

Jena Research Papers in
Business and Economics

Analysis and Design of Sequencing
Rules for Car Sequencing

Uli Golle, Nils Boysen, Franz Rothlauf

09/2009

Jenaer Schriften zur Wirtschaftswissenschaft

Working and Discussion Paper Series
School of Economics and Business Administration

Friedrich-Schiller-University Jena

ISSN 1864-3108

Publisher:

Wirtschaftswissenschaftliche Fakultät
Friedrich-Schiller-Universität Jena
Carl-Zeiß-Str. 3, D-07743 Jena

www.jbe.uni-jena.de

Editor:

Prof. Dr. Hans-Walter Lorenz
h.w.lorenz@wiwi.uni-jena.de

Prof. Dr. Armin Scholl
armin.scholl@wiwi.uni-jena.de

www.jbe.uni-jena.de

Analysis and Design of Sequencing Rules for Car

Sequencing

Uli Gollea, Nils Boysenb, Franz Rothlaufa

aJohannes Gutenberg-Universität Mainz, Lehrstuhl für Wirtschaftsinformatik und BWL,

Jakob-Welder-Weg 9, D-55128 Mainz, Germany, {golle,rothlauf}@uni-mainz.de

bFriedrich-Schiller-Universität Jena, Lehrstuhl für Operations Management,

Carl-Zeiß-Straße 3, D-07743 Jena, Germany, nils.boysen@uni-jena.de

Abstract

This paper presents novel approaches for generating sequencing rules for the car
sequencing (CS) problem in cases of two and multiple processing times per station.
The CS problem decides on the succession of different car models launched down a
mixed-model assembly line. It aims to avoid work overloads at the stations of the
line by applying so-called sequencing rules, which restrict the maximum occurrence
of labor-intensive options in a subsequence of a certain length. Thus to success-
fully avoid work overloads, suitable sequencing rules are essential. The paper shows
that the only existing rule generation approach leads to sequencing rules which
misclassify feasible sequences. We present a novel procedure which overcomes this
drawback by generating multiple sequencing rules. Then, it is shown how to apply
both procedures in case of multiple processing times per station. For both cases
analytical and empirical results are derived to compare classification quality.

Keywords: Mixed-model assembly lines; Car sequencing; Sequencing rules

1 Introduction

Mixed-model assembly lines allow car manufacturers to produce a large variety of different
models of a common base product on a single production line. The sequence of models is
important since it affects economic parameters. A major cost driver are work overloads of
assembly workers, which can occur if several labor-intensive models are scheduled consec-
utively on the line. Work overloads need to be compensated by cost-intensive strategies,
e.g., application of utility workers or line stoppage. Therefore, car manufacturer are in-
terested in finding model sequences with minimum work overload. Common approaches
are car sequencing (CS) and mixed-model sequencing (MMS).

CS (Parrello et al., 1986; Solnon et al., 2008) introduces sequencing rules Ho : No for
each labor-intensive option o, which restrict the occurrence of this option to at most Ho in
any subsequence of No successive models. The goal is to find a sequence, which does not
violate any of the given sequencing rules or – if such a sequence is not existent – minimizes

1

rule violations. The alternative MMS approach (Wester and Kilbridge, 1964) evaluates
a sequence by explicitly considering operation times, worker movements, station borders,
and other operational characteristics of a line. This way, work overloads can exactly be
quantified and, thus, be minimized. A sequence is called feasible if no work overload
occurs during the execution of the sequence and unfeasible otherwise.

Both, MMS and CS, try to minimize work overload. MMS directly determines the work
overload resulting into high effort for data collection, data preciseness, and computation
time. In contrast, CS, which is based on a surrogate objective for work overload by
applying sequencing rules, is simple to apply and data requirements are low. However,
if the applied sequencing rules are not suitable, CS can be less accurate than MMS and
wrongly classify sequences to be either feasible or unfeasible. Therefore, the generation of
adequate rules for CS is important. The CS research mainly focuses on the development of
efficient solution procedures (Solnon et al., 2008; Boysen et al., 2009) for finding optimal
sequences. Only little work deals with the definition of sequencing rules. Drexl and
Kimms (2001) provide a rather intuitive example:

