of the considered problem, the 
proposed heuristic produces less interesting results. In the following, a simpler, more 
efficient and easier to implant heuristic is proposed. Numerical results are provided to 
prove its superiority. 

INTRODUCTION 

The problem addressed in this article, also called the replenishment staggering problem, is that of 

offsetting the replenishment cycles of N different items that share the same storage space (or any 

other commonly used resource) in order to minimize S, the maximum required space. Each item i 

is replenished in given cycles of length ki which is an integer multiple of a known basic period 

that will be considered as the time unit. The demand rate of item i, denoted di, is known and 

constant. As no backlogs are allowed, the replenishment quantity Qi is known and equals kidi. 

Under these assumptions, the global replenishment cycle is composed of K basic periods, indexed 

t, where K is the least common multiple of all cycle lengths ki and the number of replenishments 

of i within the global cycle, denoted mi, equals K/ki. Two more variables can be used: xif which is 

a binary that takes the value 1 if item i is replenished at the beginning of period f and Iitf which 

indicates the inventory level of i at period t if it is replenished at periods f+mki ;m= 0, 1, …, mi-1. 

Without loss of generality, it is assumed that each unit of i requires one space unit for its storage. 

We also assume that if the first replenishment of item i is scheduled to occur at period fi, then we 

should manage to have enough initial inventory to cover the demand up to the beginning of fi. 

Very few published research work addressed this problem. Gallego, Shaw and Simchi-Levi 

(1992) showed that the problem is NP-hard even if only one cycle multiple is different from the 
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others. Hariga and Jackson (1995) proposed to solve the problem by varying lot sizes through 

time while no backlogs are allowed. Hall (1998) examined the problem in the case where all 

cycle lengths are equal, showed that the problem is NP-hard, compared two solution heuristics 

and provided the worst case ratios for the considered heuristics. More recently, Murthy, Benton 

and Rubin (2003) proposed a heuristic to solve the staggering problem under the assumption 

made in this note. However, this heuristic seems to provide solutions of average quality. This 

note provides a simpler, more efficient and easy to implement heuristic. It will be shown, based 

on a number of randomly generated instances, that the proposed heuristic outperforms the one by 

Murthy et al. for all tested problems. 

Some related problems are studied in the open literature. Several authors proposed methods to 

minimize the sum of order and inventory holding costs while trying to stagger replenishment in 

order to satisfy space availability or other resource constraints. Zoller (1977) and Rosenblatt and 

Rothblum (1990) considered this problem under the assumption that all items have the same 

cycle length. Hartley and Thomas (1982) and Thomas and Hartley (1983) considered the two 

item case.   

Other researchers did not consider the staggering aspect of the problem and proposed to minimize 

the sum of order and inventory holding cost without exceeding the available storage space (Page 

and Paul 1976, Goyal 1978, Anily 1991, Gallego, Queyranne and Simchi-Levi 1996). Teo, Ou 

and Tan (1998) proposed to minimize the sum of order, inventory holding and space utilization 

costs. 

MATHEMATICAL FORMULATION 

The problem considered in this note can be formulated as follows: 

Determine: xif∈{0,1}, i=1, …,N,  f=1, …,ki which 

Minimize: S 
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Let s = t mod(ki), then  Iitf can be calculated by: 
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Unlike previously reported formulations, this one can be directly solved by commercial integer 

programming packages. Within this research work CPLEX was used to solve it. However, as this 

model contains ∑
=

N

i
ik

1
binary variables and K+N constraints, it is obvious that it cannot be solved 

but for small problem instances. 

THE PROPOSED HEURISTIC 

The proposed heuristic is composed of two main parts: a solution construction procedure to 

construct an initial solution and a solution improvement procedure to improve the obtained 

solution. The following additional notations will be used to present the proposed heuristic: 

Ik the replenishment schedule after the kth iteration of the construction procedure 

Sikf maximum storage space requirement if item i is added to Ik and its first 

replenishment is scheduled at period f 

To construct an initial solution, the proposed heuristic proceeds as follows: 

Initialisation: - Order the set of items in the ascending order of their lot sizes Qi, 

- Schedule the first item, denoted u, in the obtained list to be replenished at 

periods mku+1 where m = 0, 1,…, mu-1. 

