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Abstract 

A bus network design problem for Tin Shui Wai, a suburban residential area in Hong 
Kong, is investigated, which considers the bus services from origins inside this suburban area 
to the destinations in the urban areas. The problem aims to improve the existing bus services 
by reducing the number of transfers and the total travel time of the users. This has been 
achieved by the proposed integrated solution method which can solve the route design and 
frequency setting problems simultaneously. In the proposed solution method, a genetic 
algorithm, which tackles the route design problem, is hybridized with a neighborhood search 
heuristic, which tackles the frequency setting problem. A new solution representation scheme 
and specific genetic operators are developed so that the genetic algorithm can search all 
possible route structures, rather than selecting routes from the predefined set. To avoid 
premature convergence, a diversity control mechanism is incorporated in the solution method 
based on a new definition of hamming distance. To illustrate the robustness and quality of 
solutions obtained, computational experiments are performed based on 1000 perturbed 
demand matrices. The t-test results show that the design obtained by the proposed solution 
method is robust under demand uncertainty, and the design is better than both the current 
design and the design obtained by solving the route design problem and the frequency setting 
problem sequentially. Compared with the current bus network design, the proposed method 
can generate a design which can simultaneously reduce the number of transfers and total 
travel time at least by 20.9% and 22.7% respectively. Numerical studies are also performed to 
illustrate the effectiveness of the diversity control mechanism introduced and the effect of 
weights for objective functions.  
 

Keywords: Transportation; Bus network design; Route design problem; Frequency setting 

problem; Genetic algorithm, Neighborhood search 
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1. Introduction 

With continuous population growth of many large cities, like Hong Kong, new suburban 

residential areas emerge in the periphery of the cities. Transit network design is unique for 

these suburban residential areas to provide adequate transportation services from the origins 

inside these areas to the urban working and shopping destinations.  

This paper focuses on the trunk bus network design problem for a suburban residential 

area, Tin Shui Wai (TSW), in Hong Kong shown in Figure 1a. TSW has a population of more 

than 300,000 people. Most of the residents in TSW work in the urban areas of Hong Kong. 

Trunk bus is the main commuting mode for TSW residents. The first set of trunk bus routes 

commenced in the early 1990s. Since then, trunk bus routes in TSW have developed with the 

growth of the area. Completion of new housing estates led to demand for new routes, which 

were added on the existing basis. Currently, all the routes go out of TSW to the city centre 

through the Tai Lam Tunnel (TLT) located at the southeast side of the area. Free transfers at 

Tai Lam Tunnel bus interchange (indicated as “I”) are allowed. 

Being lack of systematic design, the existing bus network operates in an inefficient 

manner. Transfer at TLT interchange is required by many passengers. Moreover, many bus 

services are routed to loop around various zones in TSW. This results in an increase in travel 

time. As a result, the residents complained about the poor performance of the bus service. To 

react with the complaint, the private operator plans to restructure the bus routes in TSW to 

reduce both the number of transfers and total passenger travel time. However, as a private bus 

operator, it highly concerns its profitability, and does not want to increase the operating cost 

and the fleet size.  

The investigated bus network design problem consists of two sub-problems in the 

sequential transit planning process stated in Ceder and Wilson (1986), namely, route 

designing and frequency setting. Indeed, many researchers (e.g., Lampkin and Saalmans, 

1967; Bel et al., 1979; Carrese and Gori, 2002) adopt the sequential planning approach and 

tackle the route design problem without considering frequency setting, either because the 

combined problem is too large to handle or the objectives (e.g., area coverage, route 

directness, demand satisfaction and total route length) do not depend on frequency. However, 

as long as the passengers’ total travel time or the number of vehicles is included in the 

objective function, as is the case for the studied problem, the frequency setting problem 

should be simultaneously solved with the route design problem because both the passengers’ 

total travel time and the number of vehicles depend on frequency.  
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   (a) Map of Tin Shui Wai       (b) The Tin Shui Wai bus network                     

Figure 1 The investigated network 

 

Only a few researchers have simultaneously tackled both the route design and frequency 

setting problems, which is classified as the transit network design and frequency setting 

problem according to a recent, comprehensive, and systematic transit network design review 

of Guihaire and Hao (2008). Instead of solving the two problems in a sequential manner, Lee 

and Vuchic (2005) adopt the iterative approach to handle the interaction between the two 

sub-problems. In a similar way, Pacheco et al. (2009) solve the route design problem and the 

bus assignment problem in alternating steps, while each solution is tackled by a separate 

procedure. Although good results can be obtained in these works, the convergence of this 

approach is questionable. Some attempts have been made to use exact methods to solve the 

combined problem (e.g., Bussieck, 1998; Wan and Lo, et al., 2003; Borndöfer et al., 2005). 

However, these methods cannot solve large realistic problems due to the NP-hard nature of 

these problems. Therefore, to solve these problems, most researchers (e.g., Van Nes et al., 

1988; Shih and Mahmassani, 1994; Shih et al. 1998; Pattnaik et al., 1998; Bielli et al. 2002; 

Fusco et al., 2002; Tom and Mohan, 2003; Ngamchai and Lovell, 2003; Fan and Machemehl, 

I 

I 
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2006a, 2006b; Zhao and Zeng, 2007) employ heuristics or meta-heuristics, which require 

generate an initial candidate route set. Nevertheless, the initial route set may affect the quality 

of the final solution (which can highly depend on the initial solution for some solution 

methods) and the suitability may vary from network to network. Moreover, whether to include 

a single stop on a route can greatly affect both the number of transfers and travel time. 

Therefore, it is difficult to define an initial set of candidate routes for these methods. 