“Assume that 60% of the cars manufactured on the line need the option ‘sun roof’.
Moreover, assume that five cars (copies) pass the station where the sun roofs are installed
during the time for the installation of a single copy. Then, three operators (installation
teams) are necessary for the installation of sun roofs. Hence, the capacity constraint of
the final assembly line for the option ‘sun roof’ is three out of five in a sequence, or 3:5
for short.” (Drexl and Kimms, 2001)

Bolat and Yano (1992) presented the only analytical approach on how to derive se-
quencing rules. It is limited to cases where two different processing times occur at each
station. In this paper, we study how well sequencing rules obtained by the Bolat and Yano
(BY) approach correctly classify sequences to be either feasible or unfeasible. Since our
analysis shows that a large percentage of feasible sequences are classified as unfeasible, we
develop a novel approach (MSR) that generates CS rules that correctly classify sequences
as feasible and unfeasible respectively. Finally, we consider multiple processing times per
station, discuss how the BY and MSR approach can be used for such scenarios, and study
how well sequences are correctly classified.

Section 2 introduces fundamental assumptions and defines measures for the classifica-
tion quality of sequencing rules. Then, we study classification quality of the BY approach
(Sect. 3) as well as the novel MSR approach (Sect. 4). Section 5 presents different pos-
sibilities of how to develop sequencing rules for stations with multiple processing times
and studies how well the BY and MSR approach correctly classifies sequences to be either
feasible or unfeasible. The paper ends with concluding remarks.

2 Assumptions and Classification Quality

We introduce fundamental assumptions of the mixed-model assembly line and define mea-
sures on the classification quality of sequencing rules.

• The model-mix, i.e., the demand for models throughout the planning horizon, is
known with certainty. Thus, rush orders or breakdowns do not occur, so that only
static sequencing problems are considered.

2

• Workpieces are moved with constant velocity through the station which are succes-
sively arranged along the line. W.l.o.g. lines flow from left to right. We assume no
buffers between stations.

• Fixed rate launching is applied, so that consecutive units are placed on the line at
the same intervals equal to cycle time c.

• We assume closed stations, so working across the stations’ boundaries is not possible.

• Assembly workers return with infinite velocity to the next workpiece. This is an
adequate simplification whenever the conveyor speed is much slower than the walk-
ing speed of workers. Otherwise, cycle time can ex ante be reduced by a constant
return time. Furthermore, processing starts instantaneously once worker and work-
piece meet inside a station.

• We assume a deterministic problem since processing times pmk per model m ∈
M and station k ∈ K are known with certainty. Moreover, all possible mod-
els can be processed inside a station when starting work at the left-hand border:
pmk ≤ lk ∀ m ∈ M ; k ∈ K, with lk being the length of station k. Otherwise,
sequence-independent work overload exists and a station inevitably is overloaded
with any occurrence of the respective model. Cycle times range in between the
minimum and maximum processing times at each station: minm∈M{pmk} ≤ c ≤
maxm∈M{pmk} ∀ k ∈ K.

• Work overload occurs whenever an assembly operator is not able to finish his/her
present workpiece (with normal processing velocity) before reaching the right-hand
station border. Then, in the real-world some kind of compensation, e.g., line stop-
page or applying cross-trained utility workers, is required.

These assumptions define the status of an assembly system for a given model sequence
over the complete planning horizon. Therefore, for any given sequence MMS can accu-
rately quantify the resulting work overload and correctly classify a sequence to be either
feasible or unfeasible.

Throughout the paper, we restrict ourselves to feasibility problems and label feasible
sequences as MMS-feasible. If a sequence does not violate any sequencing rule of a CS
approach, it is denoted as CS-feasible. Both approaches, CS and MMS, are equivalent if
CS-feasibility induces MMS-feasibility (CS-feasible→MMS-feasible) and vice versa (MMS-
feasible→CS-feasible). For CS, such a one-to-one mapping is desirable since it correctly
classifies all sequences to be either feasible or unfeasible. However, there are two possible
types of misclassifications:

• CS-feasible9MMS-feasible. The sequencing rules of CS classify sequences to be
feasible although they are unfeasible. Sequencing rules are not strict enough and
do not identify all sequences that cause work overload. This case causes major
problems in the real-world since additional costs for dealing with unforeseen work
overloads occur.

