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Abstract

A bus network design problem for Tin Shui Wai, dwiban residential area in Hong
Kong, is investigated, which considers the busisesvfrom origins inside this suburban area
to the destinations in the urban areas. The prolaiems to improve the existing bus services
by reducing the number of transfers and the totalel time of the users. This has been
achieved by the proposed integrated solution methloidh can solve the route design and
frequency setting problems simultaneously. In tmeppsed solution method, a genetic
algorithm, which tackles the route design problehybridized with a neighborhood search
heuristic, which tackles the frequency setting peob A new solution representation scheme
and specific genetic operators are developed sbthieagenetic algorithm can search all
possible route structures, rather than selectingesofrom the predefined set. To avoid
premature convergence, a diversity control meclnamsincorporated in the solution method
based on a new definition of hamming distance.|lUstrate the robustness and quality of
solutions obtained, computational experiments a@gfopmed based on 1000 perturbed
demand matrices. The t-test results show that &segd obtained by the proposed solution
method is robust under demand uncertainty, anddésggn is better than both the current
design and the design obtained by solving the rdasggn problem and the frequency setting
problem sequentially. Compared with the current beisvork design, the proposed method
can generate a design which can simultaneouslycesthie number of transfers and total
travel time at least by 20.9% and 22.7% respegctiimerical studies are also performed to
illustrate the effectiveness of the diversity cohtmechanism introduced and the effect of
weights for objective functions.
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1. Introduction

With continuous population growth of many largeest like Hong Kong, new suburban
residential areas emerge in the periphery of thiesciTransit network design is unique for
these suburban residential areas to provide adeduatsportation services from the origins
inside these areas to the urban working and shgm@stinations.

This paper focuses on the trunk bus network degrgblem for a suburban residential
area, Tin Shui Wai (TSW), in Hong Kong shown inu¥igy1a. TSW has a population of more
than 300,000 people. Most of the residents in TS¥vkwn the urban areas of Hong Kong.
Trunk bus is the main commuting mode for TSW resisleThe first set of trunk bus routes
commenced in the early 1990s. Since then, trunkduies in TSW have developed with the
growth of the area. Completion of new housing est&d to demand for new routes, which
were added on the existing basis. Currently, albutes go out of TSW to the city centre
through the Tai Lam Tunnel (TLT) located at thetheast side of the area. Free transfers at
Tai Lam Tunnel bus interchange (indicated as “t8 allowed.

Being lack of systematic design, the existing be$work operates in an inefficient
manner. Transfer at TLT interchange is requiredriany passengers. Moreover, many bus
services are routed to loop around various zond$SW. This results in an increase in travel
time. As a result, the residents complained abweippbor performance of the bus service. To
react with the complaint, the private operator plém restructure the bus routes in TSW to
reduce both the number of transfers and total pgesdravel time. However, as a private bus
operator, it highly concerns its profitability, addes not want to increase the operating cost
and the fleet size.

The investigated bus network design problem camsidt two sub-problems in the
sequential transit planning process stated in Cedwl Wilson (1986), namely, route
designing and frequency setting. Indeed, many reBees (e.g., Lampkin and Saalmans,
1967; Bel et al., 1979; Carrese and Gori, 2002patte sequential planning approach and
tackle the route design problem without considerfiregiuency setting, either because the
combined problem is too large to handle or the ahjes (e.g., area coverage, route
directness, demand satisfaction and total routgti@rdo not depend on frequency. However,
as long as the passengers’ total travel time ornilmaber of vehicles is included in the
objective function, as is the case for the studgeeoblem, the frequency setting problem
should be simultaneously solved with the route gtegiroblem because both the passengers’

total travel time and the number of vehicles depamérequency.
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Figure 1 Thenvestigated network