The bus network design problem investigated in this paper simultaneously considers both 

route design and frequency setting, and is characterized by two aspects that make our problem 

different from other combined transit route design and frequency setting problems in the 

literature. First, the objectives and the constraints of the problem are different from those in 

the existing literature mentioned before. Second, the layout and the design of studied route 

network are distinct. The investigated bus network design involves planning trunk bus routes 

to connect the suburban area to the urban area. All the routes must pass through one large 

interchange but there is no restriction on the number of bus lines serving any demand point 

inside the suburban area. To our best knowledge, this feature cannot be found in other transit 

network design including bus feeder system design (e.g., Martins and Pato, 1998 and Kuan et 

al., 2006) in which the interchanges are next to rail stations, and each bus stop in the suburban 

area is only served by one feeder bus service.  

This paper also proposes a solution method that considers all possible route structures 

with all possible stop combinations. More importantly, this solution method developed here is 

different from the GAs and hybrid GAs proposed in the literature. A diversity control 

mechanism based on a new definition of hamming distance is proposed to solve for solutions.  

The remaining parts of this paper are organized as follows: Section 2 presents the 

formulation of the problem. Section 3 describes the proposed solution method. Section 4 

depicts computational results. Finally, section 5 gives concluding remarks and highlights 

future research directions. 

 

2. Formulation of the problem 

The TSW network is shown in Figure 1b. The square nodes represent the locations with 

both bus terminals and bus stops; the circle nodes represent the current bus stop locations, and 

“L” represents the TLT bus interchange. The in-vehicle travel times (in minutes) between 

nodes are shown next to the corresponding links. As shown in Figure 1b, the TSW area has 23 

stops (i.e., nodes 1 - 23 in the figure) and there are seven bus terminals in this area. All the bus 

routes originated from these terminals terminate at one of the five destinations, nodes 24 - 28. 
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The demand matrix estimated from the available data is given in Appendix 1. 

Ideally, there should be as many routes as possible so as to provide direct point-to-point 

services for the residents. However, this is not feasible due to relatively fixed operating cost 

of the operator (like other bus operators, the operating cost is shown to be roughly 

proportional to the number of operating vehicles). In addition, if a single route is too zigzag 

and has too many stops, the travel time is long. What is intended in this work is a complete 

restructuring of the bus network inside this area to reduce the total number of transfers and the 

total travel time (including waiting time) without increasing the number of operating vehicles, 

and without allowing too long passengers’ travel times and too many stops.  

To formulate and generalize this real but specific problem for other similar applications, 

we introduce more notations than necessary in this paper, and expand the TSW network to 

include 1 dummy node (i.e., node 0) and 14 dummy links. The dummy links are used to 

connect the dummy node and bus terminals/destinations. The notations and the parameters of 

this study are given below:   

 

Sets/Indices 

Z: set of nodes excluding the dummy node; 

U: set of demand locations (i.e., stops and bus terminals inside TSW);   

V: set of the destinations outside TSW, i.e., nodes 24 – 28; 

Y: set of the bus terminals inside TSW, i.e., nodes 1, 7, 9, 14, 16, 20, and 23; 

C: set of interchange, i.e., node L; 

i, j, k, e: indices of nodes. 

 

Parameters 

cij  = in-vehicle travel time on the shortest path between nodes i and j; 

s  = average time for stopping at a node, i.e., 1.5 minutes;  

die  = travel demand from node i to destination e; 

W  = maximum bus fleet size, i.e., 176; 

Rmax  = maximum number of routes on the bus network, i.e., 10; 

fmin = minimum frequency of a route, 4.8 buses per hour; 

Smax = maximum number of intermediate stops on the TSW portion of a route, i.e., 8; 

Tmax = maximum travel time from the bus terminal in TSW to TLT interchange, including 

stopping time), i.e., 35 minutes; 

B1  = weight for the number of transfers; 
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B2  = weight for the total travel time. 

 

Decision Variables 

Xijn  = 1 if route n (n = 1 to Rmax) passes through node j ≠ i immediately after node i; = 0 

otherwise; 

X0jn  = 1 if route n starts at node j; = 0 otherwise; 

Xi0n  = 1 if route n ends at node i; = 0 otherwise; 

X00n  = 1 if route n is not available; = 0 otherwise; 

n
ijRT  = l if route n passes through node i and node j; = 0 otherwise; 

NRie  = l if there is no direct bus service from node i to destination e; = 0 otherwise; 

fn  = frequency of route n; 

Tn = single trip time of route n; 

Tie  = average travel time of passengers from stop i to destination e; 

n
ijT   = travel time from node i to node j via route n. 

 

Based on the above notations, the mathematical model is formulated as follows:  
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The objective of the problem is to minimize the weighted sum of the number of transfers 

and total passengers’ travel time (including in-vehicle travel time and waiting time). This 

traditional weighted sum approach is used to formulate the objective because of the two 

advantages of this approach: First, the resultant model can give one answer per run directly 

once the decision makers can clearly define the relative importance of the two objectives; 

there is no need to do another analysis to determine the best solution from a set of Pareto 

solutions as in the bi-objective problem. Second, the computation time for the bi-objective 

problem is higher in general. Therefore, we adopt the weighted sum approach and leave the 

bi-objective approach for future studies. 

Constraint (2) ensures that each available route starts from one of the TSW terminals (i.e., 

the squares shown as in Figure 1). Constraint (3) ensures that each available route ends at one 

of the bus terminals/destinations outside TSW. Constraint (4) ensures that except dummy 

nodes, any node on an available route must have one preceding node and one following node. 

Constraints (5) and (6) ensure that each node can only be visited by a particular available 

route at most once. Constraint (7) calculates the in-vehicle travel time (including stop time) of 

a route. Constraint (8) ensures that the fleet size cannot exceed the maximum fleet size. 

Constraint (9) depicts the minimum frequency requirement. Constraint (10) limits the number 

of the intermediate stops.  