3

• CS-feasible8MMS-feasible. CS classifies sequences to be unfeasible although they
are feasible. There are sequences that cause no work overload but violate at least
one sequencing rule. In this case, no unforeseen work overloads occur but CS ex-
cludes feasible sequences from consideration. Obviously, this impedes the search for
any solution procedure and potentially excludes optimal solutions if the feasibility
version of CS is coupled with an additional objective function (Drexl and Kimms,
2001). As worst case scenario, CS wrongly classifies all feasible solutions, so no
feasible solution can be found.

The lower the percentage of misclassifications the better the classification quality of
the applied sequencing rules and, thus, the better the rule generation approach that lead
to this rules.

3 Classification Quality of the Bolat and Yano ap-

proach

To our best knowledge, the only analytical approach on how to derive sequencing rules
was proposed by Bolat and Yano (1992). They assumed one option per station with two
processing times. All models containing the option (denoted as option models) require
processing time p+ and all basic models without the option require processing time p−,
with p− < c < p+ ≤ l, where c is the cycle time and l the station length. Bolat and Yano
proposed to generate sequencing rules H : N that restrict the number of option models
to at most H within a subsequence of N consecutive models, where

H =

⌊

l − c

p+ − c

⌋

and (1)

N = H +

⌈

H · (p+ − c)

c− p−

⌉

· (2)

H are the maximum possible number of consecutive option models without outreaching
the right-hand station border. N adds to H the number of basic models required to reset
the subsequence to the left-hand station border after H successive option models.

For an example with l = 15, c = 10, p+ = 12 and p− = 7, the BY approach returns
the sequencing rule 2 : 4. Therefore, at most H = 2 option models can be produced
consecutively, before N − H = 2 basic models are required to reset the subsequence to
the left border again. The following properties of the BY approach hold:

Proposition: For the BY approach, CS-feasible→MMS-feasible.
Proof: A sequence is CS-feasible if the H : N -rule is not violated (i) inside any subse-
quence of N cars and (ii) when concatenating subsequences to form a longer sequence.
In the worst case, all H option models succeed in a row. In a sequence of N cars, a
subsequence of H consecutive option models starts at the left-hand border and ends at
H(p+ − c). According to (1), this end lies before station’s length l. (2) calculates the
sequence length N such that a sequence of N −H basic models resets position from the
right most point H(p+ − c) back to the left-hand border. Therefore, (i) holds. If only

4

cycle time c ∈ [10, 20]
station length l ∈ (c, 40]
processing time of option models p+ ∈ (c, l]
processing time of basic models p− ∈ [1, c)

Table 1: Parameter settings

feasible subsequences are concatenated, there is no interplay between the subsequences
and (ii) holds. �

Proposition: For the BY approach, CS-feasible8MMS-feasible.

Figure 1: Counterexample for CS-feasible ← MMS-feasible

Proof: We prove by giving a counterexample to the contradiction of our proposition:
CS-feasible←MMS-feasible. For the above example with l = 15, c = 10, p+ = 12 and
p− = 7, the sequence π =< +, +,−, +] is MMS-feasible (compare movement diagram
of Figure 1). “+” and “-” represents an option model and basic model respectively. In
the movement diagram, workers accompanying their workpiece are solid horizontal lines;
return movements are dashed diagonal lines. The BY approach yields a 2 : 4-rule, which is
violated by sequence π. Thus, π is MMS-feasible but not CS-feasible and the proposition
holds. �

Although CS-feasible8MMS-feasible holds in general, there are two special cases for
which CS-feasible←MMS-feasible holds:

1. H = 1 and l − p+ < r , with

r =

{

(p+ − c) mod (c− p−) if (p+ − c) mod (c− p−) > 0,

c− p− if (p+ − c) mod (c− p−) = 0.

After each option model, at least N −H basic models must be processed before the
next option model can follow. Therefore, feasible sequences reset after at most N
models.

2. N −H = 1.
A sequence resets to the left-hand border by processing one basic model. Since only
H option models can be processed consecutively without inducing work overload, a
feasible sequence has to reset after at most H + 1 = N option models.