Only a few researchers have simultaneously tadktgd the route design and frequency
setting problems, which is classified as the ttanstwork design and frequency setting
problem according to a recent, comprehensive, gsgmmatic transit network design review
of Guihaire and Hao (2008). Instead of solvingtihie problems in a sequential manner, Lee
and Vuchic (2005) adopt the iterative approach dadte the interaction between the two
sub-problems. In a similar way, Pacheco et al. 2@0lve the route design problem and the
bus assignment problem in alternating steps, wédeh solution is tackled by a separate
procedure. Although good results can be obtainethéise works, the convergence of this
approach is questionable. Some attempts have bade to use exact methods to solve the
combined problem (e.g., Bussieck, 1998; Wan andet@l., 2003; Borndofer et al., 2005).
However, these methods cannot solve large reajstiblems due to the NP-hard nature of
these problems. Therefore, to solve these problemst researchers (e.g., Van Nes et al.,
1988; Shih and Mahmassani, 1994; Shih et al. 1P88naik et al., 1998; Bielli et al. 2002;
Fusco et al., 2002; Tom and Mohan, 2003; Ngamamailavell, 2003; Fan and Machemehl,



2006a, 2006b; Zhao and Zeng, 2007) employ hewigiicmeta-heuristics, which require
generate an initial candidate route set. Neversiseline initial route set may affect the quality
of the final solution (which can highly depend dre tinitial solution for some solution
methods) and the suitability may vary from netwtarkhetwork. Moreover, whether to include
a single stop on a route can greatly affect both nbmber of transfers and travel time.
Therefore, it is difficult to define an initial sef candidate routes for these methods.

The bus network design problem investigated in pliser simultaneously considers both
route design and frequency setting, and is chaiaeteby two aspects that make our problem
different from other combined transit route desad frequency setting problems in the
literature. First, the objectives and the constsaof the problem are different from those in
the existing literature mentioned before. Secohd,layout and the design of studied route
network are distinct. The investigated bus netwae&ign involves planning trunk bus routes
to connect the suburban area to the urban areahdlfoutes must pass through one large
interchange but there is no restriction on the nemdd bus lines serving any demand point
inside the suburban area. To our best knowledgefehture cannot be found in other transit
network design including bus feeder system dessgn,(Martins and Pato, 1998 and Kuan et
al., 2006) in which the interchanges are next iicstations, and each bus stop in the suburban
area is only served by one feeder bus service.

This paper also proposes a solution method thasiders all possible route structures
with all possible stop combinations. More imporkgnthis solution method developed here is
different from the GAs and hybrid GAs proposed ire tliterature. A diversity control
mechanism based on a new definition of hammingucs is proposed to solve for solutions.

The remaining parts of this paper are organizedodews: Section 2 presents the
formulation of the problem. Section 3 describes piheposed solution method. Section 4
depicts computational results. Finally, section iteg concluding remarks and highlights

future research directions.

2. Formulation of the problem

The TSW network is shown in Figure 1b. The squardes represent the locations with
both bus terminals and bus stops; the circle nogla®sent the current bus stop locations, and
“L” represents the TLT bus interchange. The in-egkhitravel times (in minutes) between
nodes are shown next to the corresponding linksh&svn in Figure 1b, the TSW area has 23
stops (i.e., nodes 1 - 23 in the figure) and tla@eeseven bus terminals in this area. All the bus

routes originated from these terminals terminatenat of the five destinations, nodes 24 - 28.
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The demand matrix estimated from the available gdag@en in Appendix 1.

Ideally, there should be as many routes as posskes to provide direct point-to-point
services for the residents. However, this is nasitde due to relatively fixed operating cost
of the operator (like other bus operators, the ajpey cost is shown to be roughly
proportional to the number of operating vehiclés)addition, if a single route is too zigzag
and has too many stops, the travel time is longaMi#hintended in this work is a complete
restructuring of the bus network inside this ameeetiuce the total number of transfers and the
total travel time (including waiting time) withoutcreasing the number of operating vehicles,
and without allowing too long passengers’ travales and too many stops.