The average travel time from node i to destination e, Tie, is a complex function of the 
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route structure and frequencies, which is defined by Constraint (11). The calculation of Tie is 

based on the assumption of the demand assignment in Baaj and Mahmassani (1990): 1) the 

passengers go to their destinations using minimal transfers; 2) the passengers get into the first 

arrived bus among a set of attractive lines, and; 3) the demand is split according to the 

frequencies of attractive lines. Based on these assumptions, the Tie, value is determined in the 

following way: If there are direct bus services serving between stop i and destination e, the 

expected travel time Tie is the weighted average in-vehicle travel time of all these direct 

services plus the expected waiting time for a bus operating for these services; if there is no 

direct service serving between stop i and destination e, the Tie value is the sum of expected 

travel time from stop i to TLT interchange and that from TLT interchange to destination e. The 

travel time from node i to node j via route n, n
ijT , is calculated by Constraint (12). Constraint 

(13) defines n
ijRT , which is l if route n passes through both nodes i and j, and 0 otherwise. 

Constraint (14) defines ieNR , which is l if there is no direct service serving between node i and 

destination e, and 0 otherwise. Constraint (15) ensures that the travel time from each bus 

terminal to TLT interchange is not greater than the maximum allowable travel time. 

It can be seen that constraints (8), (11) and (15) are all nonlinear. Moreover, the decision 

variables contain both integer and continuous variables. Therefore, the formulation is a 

mixed-integer nonlinear program. It has been shown that a general transit network problem 

without considering frequency is already NP-hard (Magnanti et al., 1984). In order to solve 

the investigated problem, a heuristic or meta-heuristic is needed. 

 

3. The solution method 

3.1. General scheme of the hybrid genetic algorithm 

In the proposed solution method, a specific genetic algorithm (GA) is developed to solve 

the route design problem, while a frequency setting heuristic based on neighborhood search is 

integrated into the GA to solve the frequency setting problem.  

Figure 2 illustrates the scheme of the hybrid GA. First, initial solutions representing route 

structure are randomly generated. Then, the frequency setting heuristic is performed to 

evaluate the fitness of the GA solutions, since the GA solutions themselves are not enough for 

calculating the objective value that is also a function of bus frequencies. After that, some 

parents are selected using the roulette wheel selection method. A certain number of offspring 

are generated through genetic operators, i.e., crossover and mutation operators. For each pair 

of parents, a crossover operator is applied to generate a pair of children. Therefore, the 
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number of offspring generated is the same as that of the parents. Then, all the offspring will be 

mutated in order to maintain the diversity of the population. After the mutation, a stop 

frequency heuristic is applied to the offspring to improve the sequence of stops for each route. 

Then, a repair operator is applied to those offspring that violate the constraint of the 

maximum number of intermediate stops and the constraint of maximum allowable travel time 

within TSW district. The individuals who can survive into the next generation are selected 

from both the parents and the offspring through a diversity control mechanism. The process is 

repeated until a preset number of generations is produced.  

 

Figure 2 Illustration of the detailed scheme of the genetic algorithm 

 

3.2 Representation scheme and initialization method 

A GA solution represents a set of routes, each with a sequence of stops. Figure 3 

illustrates the solution representation scheme of the GA. Circles represent stops whereas 

arrows show the directions of movements. The chromosome consists of 10 routes. The first 

route starts from node 1, goes through nodes 18, 15, 8, 12, 7, and TLT interchange (which is 

implicitly coded), and terminates at destination 25. Similarly, the tenth route starts from node 

7, goes through nodes 12, 5, 13, 3, and TLT, and finally stops at destination 27. 

Initial GA 

solutions 

Fitness evaluation 

Offspring generation 

by genetic operators  

Stop sequence 

improvement heuristic 

Solution repairing 

GA 

solutions 

Frequency 

setting heuristic 

Frequency 

Survival selection 

Termination? 

End 
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Figure 3 Representation scheme of the genetic algorithm 

 

To initialize a feasible solution, the following procedure is adopted.  

For route n = 1 to Rmax 

  Randomly select a terminal node and a destination node for route n 

  Set time_exceed = false 

Repeat  

Randomly select a node i that is not appeared on route n 

Insert node i to a position between the positions for the origin and destination in 

the chromosome such that the travel time of route n is minimized.  

If the travel time on the TSW portion of route n exceeds the maximum 

allowable value, then remove node i from the route and set time_exceed = true 

  Until maximum number of intermediate stops is reached or time_exceed = true 

 Next route 

 

3.3 Frequency setting heuristic and fitness evaluation 

The frequency setting heuristic is adopted whenever the fitness of a GA solution is 

evaluated. This heuristic is designed to solve the frequency setting problem. Because the main 

constraint in the frequency setting problem is the fleet size constraint, we can reformulate the 

frequency setting problem into the problem of allocating the limited number of buses to the 

routes defined by a GA solution. Therefore, instead of explicitly coding the frequencies of 

these routes, the solution structure for the frequency setting heuristic is defined by a collection 

of the numbers of buses allocated to each route. Figure 4 illustrates a solution of the frequency 

setting heuristic. The solution represents a fleet size of 176 buses allocated to 10 routes. For 

example, the third gene with a value of 16 means that there are 16 buses allocated to the third 

route. As the total number of buses used in the network is not changed, the fleet size 

constraint can be ensured. The simplicity of this representation helps avoid creating infeasible 

Route 1 
1 18 15 8 12 7 25 

14 8 6 3 24 9 
Route 2 …

 

7 12 5 13 27 9 
Route 10 

3 

Origin 

Destination 

Intermediate stop 
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solutions and thus facilitates the searching process.  

 

Figure 4 A solution of the frequency setting heuristic 

 

Based on the solution structure shown in Figure 4, a decent search heuristic is developed 

to obtain a set of frequencies for a given GA solution. This search heuristic is described as 

follows:  

Step 1: Initialize a solution by randomly allocating buses to Rmax routes 

Step 2: For i =1 to Rmax 

For j = i to Rmax 

Move 1 bus from route i to route j 

Evaluate the new solution 

If the value of the objective function (1) is improved, then go to Step 2. 