For the one and two station case, we study the number of sequences for which CS-
feasible8MMS-feasible holds. For each sequence length T , we create 1, 000 random prob-
lem instances. The parameters settings c, l, p+, and p− of each instance are chosen

5

randomly according to Table 1. For one station (two stations) and T ≤ 22 (≤ 12), we
consider all possible sequences; for larger T , at least 1, 000, 000 random sequences are
generated for each instance. If necessary, the sampling size is increased until it contains
at least 10 MMS-feasible sequences.

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 5 10 15 20 25 30 35

m
is

cl
as

si
fic

at
io

ns
 [%

]

T

one station
two stations

Figure 2: Number of misclassified sequences where CS-feasible8MMS-feasible (in %)

For each sequence, we determine the CS-feasibility using the sequencing rules obtained
by the BY approach as well as the MMS-feasibility. Figure 2 shows the number of se-
quences (in percent) that are MMS-feasible but CS-unfeasible. For example, when consid-
ering only one station and a sequence length of T = 30, then about 33% of MMS-feasible
solutions are classified by the BY approach as unfeasible. The number of sequences where
CS-feasible8MMS-feasible increases with T and with the number of stations.

In summary, all sequences that are CS-feasible are also MMS-feasible. However, a
large portion of MMS-feasible solutions are incorrectly classified by the sequencing rules
obtained from the BY approach to be CS-unfeasible. Therefore, using this sequencing
rules in optimization approaches that search for feasible solutions can be problematic
since many feasible solutions are excluded from the search space.

4 MSR – A Novel Rule Generation Approach

We propose a new rule generation approach with multiple sequencing rules (MSR) for
stations with one option and two processing times. The new approach generates a number
of sequencing rules which correctly classifies sequences to be either feasible or unfeasible.

The MSR approach calculates kmin, which is the maximum number of successive option
models, as

kmin =

⌊

l − c

p+ − c

⌋

· (3)

6

kmin equals H from the BY approach (1). The maximum number kmax of option models
that may occur in a sequence of length T is

kmax =

⌊

T (c− p−) + (l − c)

p+ − p−

⌋

· (4)

MSR generates kmax− kmin + 1 different sequencing rules Hk−kmin+1 : Nk−kmin+1 with

Hk−kmin+1 = k and Nk−kmin+1 = k + m (5)

∀k ∈ [kmin, kmax] and

m =

⌈

k(p+ − c)− (l − p+)

c− p−

⌉

· (6)

For an example with l = 17, c = 10, p+ = 13, and p− = 5, the BY approach returns
a 2 : 4 rule. For a sequence of T = 4, MSR generates two rules H1 : N1 = 2 : 3 and
H2 : N2 = 3 : 4. A sequence that satisfies all rules generated by MSR is CS-feasible. For
the situation that three option models (+) and one basic model (-) need to be assembled,
Figure 3 shows the four different sequences (π1, . . . , π4) which are correctly classified by
the MSR approach to be either feasible or unfeasible. The BY approach would wrongly
classify all four sequences as CS-unfeasible.

Figure 3: Example for the MSR approach with sequences that assemble three option
models (+) and one basic model (-)

Proposition: For the MSR approach, CS-feasible → MMS-feasible.
Proof: We prove by contraposition and show CS-unfeasible←MMS-unfeasible. A MMS-
unfeasible sequence contains at least one option model at position j and starting time

7

sj > l− p+. Processing the option model at position j leads to work overload. W.l.o.g. j
is the first position in the sequence, where work overload occurs. Position i = max(x|x <
j ∧ sx = 0) is the last time where the sequence resets before j. i always exists, since the
sequence starts with s1 = 0. We neglect all models at positions less than i since they have
no influence on sj. Furthermore, we only consider the subsequence π[i,j) excluding the
option model at position j. Since no reset or work overload occurs in π[i,j), the starting

time sj is the sum of the displacements of all models in π[i,j). With k option models

and m basic models, sj = k(p+ − c) + m(p− − c) = k(p+ − c) − m(c − p−) > l − p+.