To formulate and generalize this real but spegfigblem for other similar applications,
we introduce more notations than necessary inghper, and expand the TSW network to
include 1 dummy node (i.e., node 0) and 14 dummlsli The dummy links are used to
connect the dummy node and bus terminals/destmstibhe notations and the parameters of
this study are given below:

Setg/Indices
Z: set of nodes excluding the dummy node;
U: set of demand locations (i.e., stops and busitasinside TSW);
V: set of the destinations outside TSW, i.e., nddes 28;
Y: set of the bus terminals inside TSW, i.e., nddeg 9, 14, 16, 20, and 23,
C: set of interchange, i.e., node L;
I, ], K, e indices of nodes.

Parameters
cj = in-vehicle travel time on the shortest pathwaen nodes and;;
S = average time for stopping at a node, i.e.nirtutes;

de = travel demand from nodédo destinatiorg
W = maximum bus fleet size, i.e., 176;

Rmax
fmin = minimum frequency of a route, 4.8 buses per hour;

maximum number of routes on the bus netwoek, 10;

Snax = maximum number of intermediate stops on the T@Wion of a route, i.e., 8;
Tmax = maximum travel time from the bus terminal in TSOVTLT interchange, including
stopping time), i.e., 35 minutes;

B; = weight for the number of transfers;



B. = weight for the total travel time.

Decision Variables
Xijn =1 if routen (n = 1 toRnay passes through noglet i immediately after nodg = 0
otherwise;
Xojn =1 if routen starts at nodg = O otherwise;
Xion = 1if routen ends at node = 0 otherwise;

Xoon = 1 if routen is not available; = 0 otherwise;

RT" = lif routen passes through nodand nodg; = 0 otherwise;

NRe =Iif there is no direct bus service from node destinatiore; = 0 otherwise;

f. = frequency of route;
T, =single trip time of route;
Tie = average travel time of passengers from stoplestinatiore;

T, = travel time from nodeto nodg via routen.

Based on the above notations, the mathematical Inn®ftemulated as follows:

minz=8Y > d,NR+ BY.Y d T M
ity elv v v
subject to
D Xon =1 forn = 1 toRmax (2)
jbv Ofo}
D X =1 forn =1 toRmay (3)
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The objective of the problem is to minimize the gie#ed sum of the number of transfers
and total passengers’ travel time (including inigkhtravel time and waiting time). This
traditional weighted sum approach is used to foateulthe objective because of the two
advantages of this approach: First, the resultasdaican give one answer per run directly
once the decision makers can clearly define thativel importance of the two objectives;
there is no need to do another analysis to deteriia best solution from a set of Pareto
solutions as in the bi-objective problem. Secoh&, ¢computation time for the bi-objective
problem is higher in general. Therefore, we adbptweighted sum approach and leave the
bi-objective approach for future studies.

Constraint (2) ensures that each available roargéssirom one of the TSW terminals (i.e.,
the squares shown as in Figure 1). Constraintr{8)ires that each available route ends at one
of the bus terminals/destinations outside TSW. @amg (4) ensures that except dummy
nodes, any node on an available route must hav@m@eeding node and one following node.
Constraints (5) and (6) ensure that each node ognbe visited by a particular available
route at most once. Constraint (7) calculatesriheshicle travel time (including stop time) of
a route. Constraint (8) ensures that the fleet semnot exceed the maximum fleet size.
Constraint (9) depicts the minimum frequency regmient. Constraint (10) limits the number
of the intermediate stops.

The average travel time from nodd¢o destinatiore, Ti, is a complex function of the

7



route structure and frequencies, which is defing€Cbnstraint (11). The calculation ot is
based on the assumption of the demand assignm&danand Mahmassani (1990): 1) the
passengers go to their destinations using miniraakters; 2) the passengers get into the first
arrived bus among a set of attractive lines, arjdth8 demand is split according to the
frequencies of attractive lines. Based on thesenagsons, theTi, value is determined in the
following way: If there are direct bus servicesvaay between stop and destinatior, the
expected travel tim& is the weighted average in-vehicle travel timeatifthese direct
services plus the expected waiting time for a bpsrating for these services; if there is no
direct service serving between stopnd destinatior, the Tie value is the sum of expected
travel time from stop to TLT interchange and that from TLT interchangeléstinatiore. The

travel time from nodé to nodgj via routen, T."

i » Is calculated by Constraint (12). Constraint

(13) defines RT,", which is | if routen passes through both nodeandj, and 0 otherwise.