Otherwise, undo the movement 

Move 1 bus from route j to route i 

Evaluate the new solution 

If the value of the objective function (1) is improved, then go to Step 2. 

Otherwise, undo the movement 

   Next j 

    Next i 

 Step 3: Output the best solution found 

  

The determination of the objective value in the above heuristic relies on the frequency 

information derived from the solution of the heuristic and the GA solution through: 

n

n
n T

V
f

2
=             (15) 

where Tn is the trip time of route n deduced by (7); fn and Vn are the frequency of route n and 

the number of buses allocated to route n.  

 After the heuristic is employed, the fitness of a GA solution is obtained by finding the 

reciprocal of the objective value. To ensure that the minimum frequency requirement is met, a 

25 18 16 15 15 15 20 16 18 18 

Sixteen buses are allocated to the third route 
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special treatment is adopted while calculating the objective value. If a frequency of a route is 

smaller than the minimum frequency, a penalty is introduced through dividing the frequency 

by a nonnegative parameter to increase the objective value. In this way, the GA algorithm may 

gradually throw away all the infeasible solutions in a gentle manner, and the efficiency of the 

algorithm can be maintained.  

 

3.4 Crossover and mutation operators 

Due to the complexity of the problem, specific crossover and mutation operators are 

developed to improve the effectiveness of the reproduction process. Since the problem 

consists of two levels, i.e., to determine the optimal combination of routes and to determine 

the optimal combination of sequences of stops, different crossover operators should be 

designed to facilitate the exchange of good building blocks of the solutions. For this purpose, 

two crossover operators are proposed. They are the route and stop crossover operators.  

The route crossover operator is to exchange routes between two solutions. It is similar to 

the traditional two-point crossover. Rather than exchanging individual genes, the route 

crossover operator exchanges the routes between the two parents, where routes are considered 

as building blocks. The purpose of this operator is to explore different combinations of routes. 

In the example shown in Figure 5, routes 5, 6, 7, and 8 of Parent 1 and Parent 2 are exchanged 

to produce Child 1 and Child 2. If the simple crossover or two-point crossover were used 

instead, a route forming a good building block could be destroyed easily as the crossover 

points were not likely located at the positions of genes containing starting bus terminals. 

 

Figure 5 Illustration of route crossover 

 

Comparatively, the stop crossover operator is to exchange sequences of intermediate stops 

between two routes with the same destination in the two parents, where the sequences of 

intermediate stops are viewed as smaller building blocks. The purpose of this operator is to 

10 routes 

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 Parent 1 

Parent 2 

R1 R2 R3 R4 r5 r6 r7 r8 R9 R10 Child 1 

r1 r2 r3 r4 R5 R6 R7 R8 r9 r10 Child 2 
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explore different route structures and stop sequences with the same destination to lower total 

travel time but maintain the same number of transfers. If the same destination requirements 

were not imposed, good building sub-blocks with respect to the number of transfers could be 

destroyed easily.  

The stop crossover operator works as follows: First, one route is randomly selected from 

one of the parents. Then, another route with the same destination as the first route is randomly 

selected from the other parent. After that, a sequence of intermediate stops with arbitrary 

length in each of the two routes is randomly determined and exchanged. Finally, duplicated 

stops in the same route are eliminated. Figure 6 illustrates of the process of the stop crossover 

operator. Route i in parent 1 and route j in parent 2 having the same destination (i.e., node 25) 

are selected. Then, sequence 8-12 in route i and sequence 6-3-9 in route j are selected. The 

two sequences of stops are exchanged. Finally, because Stop 8 appears twice on route j of 

Child 2, the original one is eliminated from the route. 

 

Figure 6 Illustration of stop crossover 

 

Due to the complex solution structure of the problem, different mutation operators are 

required to facilitate exploration in the large search space. The four mutation operators, 

namely, the insert, delete, swap, and transfer mutations, are proposed for the GA, which are 

illustrated in Figure 7. For the insert mutation operator, a stop node is inserted into a route of 

Route i of Parent 1 
1 18 15 8 12 7 

14 8 6 3 25 9 

17 

 

25 

Route j of Parent 2 

14 8 8 12 25 

1 18 15 7 17 

 

25 6 3 9 
Route i of Child 1 

Route j of Child 2 

14 8 12 25 

1 18 15 7 17 25 6 3 9 
Route i of Child 1 

Route j of Child 2 
Origin 

Destination 

Intermediate stop 

Selected stop 
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the solution. The stop, the route, and the inserted position are all randomly determined. 

Likewise, the remove mutation operator randomly removes a stop from a route in the solution. 

Both the insert mutation and remove mutation are intended to create perturbation to a single 

route. By contrast, the swap and the transfer mutation operators are intended to cause 

exchange nodes between two routes in a solution. The swap mutation operator exchanges two 

nodes between two routes of the solution. The exchanged nodes can be starting terminals, 

intermediate stops, or destinations, but must be of the same type. The transfer mutation 

operator randomly moves an intermediate stop on one route to another in the solution. For all 

the mutation operators, a checking mechanism is adopted to avoid the same node appearing 

on the same route more than once.  

 

3.5 Stop sequence improvement heuristic 

To improve the solution quality of the GA, a stop sequence heuristic is proposed for 

improving the sequence of intermediate stops of each route. For every GA solution that 

survives into the next generation, a decent search heuristic is adopted to improve the sequence 

of stops on each route. To ensure the efficiency, the objective of this sequence improving 

process is to minimize the trip time of the route that does not depend on frequencies and thus 

is relatively easy to obtain. The process of the heuristic is as follows: 

 

For each route in the GA solution 

1 For i = the first intermediate stop to the second last intermediate stop 

For j = i to the last intermediate stop 

Exchange i and j 

Evaluate the trip time of the route 

If the trip time is reduced, then go to 1; otherwise, undo the exchange 

      Next j 

    Next i 

 Next route in the GA solution 

 

3.6 Repair operator 

After genetic operators and stop sequence improvement heuristic are applied to offspring, 

some offspring may violate the constraint of the maximum number of intermediate stops or 

the constraint of the maximum allowable travel time. Therefore, a repair operator is 

implemented for repairing these infeasible solutions.  
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Figure 7 Mutation operators for the genetic algorithm 

 

The repair operator works in the following way. For each route that violates at least one of 
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the two constraints, determine the intermediate stop, whose removal from the route causes 

maximum reduction in the trip time of the route. Then, remove this intermediate stop from the 

route. This stop removal process is continued until the concerned constraint is satisfied.  