Since kmin ≤ k ≤ kmax, a sequencing rule exists for k with Nk−kmin+1 = k + m. Accord-
ing to (6), this sequencing rule demands l − p+ ≥ k(p+ − c) − m(c − p−). Therefore,
k(p+ − c) −m(c − p−) > k(p+ − c) −m(c − p−) which leads to m > m. Therefore, the

subsequence π[i,j) has a length lower than Nk−kmin+1 but already contains k option models.
Having an option model at position j does not only induce work overload but also leads
to a violation of the respective sequencing rule, since the subsequence π[i,j] = π[i,j) + {j}

has length ≤ Nk−kmin+1 but contains k + 1 option models. This completes the proof that
CS-unfeasible←MMS-unfeasible and therefore CS-feasible→MMS-feasible. �

Proposition: For the MSR approach, CS-feasible ← MMS-feasible.
Proof: We use a contraposition proof and show CS-unfeasible → MMS-unfeasible. A
CS-unfeasible sequence violates at least one sequencing rule. Thus, a subsequence π
of length t = k + m with k ∈ [kmin, kmax] contains at least k + 1 option models and
m − 1 basic models. W.l.o.g. the violation occurs at the last position in π. Therefore,
in the first t − 1 positions of π, there are k option models and m − 1 basic models.
The first position i in π has starting time si. Assuming that no work overload occurs
in the first t − 1 positions, the starting time sj of the last position j in π must be
≥ si + k(p+ − c)− (m− 1)(c− p−). For si ≥ 0 and k(p+ − c)− (m− 1)(c− p−) > l− p+

(compare (6)), we get si + k(p+ − c)− (m− 1)(c− p−) > l − p+ and hence sj > l − p+.
Therefore, the option model at position j induces work overload. This completes the proof
that CS-unfeasible→MMS-unfeasible and therefore CS-feasible←MMS-feasible. �

MSR has the disadvantage that the number kmax−kmin+1 of sequencing rules is relatively
large and some of the rules are redundant in the sense that they are covered by other
rules. We introduce the concept of strictness.

Definition: A sequencing rule H : N is stricter than another sequencing rule P : Q,
if all possible permutations of option and basic models for a given model mix which are
feasible under H : N are also feasible under P : Q but at least one permutation exists
which is unfeasible under H : N , but feasible under P : Q.

A test for strictness compares the maximum number of allowed option models within a
subsequence of length N and Q, respectively. In a sequence of length T , the maximal
number of options models allowed by sequencing rule H : N is H

⌊

T
N

⌋

+min(T mod N ; H)
(Fliedner and Boysen, 2008). Thus, H : N is stricter than P : Q, if

H

⌊

Q

N

⌋

+ min(Q mod N ; H) ≤ P, and (7)

8

 0

 50

 100

 150

 200

 50 100 150 200 250 300 350 400

av
g.

 n
um

be
r

of
 r

ul
es

T

MSR
MSRstrict

Figure 4: Average number of sequencing rules over sequence length T for MSR and
MSRstrict, which removes redundant rules.

H 6= P ∨N 6= Q (8)

(7) ensures that the number of option occurrences under rule H : N never exceeds P
for any feasible subsequence of length Q. Thus, any permutation which does not violate
the H : N rule is also feasible for P : Q. Inequalities (8) ensure that both rules are not
identical. For an example with l = 20, c = 10, p+ = 20, p− = 0, and T = 10, MSR
generates five rules 1 : 2, 2 : 4, 3 : 6, 4 : 8, and 5 : 10. According to strictness, the latter
four rules are redundant and the rule set can be reduced to a single 1 : 2 rule.

Note that redundant rules can not be identified by interpreting rules as fractions and
arguing that rule H : N is stricter than rule P : Q if H/N < P/Q. Such an argumentation
may lead to wrong results. For example, in a feasible sequence of length T = 4, we
assume two option models and two basic models leading to six possible permutations. A
1 : 2 classifies three of them as feasible. The conjecture that a 2 : 5 rule is more strict
(2/5 < 1/2) is wrong since 2 : 5 classifies all six permutations as feasible.