Iteration k:  - Consider the next item in the list, denoted i, 

- Schedule its replenishments at fi +mki where fi = arg min (Sikf) and m=0, 1, …, mi-1. 

 

To improve the obtained solution, the proposed heuristic considers items one by one and 

eventually moves its replenishments to the periods that lead to the maximum storage space 

reduction. The procedure stops if no further improvement can be achieved. 
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A SIMULATED ANNEALING ALGORITHM 

An adaptation of the simulated annealing (SA) algorithm was developed to solve the considered 

replenishment staggering problem. The solutions obtained by the above proposed heuristic will 

be compared to those obtained by the SA adaptation in order to provide a more complete 

assessment of its performance. 

The initial solution used by the SA adaptation is obtained by the construction procedure given 

above. Neighbour solutions are obtained by randomly modifying the replenishment pattern of a 

randomly selected item and, as usual, the neighbour solution is accepted if it provides a reduction 

of the maximum required storage space or if a randomly drawn value is less than the standard 

Boltzman value. Figure 1 exhibit the main steps of the developed SA adaptation. 

 

Call initial (find an initial solution) 
Store as current solution 
C:=0  (initialize stopping counter) 
Repeat until C=CMAX 

C:=C+1 
T=T0 
r:=0  (initialize repetition counter) 
Repeat until r=RMAX 

Call neighbour  (generate a neighbour solution)  
r:=r+1   
d:= max storage space(neighbour) – max storage space(current) 
If d<0  or  random(0,1)≤EXP(-d/T)  do 

Store the neighbour solution as the current one 
If max storage space(current) < max storage space(best)  do 

Store current solution as the best solution 
End if 

End if 
T:=α*T  (reduce cooling temperature) 

End repeat 
End repeat 

Figure 1: Pseudo code for the developed SA adaptation 

In the numerical tests presented in the last section of this note, the following parameter values 

were used: T0= 16, CMAX= 5, RMAX= 1000 and α= 0.5. 
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NUMERICAL EXAMPLE 

Murthy, Benton and Rubin (2003) solved the numerical example of Table 1 and obtained a 

maximum space requirement of 875 storage units. This same example was solved by the heuristic 

proposed in this note giving an initial solution requiring 866 storage space units. The solution 

obtained after applying the improvement procedure requires 861 storage space units. This 

solution is the optimal solution obtained by solving the corresponding mathematical model. 

Table 1: Numerical example and obtained solutions 

Item i 1 2 3 4 5 6 7 8 9 
Maximum 

storage 
space 

Order size Qi 100 200 81 144 150 160 90 60 50  
Cycle length ki 4 5 9 12 15 8 6 12 2  

Murthy, Benton and Rubin’s solution 1 5 1 1 1 7 6 5 2 875 
Proposed heuristic: Initial solution  1 1 2 6 1 1 5 8 2 866 Period of first 

replenishment fi Proposed heuristic: improved solution 1 1 2 6 1 1 5 7 2 861 

PERFORMANCE EVALUATION 

To assess the performance of the proposed heuristic, 30 test instances were randomly generated. 

Each problem has 20 items to replenish with demand rates drawn from a uniform distribution 

between 5 and 30 units and cycles times drawn from a uniform distribution between 2 and 12. 

Each instance was solved by the heuristic proposed by Murthy, Benton and Rubin, called 

hereafter the MBR heuristic, by the heuristic proposed in this note and by the developed 

adaptation of the simulated annealing algorithm. The obtained results are reported in Table 2. 