 

3.7 Diversity control mechanism 

Because the search space is large, how to maintain population diversity to avoid 

premature convergence is important for the performance of the GA. Therefore, other than 

using mutation operators, we employ a diversity control mechanism which is similar to that 

proposed by Shimodaira (2001). In the DCGA proposed by Shimodaira (1997, 2001), the 

probability of selecting an individual for survival, Ps, is based on its hamming distance from 

the best individual:  

α







 +−= c

L

h
cPs )1(            (16) 

where h is the hamming distance between the individual and the best individual. L is the 

length of the entire string representing the individual. c is the shape coefficient whose value is 

in the range of [0.0, 1.0], and α is the exponent. According to the given problem, an 

appropriate selection pressure can be obtained through adjusting c and a in equation (16). For 

a complicated problem with many local optima, a lower selective pressure can be produced 

with a smaller value of c and /or a larger value of a. The values of c and a must be tuned by 

trial and error according to a given problem (Shimodaira, 2001).   

The hamming distance is originally defined for binary representation. An extended 

hamming distance has been defined for permutation representation for problems like the 

traveling salesman problem (Shimodaira, 1999). However, since the representation in the 

proposed GA is unique and complicated (which considers multiple routes with different 

lengths), we propose a new hamming distance for our GA, which is calculated as follows: 

1. For each pair of corresponding routes in the two individuals, calculate the distance 

between two routes, which is defined as the number of different consecutive node 

pairs in the two routes.  

2. The hamming distance of the two individuals is calculated as the sum of all the 

distances between the two corresponding routes in the two individuals. 

For example, Figure 8 illustrates route i of individual 1 and route i in individual 2. There 

are totally 5 different consecutive node pairs in these two routes, which are: 18→15, 15→8, 

18→6, 6→3, and 3→8. Therefore, the distance between these two routes is 5. The hamming 
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distance between the two individuals is the sum of the distances between all route pairs (i.e., 

10 route pairs for the investigated problem) in the two individuals.  

 

Figure 8  Illustration of the calculation of the distance between two routes 

 

Based on our specifically designed hamming distance, the survival selection process with 

diversity control proposed by Shimodaira (2001) can be modified and used. The modified 

survival selection is described as follows: 

(1) The children and parents are merged and sorted in order of their fitness values to form 

the population M.  

(2) Duplicate individuals in M are eliminated.  

(3) Select the best individual in M for survival into the next generation 

(4) Select individuals in M (except the best individual) in the order of their fitness values 

based on the probability calculated by equation (16), where h is the hamming distance 

between the concerned individual and the best individual in M, and L is re-defined as 

the total number of consecutive node pairs in these two individuals.  

(5) If the number of the individuals selected in step (4) is smaller than the population size, 

then new individuals randomly generated as in the initialization process are 

introduced by the difference of the numbers. 

 

4. Experiments 

Using the information given in Section 3, computational experiments were conducted to 1) 

tune GA parameters, 2) illustrate the effect of weights on the objective values, 3) demonstrate 

of the effectiveness of the proposed diversity control on solution quality, and 4) illustrate the 

quality of the solution obtained. The proposed solution method was coded in Visual C++ 2003, 

and ran on a computer with 1.73 GHz CPU and 1 G RAM. In all experiments, the in-vehicle 

travel times between each pair of nodes was obtained by a shortest path algorithm.  

 

4.1 Fine tuning of the GA 

 Experiments were conducted to determine the suitable combination of the operators 

Route i of individual 2 

1 18 15 8 25 

1 18 6 3 25 8 

Route i of individual 1 
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discussed in the previous section. Totally, eight sets of GAs with different settings were 

implemented. Each GA was run 20 times. For all these eight GAs, the population size is set to 

20. In each generation, 16 offspring are generated through genetic operators. Then, 20 

individuals are randomly selected from the 20 parents and 16 offspring to form the population 

in the next generation. The best 20 out of 36 individuals can survive into the next generation. 

The weights for the number of transfers and the total travel time, i.e., B1 and B2, are set to be 

80 and 1, respectively. This combination is used because both total travel time and the number 

of transfers are lowered by using this combination based on the tuning study in section 4.2. 

Each GA terminated when 500 generations were produced. It should be noted that from 

our preliminary study (not shown here due to space limitation), the stop sequence 

improvement heuristic proposed in Section 3.4 can improve the objective values by 5-8%. 

Therefore, the stop sequence improvement heuristic was included in all the experiments.  

Table 1 summarizes the computational results of these experiments. For all the eight GAs 

(GA-1 to GA-8), the computational time is similar and acceptable, and is about 3 minutes per 

run. GA-1 only uses route crossover to generate offspring, while GA-2 only uses stop 

crossover. For these two GAs, no mutation operator is used. It can be seen that GA-1 and 

GA-2 have similar performance in terms of the fitness value. GA-3 uses both crossover 

operators (without using any mutation operators). i.e., for each pair of selected parents, either 

route crossover or stop crossover is randomly selected with the same probability. It can be 

seen that GA-3 achieves a better fitness value than the previous two GAs, indicating that it is 

advantageous for incorporating the two crossover operators in the algorithm. GA-4, GA-5, 

GA-6, and GA-7 are the same as GA-3 except that after using crossover operators, they also 

adopt the insert, delete, swap, and transfer mutation operators respectively. All the four GAs 

have a better performance than GA-3. For GA-4 which uses insert mutation, the number of 

transfers is the smallest, because insert mutation increases the number of intermediate stops 

on the selected routes without decreasing the number of intermediate stops of other routes. 