For different T , we study the number of redundant sequencing rules for problem with
one station. We create 1,000 random problem instances with parameters from Table
1. Figure 4 shows the average number of sequencing rules generated by MSR over the
sequence length T with and without eliminating redundant sequencing rules. The MSR
approach using strictness for the elimination of redundant sequencing rules is denoted
as MSRstrict. When eliminating redundant rules, the number of sequencing rules can
approximately cut in half. For T = 50, MSR generates on average 22.5 sequencing rules
per station; MSRstrict, which eliminates redundant rules, only produces on average 12.6
rules.

In summary, the new MSR approach for one option per station with two processing
times generates multiple sequencing rules. It correctly classifies all sequences either as
feasible or unfeasible. The definition of strictness is able to halve the number of necessary
rules for MSR by eliminating redundant rules.

9

5 Multiple processing times

Although the literature focused on rule generation approaches for stations with only two
possible options (Bolat and Yano, 1992), in real life, options with multiple processing
times per station are common. For example, in automobile assembly, sunroofs can come
in three options with no sunroof, manual, or electric; transmission may be manual or
automatic in 4 to 6 speeds; onboard electronic devices, such as stereo systems can come
in various configurations. Furthermore, multiple options (parts or modules) might need
to be installed per station.

We assume more than two models m ∈ M with diverging processing times pm. M is
split into two subsets M+ = {m ∈ M |pm > c} and M− = {m ∈ M |pm < c} containing
all models with processing time greater and smaller than cycle time c, respectively. All
models with pm = c are excluded from consideration, as their production does not modify
the ending position within the station. Thus, they can never produce additional work
overload and can be scheduled at facultative sequence positions.

We reduce the multiple options case to the two option case by introducing one virtual
option per station. All models m ∈ M+ require the virtual option with processing time
pv+; all m ∈ M− with processing time pv− do not require the virtual option. For the
virtual processing times pv+ and pv−, there are different possibilities: using the maximal
(MAX), average (AVG), or minimal (MIN) processing times of each set:

MAX: pv+ = max
m∈M+

{pm}, pv− = max
m∈M−

{pm} (9)

AVG: pv+ =

∑

m∈M+{pm}

|M+|
, pv− =

∑

m∈M−
{pm}

|M−|
(10)

MIN: pv+ = minm∈M+{pm}, pv− = minm∈M−{pm} (11)

Having two options (either the virtual option or not) and corresponding processing times,
sequencing rules can be derived using either the BY or MSR approach. We give an ex-
ample with four models to be processed at a station with length l = 10 and cycle time
c = 5. M+ = {1, 2} contains two models with processing times p1 = 8 and p2 = 6.
Models 3 and 4 with processing times of p3 = 4 and p4 = 2 belong to set M−. Models 1
and 2 require the virtual option; models 3 and 4 are declared as base models. Using the
maximal processing times (MAX), we get pv+ = 8 and pv− = 4. For a sequence length
T = 4, the BY approach results into a 1 : 4 rule and the MSR approach to rules 1 : 2 and
2 : 6.

Proposition: For the virtual option approach with MAX aggregation, CS-feasible→MMS-
feasible.
Proof: CS-feasible→MMS-feasible holds for both the BY and MSR approach with one
option and processing times p+ = pv+ = maxm∈M+{pm} and p− = pv− = maxm∈M−{pm}.
Having additional options m ∈M+ with processing pm < pv+ and m ∈M− with process-
ing pm < pv− can only move ending times to the left and never lead to additional work
overload. �

In contrast, for the AVG and MIN aggregation, CS-feasible→MMS-feasible does not hold,
which could simply be proven by a counterexample.

10

Figure 5: Counterexample for CS-feasible8MMS-feasible

 0

 10

 20

 30

 40

 50

 60

 3 4 5

m
is

c
la

s
s
if
ic

a
ti
o

n
 [

%
]

number of processing times p

 MAX BY
 MAX MSR

 AVG BY
 AVG MSR

 MIN BY

(a) CS-feasible8MMS-feasible

 0

 10

 20

 30

 40

 50

 60

 3 4 5

m
is

c
la

s
s
if
ic

a
ti
o

n
 [

%
]