It shows that the suggested construction procedure always outperformed the MBR heuristic. This 

procedure produced solutions 11.19% better while the whole heuristic produced solutions 

11.56% better. Note that the average computation time for the proposed heuristic is only 0.2 

seconds. The simulated annealing adaptation produced slightly better solutions but required much 

larger computation times. The average percentage deviation of the SA adaptation with respect to 

the MBR heuristic is 11.92% and its average computation time is 20.5 seconds. With respect to 

the proposed heuristic, the SA adaptation produced an average improvement of 0.41% but 

multiplies its computation time by 102.5 in average. The SA adaptation produced better solutions 

for 14 of the 30 instances and worst solutions for 6 instances. 
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Table 2: Results for the 30 test instances 
Proposed heuristic Simulated annealing 

Instance MBR 
Heuristic Initial 

solution 
Percentage1 

improvement

 
Improved 
solution 

Percentage1 

improvement Solution Percentage1 
improvement

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

1688 
1634 
1250 
1458 
1377 
1551 
1767 
1295 
1637 
1172 
1549 
2000 
1551 
1554 
2044 
1668 
1789 
2028 
1804 
1704 
1750 
1377 
1254 
1521 
1938 
1434 
2463 
1412 
1321 
1668 

1567 
1444 
1157 
1268 
1305 
1443 
1595 
1136 
1488 
1067 
1387 
1658 
1317 
1356 
1695 
1416 
1608 
1782 
1631 
1553 
1558 
1268 
1131 
1358 
1679 
1263 
2088 
1289 
1117 
1473 

7,17% 
11,63% 
7,44% 
13,03% 
5,23% 
6,96% 
9,73% 
12,28% 
9,10% 
8,96% 
10,46% 
17,10% 
15,09% 
12,74% 
17,07% 
15,11% 
10,12% 
12,13% 
9,59% 
8,86% 
10,97% 
7,92% 
9,81% 
10,72% 
13,36% 
11,92% 
15,23% 
8,71% 
15,44% 
11,69% 

1551 
1444 
1157 
1268 
1295 
1443 
1576 
1127 
1488 
1067 
1387 
1658 
1293 
1355 
1684 
1416 
1608 
1782 
1630 
1528 
1549 
1268 
1131 
1358 
1653 
1263 
2088 
1278 
1117 
1449 

8,12% 
11,63% 
7,44% 
13,03% 
5,95% 
6,96% 
10,81% 
12,97% 
9,10% 
8,96% 
10,46% 
17,10% 
16,63% 
12,81% 
17,61% 
15,11% 
10,12% 
12,13% 
9,65% 
10,33% 
11,49% 
7,92% 
9,81% 
10,72% 
14,71% 
11,92% 
15,23% 
9,49% 
15,44% 
13,13% 

1567 
1444 
1148 
1268 
1295 
1443 
1555 
1136 
1478 
1066 
1386 
1658 
1285 
1314 
1687 
1402 
1565 
1782 
1580 
1544 
1541 
1268 
1121 
1358 
1664 
1263 
2062 
1274 
1117 
1453 

7,17% 
11,63% 
8,16% 
13,03% 
5,95% 
6,96% 
12,00% 
12,28% 
9,71% 
9,04% 
10,52% 
17,10% 
17,15% 
15,44% 
17,47% 
15,95% 
12,52% 
12,13% 
12,42% 
9,39% 
11,94% 
7,92% 
10,61% 
10,72% 
14,14% 
11,92% 
16,28% 
9,77% 
15,44% 
12,89% 

Average   11.19%  11.56%  11.92% 
Standard 
deviation   3.01%  3.04%  3.14% 
Minimum   5.23%  5.95%  5.95% 
Maximum   17.10%  17.61%  17.47 

Sec.2 0.03  0.07  0.203  20.503 
1  With respect to the MBR solution. 
2  Average computation time in seconds using a centurion microprocessor paced at 1.86 MHz.  
3  Including the time to obtain the initial solution. 
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