However, the lower number of transfers is obtained with the sacrifice of the total travel time. 

Comparatively, GA-5 which uses delete mutation has the reverse effect. GA-7 which uses 

transfer mutation seems to perform the best among the four GAs as it has the highest average 

fitness value and the smallest standard deviation of fitness values. In GA-8, the four mutation 

operators and two crossover operators are incorporated in the algorithm: For each child 

randomly generated by either route or stop crossover operator with equal probability, one of 

the four mutation operators is randomly applied on the child based on the selection 

probabilities of the mutation operators. The selection probabilities of the insert, delete, swap 
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and transfer mutation operators are 0.4, 0.4, 0.1, and 0.1, respectively. This combination of 

selection probabilities is the best for this study and was fine-tuned in a preliminary study. For 

other studies, it is recommended to tune the selection probabilities to obtain the best result.  

 

Table 1 Computational results of different GA settings 

 GA-1 GA-2 GA-3 GA-4 GA-5 GA-6 GA-7 GA-8 

Crossover 

operator used  
Route  Stop  

Route + 

stop  

Route + 

stop 

Route + 

stop 

Route + 

stop 

Route + 

stop 

Route + 

stop 

Mutation 

operator used 
No No No Insert  Delete  Swap  Transfer  All four  

fitness(10-7)a 4.64  4.67  4.84  5.09  4.87  5.11  5.17  5.27  

std. dev. b 0.11  0.20  0.11  0.09  0.11  0.12  0.06  0.09  

transfers c 11308  11083  9979  7652  10739  9174  8855  7700  

std. dev. b 919  1703  874  699  893  868  398  633  

travel time d 1253225  1259593  1268335  1353537  1197380  1225917  1227319  1282480  

std. dev. b 24988  45988  25352  26597  26934  25745  11075  18570  

CPU time e 3.21  3.28  3.19  3.23  3.31  3.15  3.04  3.24  

std. dev. b 0.07  0.06  0.05  0.05  0.21  0.05  0.06  0.44  

a Average fitness value for 20 runs 
b Standard deviation 
c Average number of transfers for 20 runs 
d Average total travel time (in minutes) for 20 runs 
e Average computational time (in minutes) of each run 

 

From the results in Table 1, it can be seen that GA-8 obtained the best fitness value 

among all the GAs. It indicates that it is advantageous for incorporating all mutation operators 

in the algorithm. Indeed, other combinations of selection probabilities have been tested and 

the conclusion is the same. It is beneficial to use all mutation operators in the algorithm. 

However, GA-8 gives the best performance. Therefore, in the remaining experiments, the 

setting of GA-8 will be used.  

Figure 9 illustrates the convergence process of the algorithm over 3000 generations. It can 

be seen that, although the population size is only 20, the algorithm requires about 2000 

generations for convergence, indicating the great complexity of the algorithm. A replicate of 

the GA with a population size of 50 was also run for 3000 generations. The solution found is 

much similar to those obtained by GA-8 shown in Table 1 but the computation time is 

increased greatly from 3.24 minutes to 31.7 minutes (or by more than 10 times). This 

indicates that increasing the population size may greatly extend the convergence process. For 

this reason, in the following experiments, the population size is kept to 20.  
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Figure 9 Convergence process of the algorithm 

 

4.2 Effect of weights 

Due to the multi-objective nature of the formulation, the settings of the weights B1 and B2 

are important for achieving a good balance between the number of transfers and the total 

passengers’ travel time. Replicates of the algorithm with different weights were run. Each 

replicate was run only once and terminated until 3000 generations were generated. In these 

experiments, the B2 value was kept to be 1, and the B1 value was varied from 0 to 200.  

Figure 10 shows the computational results of these experiments. From the figure, it can be 

seen that the two objectives, i.e., the number of transfers and the total travel time, are 

generally conflicting. For the first GA replicate, B1 was set to 0, meaning that the algorithm 

does not consider the number of transfers at all. The algorithm gives the largest number of 

transfers (9973) and smallest total travel time (1082325 minutes) among all replicates. 

Comparing to the existing design with the number of transfers of 6966 and the total travel 

time of 1578830 minutes, the number of transfers is increased by 43.2%, while the total travel 

time is reduced by 31.4%. The significant increase on the number of transfers renders the 

solution not acceptable. With B1 increasing and B2 unchanged, the number of transfers 

increases and the total travel time decreases at the same time. When B1 was increased to 200, 

the algorithm achieves the smallest number of transfers (3923) and the largest total travel time 

(1642853 minutes). Comparing to the current design, although the number of transfers is 
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reduced significantly (by 43.7%), the total travel time is increased by 4.1%. Figure 9 also 

shows that using the B1 values ranging from 40 to 160 can reduce both the number of transfers 

and the total travel time. In the following experiments, B1 is set to 80. 

 

Figure 10 Effects of weights B1 and B2 

 

4.3 The effect of diversity control 

This example is to compare the solutions obtained from the GA with and without diversity 

control. Through trial and error, the values of c and a in equation (16) are set to be 0.08 and 

0.002, respectively. Each GA was run for 2000 generations. Figure 11 illustrates the average 

hamming distance for the 2000 generations. It can be seen that for the GA without diversity 

control, the average hamming distance decreases rapidly in the first 1000 generations whereas 

for the GA with diversity control, the average hamming distance does not change much over 

generation.  

The GAs with and without diversity control were both run 100 times for the investigated 

problem and the results were compared and shown in Table 2. It can be seen that the GA with 

diversity control outperforms the GA without diversity control in solving the problem. 