number of processing times p

 AVG BY
 AVG MSR

 MIN BY
 MIN MSR

(b) CS-feasible9MMS-feasible

Figure 6: Number of misclassified sequences (in percent) for T = 10

Proposition: For the virtual option approach with MAX aggregation, CS-feasible8
MMS-feasible holds.
Proof: We prove by a counterexample to the contradiction of our proposition: CS-
feasible←MMS-feasible. Consider the example with l = 10, c = 5, p1 = 8, p2 = 6, p3 = 4,
p4 = 2, M+ = {1, 2}, and M− = {3, 4}. Any possible sequence of four different models
is MMS-feasible. The BY approach returns a 1 : 4 rule. Since model 1 and 2 require the
virtual option, no CS-feasible sequence exists. The MSR approach leads to rules 1 : 2
and 2 : 6. Therefore, all sequences where model 1 directly follows model 2 and vice versa,
are CS-unfeasible. Figure 5 shows a sequence that is MMS-feasible but CS-unfeasible for
both the BY and MSR approach. �

For the BY approach, both AVG and MIN aggregation lead to CS-feasible8MMS-feasible.
For MSR and AVG aggregation, CS-feasible8MMS-feasible. Combining MSR with MIN
aggregation results into CS-feasible←MMS-feasible. Since CS-feasible←MMS-feasible
holds for the case with only two processing times, it also holds for the virtual option
case since all options m ∈ M+ and m ∈ M− have processing times larger than P v+ and
P v−, respectively.

For the three aggregation possibilities, we study the classification quality as the number
of sequences for which CS-feasible8MMS-feasible and CS-feasible9MMS-feasible holds,
respectively. Experimental design follows Section 3. For either three, four, or five different
processing times (and thus models) and various station lengths T ∈ {10, 15, 20}, we

11

BY approach MSR approach
p agg. classification error T=10 T=15 T=20 T=10 T=15 T=20

3

MAX CS-feasible 8 MMS-feasible 40,23 % 48,57 % 53,98 % 30,24 % 36,86 % 41,43 %

AVG
CS-feasible 8 MMS-feasible 29,10 % 36,35 % 41,22 % 16,26 % 21,21 % 24,96 %
CS-feasible 9 MMS-feasible 4,42 % 6,17 % 7,50 % 8,64 % 12,11 % 14,82 %

MIN
CS-feasible 8 MMS-feasible 8,71 % 12,28 % 15,29 % 0,00 % 0,00 % 0,00 %
CS-feasible 9 MMS-feasible 23,11 % 27,91 % 31,13 % 29,14 % 35,29 % 39,30 %

4

MAX CS-feasible 8 MMS-feasible 52,83 % 62,21 % 67,41 % 45,76 % 54,57 % 59,87 %

AVG
CS-feasible 8 MMS-feasible 34,38 % 43,11 % 48,96 % 22,44 % 29,21 % 33,95 %
CS-feasible 9 MMS-feasible 6,61 % 9,59 % 11,09 % 12,60 % 17,73 % 21,73 %

MIN
CS-feasible 8 MMS-feasible 4,65 % 6,95 % 8,64 % 0,00 % 0,00 % 0,00 %
CS-feasible 9 MMS-feasible 36,52 % 44,13 % 49,13 % 41,97 % 50,36 % 55,57 %

5

MAX CS-feasible 8 MMS-feasible 59,12 % 68,70 % 73,99 % 52,93 % 62,48 % 68,04 %

AVG
CS-feasible 8 MMS-feasible 36,27 % 45,47 % 51,60 % 24,41 % 31,89 % 37,16 %
CS-feasible 9 MMS-feasible 7,93 % 11,14 % 13,55 % 14,41 % 20,11 % 24,67 %

MIN
CS-feasible 8 MMS-feasible 2,73 % 3,83 % 4,89 % 0,00 % 0,00 % 0,00 %
CS-feasible 9 MMS-feasible 42,67 % 51,61 % 57,47 % 46,89 % 56,24 % 62,04 %

Table 2: Number of sequences where CS-feasible8MMS-feasible and CS-feasible9MMS-
feasible, respectively

generate 1, 000 random problem instances according to the parameters given in Table 1.
For T = 10, we consider all possible sequences; for larger T , at least 1, 000, 000 random
sequences for each instance are sampled. Sampling size is iteratively increased by a factor
of 1, 000, 000 until it contains at least 10 MMS-feasible sequences.

For each sequence, we determine MMS-feasibility. Furthermore, for the virtual option
approach with MAX, AVG, and MIN aggregation, we determine CS-feasibility using either
the BY or MSR approach. For T = 10, Figure 6(a) shows the number of sequences (in
percent) that are MMS-feasible but not CS-feasible (CS-feasible8MMS-feasible) over the
number of processing times. Table 2 lists complete results for different T and different
number p of processing times per station.

Using MAX aggregation, the number of feasible solutions that are wrongly classified
as CS-unfeasible is highest. For MAX and AVG aggregation, the percentage of wrongly
classified sequences increases with higher number p of models; for MIN it decreases. In
comparison to BY, MSR misclassifies a lower percentage of sequences. As mentioned
before, combining MSR and MIN leads to CS-feasible←MMS-feasible.

Analogously, Figure 6(b) presents the number of sequences (in percent) that are CS-
feasible but not MMS-feasible (CS-feasible9MMS-feasible) over p for T = 10. In com-
parison to AVG aggregation, MIN aggregation leads to a higher percentage of wrongly
classified sequences. The BY approach correctly classifies a higher number of sequences
than the MSR approach.

There is a tradeoff between CS-feasible8MMS-feasible and CS-feasible9MMS-feasible.
Aggregations that misclassify a large number of MMS-feasible sequences as CS-unfeasible,
misclassify a lower number of MMS-unfeasible sequences as CS-feasible. This tradeoff is
observed for both the BY and MSR approach.

Wrongly classifying an MMS-unfeasible sequence as CS-feasible is problematic when
searching for feasible sequences. Executing such an MMS-unfeasible sequence would lead
to unforeseen overhead and cause large additional cost. Therefore, for multiple processing

12

times, we only find MAX aggregation useful since it guaranties that every CS-feasible
sequence is also MMS-feasible. Combining MAX aggregation with MSR finds a larger
number of MMS-feasible solutions in comparison to the BY approach. Again this comes
for the price of an enlarged rule set.

6 Conclusion

This paper investigates the classification quality resulting from existing and novel proce-
dures for generating car sequencing rules, where quality is measured by the fraction of
sequences for which a generated rule set properly predicts whether or not work overload
occurs. Analytical and empirical results show a superior classification quality of our novel
MSR approach for both the two and multiple processing times case. However, this comes
for the price of additional sequencing rules to be introduced per instance. Thus, to ben-
efit from more accurate rules solution procedures are required which are able to handle
large rule sets. Furthermore, future research should investigate the optimization version
of minimizing work overload. Here, special rule generation procedures are required which
additionally derive option-specific penalty values weighting rule violations according to
the resulting amount of work overload.

References

Bolat, A., Yano, C., 1992. Scheduling algorithms to minimize utility work at a single
station on a paced assembly line. Production Planning & Control 3 (4), 393–405.

Boysen, N., Fliedner, M., Scholl, A., 2009. Sequencing mixed-model assembly lines:
Survey, classification and model critique. European Journal of Operational Research
192 (2), 349–373.

Drexl, A., Kimms, A., 2001. Sequencing jit mixed-model assembly lines under station-load
and part-usage constraints. Management Science 47 (3), 480–491.

Fliedner, M., Boysen, N., 2008. Solving the car sequencing problem via branch & bound.
European Journal of Operational Research 191 (3), 1023–1042.

Parrello, B., Kabat, W., Wos, L., 1986. Job-shop scheduling using automated reasoning:
A case study of the car-sequencing problem. Journal of Automated Reasoning 2, 1–42.

Solnon, C., Cung, V., Nguyen, A., Artigues, C., 2008. The car sequencing problem:
Overview of state-of-the-art methods and industrial case-study of the roadef’2005 chal-
lenge problem. European Journal of Operational Research 191 (3), 912–927.

Wester, L., Kilbridge, M. D., 1964. The assembly line model-mix sequencing problem.
In: Proceedings of the Third International Conference on Operations Research. Oslo,
Paris, 247–260.

13

	ADP51.tmp
	Uli Golle, Nils Boysen, Franz Rothlauf