Comparing to the GA without diversity control, the GA with diversity control can reduce the 

number of transfers, the total travel time, the weighted objective value by 5.05%, 4.39%, and 

2000 

3000 

4000 

5000 

6000 

7000 

8000 

9000 

10000 

11000

0 20 40 60 80 100 120 140 160 180 200 

Number of transfers 

900000 

1000000 

1100000 

1200000 

1300000 

1400000 

1500000 

1600000 

1700000 

Total travel time 

(minutes) 
Number of transfers

Total travel time 

1578830 

6966 



 22

4.56%, respectively. A t-test was also conducted to examine whether the differences are 

statistically significant. The t-test results show that the differences are all significant with a 

practically zero probability tail. These results indicate that the diversity control mechanism 

can significantly improve the performance of the GA in solving the investigated problem.   

 

Figure 11  Average hamming distance over generations 

 

Table 2  A comparison of GAs with and without diversity control 

 Weighted Objective Number of transfers Total travel time 
 Average Std. dev. Average Std. dev. Average Std. dev. 

GA without 
diversity control 

1783436.36 31740.20 
5938.24 245.82 1308377.16 39146.68 

GA with diversity 
control 

1702037.76 25904.75 
5638.45 186.74 1250961.76 29942.43 

Improvement 4.56% \ 5.05% \ 4.39% \ 
aAverage weighted objective value for 100 runs. 
bStandard deviation of weighted objective values of 100 runs. 

 

4.4 Comparison of the sequential approach and the simultaneous approach 

Another experiment was conducted by solving the route design problem and the 

frequency setting problem in a sequential manner. First, the route design problem was solved 

by the GA with the objective to minimize the number of transfers only (because the total 

travel time cannot be known without the frequency information). After that, with the route 

structure obtained by the GA, the frequency setting heuristics was run once to optimize the 

total travel time. Due to the isolation of the route design and frequency setting problems, the 
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total computational time was as short as 13 seconds, which is about 1/20 of that time required 

to solve the route design problem and frequency setting problem simultaneously. Although the 

computational time and complexity are much reduced, the solution obtained is not satisfactory. 

The number of transfers is 3733 and total travel time is 1666721 minutes. Considering the 

current total travel demand of 21751 passengers with the number of transfers of 6966, the 

percentage of passengers who need to transfer is reduced from 32% to 17%. This is equivalent 

to an increase of 15% of passengers who do not need to transfer. However, the total travel 

time is increased by 87891 minutes, which is equivalent to an increase of travel time of 4.04 

minutes for every passenger on average. The result is not satisfactory because the direct 

service for the additional 15% of users is obtained at the expense of 4.04-minute longer travel 

time for every user on average. This experiment illustrates that solving the route design 

problem and frequency setting problem in a sequential manner does not necessarily result in 

an overall better solution than the existing design. This contrasts to the proposed simultaneous 

approach that can generate a better solution than the existing one (see figure 10) once the 

parameter values are properly chosen. 

 

4.5 Comparison with the current design 

In order to verify the effectiveness of the proposed method, the solution obtained was 

compared with the existing design. In the current design, there are 10 bus routes in operation 

(listed in Table 3). The total number of transfers is 6966, while the total travel time is 1578830 

minutes. For all the 100 algorithm runs performed in Section 4.3, both the number of transfers 

and the total travel time are smaller than those for the existing design.  

 

Table 3 Existing routes and bus allocation in the network 

Routes Stop sequence 
Number 
of buses 

Headway 
(minute) 

In-TSW 
time 

1 20, 19, T, 25 12 10.1 10.2 
2 16, 17, 18, 23, 22, 21, T, 25 17 8.3 20.0 
3 1, 6, 9, 10, 12, 13, 19, 21, T, 25 19 8.7 32.1 
4 14, 13, 12, 10, 8, 16, 17, 18, 23, 22, T, 26 18 10.9 40.3 
5 1, 6, 8, 16, 17, 18, 23, 22, 21, T, 28 30 4.2 33.7 
6 9, 10, 11, 5, 6, 8, 16, 17, 18, 23, 22, T, 27 16 11.5 42.0 
7 16, 17, 18, 23, 22, 21, T, 24 19 5.1 20.0 
8 7, 6, 1, 2, 3, 4, 11, 12, 13, 19, T, 24 11 12.3 38.9 
9 1, 6, 5, 4, 11, 12, 13, 19, T, 24 23 5.3 32.3 
10 14, 15, 8, 9, 10, 12, 13, 19, T, 24 11 11.1 32.6 
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Table 4 shows the detailed route structure of the best solution among the 100 runs. For the 

solution, the number of transfers is 5508, which is 20.9% smaller than that of the current 

design, and the total travel time is 1220128 minutes, which is 22.7% smaller than that of the 

current design. This is equivalent to an average travel time reduction of 16.5 minutes for 

every user. In addition, the numbers of intermediate stops of the routes are generally reduced. 

The maximum number of intermediate stops is reduced from 11 to 9. The maximum travel 

time within TSW district is also reduced from 42.0 to 34.1 minutes.  

 

Table 4 The best solution obtained by the proposed method 

Routes Stop sequence 
Number 
of buses  

Headway 
(minutes) 

In-TSW 
time 

1 1, 2, 3, 10, 15, 14, 19, T, 24 11 10.9 31.3 
2 1, 5, 6, 7, 8, 16, 23, T, 25 20 8.3 33.0 
3 9, 1, 5, 4, 11, 12, 13, T, 24 13 9.5 33.1 
4 1, 5, 6, 7, 8, 16, 17, 19, T, 26 21 8.5 32.0 
5 7, 6, 9, 15, 14, 10, 12, 13, T, 28 14 9.0 34.1 
6 1, 5, 6, 7, 9, 15, 16, 17, T, 27 29 5.8 33.8 
7 9, 15, 14, 21, T, 26 16 9.5 18.2 
8 9, 6, 7, 8, 16, 23, 22, T, 24 16 7.3 30.3 
9 1, 7, 9, 15, 14, 20, T, 25 17 9.8 32.4 
10 1, 5, 7, 8, 16, 18, 23, T, 28 19 6.5 33.0 

 

4.6 Robustness of the obtained solution 

The travel demands of the network are estimated and the real demands may vary from day 

to day. To evaluate the robustness of the solution obtained by the proposed design, 1000 

demand matrices are generated by perturbing the estimated demand matrix and used for the 

evaluation. For each perturbed demand matrix, the demand from node i to destination j, d’
ij, is 

randomly generated from a uniform distribution [0.9 dij, 1.1 dij], where dij is the demand of the 

estimated matrix.  

Table 5 compares the proposed, existing, and sequential (mentioned in Section 4.4) 

designs using the perturbed demand matrices. It can be seen that the three designs give very 

different (weighted) objective values in general. Moreover, in terms of average weighted 

objective value, the existing design is the worse and the proposed design is the best. This 

conclusion has been confirmed by the results of the t-test on the differences of average 

weighted objective values shown in Table 6, which indicate that all the differences are 

statistically significant.  
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Table 5 A comparison of existing, sequential, and proposed designs under perturbed demands 

 Weighted objective value Number of transfers Total travel time 
Design Averagea Std. dev.b Averagea Std. dev.b Averagea Std. dev.b 
Existing 2129564.03 14414.94 6941.03 69.50 1574282.28 10838.17 

Sequential 1958784.36 12677.14 3713.50 43.16 1661831.48 10826.12 
Proposed 1655690.64 10238.57 5485.49 56.34 1216833.55  8277.29 
aAverage weighted objective value for 1000 runs. 
bStandard deviation of weighted objective values of 1000 runs. 

 
Table 6  t-tests on the difference of average objective values on perturbed demands 

Test Difference of mean t-value  Probability 
Existing - proposed 473873 846.75 0.000 

Sequential - proposed 303094 587.62 0.000 
 
 

5 Conclusions 

A trunk bus network design problem for a suburban residential area in Hong Kong has 

been investigated. The problem aims to reduce the number of transfers and the total travel 

time of the network. Because these two objectives are conflicting and the latter is determined 

by both the route design and the frequency setting problems, the route design problem and 

frequency setting problem is considered simultaneously. The analysis of the established 

integrated mathematical model points out that the problem is a mixed integer programming 

problem and a heuristic method is required to solve the problem efficiently.  

An integrated solution method is proposed to solve the route design and frequency setting 

problems simultaneously. The solution method integrates a specific genetic algorithm which 

aims to optimize the route design, and a neighborhood search heuristic which aims to 

optimize the frequency setting. A new solution representation scheme is proposed, which 

enables the genetic algorithm to search within all possible route structures. To improve the 

effectiveness of the solution process, two crossover (route crossover and stop crossover) and 

four mutation operators (insert, remove, swap, and transfer) are developed. Experiments show 

that incorporating all these operators in the algorithm is beneficial for improving the 

performance of the algorithm.  

Through experiments, we find that the setting of the weights is important for achieving a 

good balance between the two objectives, i.e., minimizing the number of transfers and 

minimizing total travel time. Although the best balance between the two objectives depends 

on the discretion of the operator or the public who may concern, there is a wide range for the 

parameters that can lead to a design better than the current design in terms of both objective 
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measures.  

A diversity control mechanism is proposed to improve the performance of the GA in 

solving the investigated problem. Experiments show that the GA with the diversity control 

mechanism outperforms the GA without the diversity control mechanism in terms of lower 

number of transfers, smaller total travel time, and smaller weighted objective values. The 

differences are statistically significant.  

To illustrate the robustness and quality of solutions obtained, computational experiments 

are performed based on 1000 perturbed demand matrices. The t-test results show that the 

design obtained by the proposed solution method is robust under demand uncertainty, and the 

design is better than both the current design and the design obtained by solving the route 

design problem and the frequency setting problem sequentially. Compared with the current 

bus network design, the proposed method can generate a design which can reduce both the 

number of transfers and total travel time at least by 20.9% and 22.7% respectively. 

This study opens many future research directions. One example is that the study can be 

extended to consider bus service timetables as in Zhao and Zeng (2008), multi-period as in 

Marína and Jaramillob (2008), clean bus allocation as in Beltran et al. (2009), and 

limited-stop services as in Leiva et al. (2010). Another example is that other meta-heuristics 

can be developed for the studied problem and compared with the proposed solution method. 

One can also incorporate existing route construction algorithm (e.g., Mauttone and Urquhart, 

2009) in our proposed solution method and study the improvement of solution quality and 

computation time. Finally, extending the proposed solution methodology to solve other 

transport network design problems (e.g., Part et al. 2009 and Chen et al. 2010) can be another 

future research direction.  
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Appendix I Travel demands of the network 

Node 24 25 26 27 28 Total 
1 595 372 256 192 441 1856 
2 167 99 97 46 162 571 
3 147 100 97 57 164 565 
4 106 57 53 29 92 337 
5 313 187 196 114 301 1111 
6 270 194 179 95 336 1074 
7 349 192 178 94 307 1120 
8 313 191 179 97 345 1125 
9 298 158 124 71 254 905 
10 104 62 48 33 101 348 
11 60 36 35 21 70 222 
12 485 337 287 142 488 1739 
13 547 264 226 158 423 1618 
14 196 120 92 62 177 647 
15 316 203 158 82 276 1035 
16 784 425 375 258 629 2471 
17 87 52 50 30 81 300 
18 237 158 147 79 211 832 
19 107 63 57 30 90 347 
20 186 98 77 55 147 563 
21 113 58 57 32 83 343 
22 104 63 51 35 87 340 
23 638 461 369 197 617 2282 
Total 6522 3950 3388 2009 5882 21751 

 

 Note:  1. The demands are from 23 TSW nodes to 5 destinations in the city 
2. The demands are hourly demands during peak hours 