Constraint (14) definddR, , which is | if there is no direct service servimgtween nodeand

destinatione, and 0 otherwise. Constraint (15) ensures thattrdneel time from each bus
terminal to TLT interchange is not greater thanrtteximum allowable travel time.

It can be seen that constraints (8), (11) and &it&)all nonlinear. Moreover, the decision
variables contain both integer and continuous béeg Therefore, the formulation is a
mixed-integer nonlinear program. It has been shtvah a general transit network problem
without considering frequency is alreaby?-hard (Magnanti et al., 1984). In order to solve

the investigated problem, a heuristic or meta-tstiaris needed.

3. The solution method
3.1. General scheme of the hybrid genetic algorithm

In the proposed solution method, a specific geragorithm (GA) is developed to solve
the route design problem, while a frequency settiegristic based on neighborhood search is
integrated into the GA to solve the frequency sgtproblem.

Figure 2 illustrates the scheme of the hybrid GiéstfFinitial solutions representing route
structure are randomly generated. Then, the freqyueetting heuristic is performed to
evaluate the fitness of the GA solutions, sinceGlesolutions themselves are not enough for
calculating the objective value that is also a fiorc of bus frequencies. After that, some
parents are selected using the roulette wheeltsmlemethod. A certain number of offspring
are generated through genetic operators, i.e.soves and mutation operators. For each pair
of parents, a crossover operator is applied to gémea pair of children. Therefore, the
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number of offspring generated is the same as fithegarents. Then, all the offspring will be
mutated in order to maintain the diversity of thepplation. After the mutation, a stop
frequency heuristic is applied to the offspringrtprove the sequence of stops for each route.
Then, a repair operator is applied to those offgprihat violate the constraint of the
maximum number of intermediate stops and the cainstof maximum allowable travel time
within TSW district. The individuals who can surgiinto the next generation are selected
from both the parents and the offspring througlivardity control mechanism. The process is

repeated until a preset number of generationsodymed.

Initial GA
solutions

% _ == = = =
Fitnes: evaluatiol |:> I |
v [ GA I

Offspring generatior I solutions I
by genetic operators

i I v I

I Frequency I

Stop sequence . -
) i setting heuristic
improvement heurist|c || ||

v II v l
Solution repairing I Frequency "
v

Surviva selectiol " _____ "

End

Figure 2 lllustration of the detailed scheme of gleaetic algorithm

3.2 Representation scheme and initialization method

A GA solution represents a set of routes, each witeequence of stops. Figure 3
illustrates the solution representation schemehef GA. Circles represent stops whereas
arrows show the directions of movements. The chemm® consists of 10 routes. The first
route starts from node 1, goes through nodes 183,182, 7, and TLT interchange (which is
implicitly coded), and terminates at destination 3bnilarly, the tenth route starts from node
7, goes through nodes 12, 5, 13, 3, and TLT, arall§i stops at destination 27.



1 18 15 8 12 7 25
et @O O OO OO
14 8 6 3 9 24
Route 2 .—PO—FO_’O_’O_’Q @ Origin

. (O Intermediate stop
7 12 5 13 3 9 27
Rote 10 @ —>O—O—>O—>0O—>0O—0 @© Destination

Figure 3 Representation scheme of the geneticitdigor

To initialize a feasible solution, the followingguredure is adopted.
For routen = 1 toRnax
Randomly select a terminal node and a destinaiiale for routen
Settime_exceed false
Repeat
Randomly select a nodehat is not appeared on route
Insert node to a position between the positions for the orana destination in
the chromosome such that the travel time of raugeminimized.
If the travel time on the TSW portion of routeexceeds the maximum
allowable value, then remove nodieom the route and sétme_exceed true
Until maximum number of intermediate stops is reachdnina exceed true

Next route

3.3 Frequency setting heuristic and fitness evaluation

The frequency setting heuristic is adopted whenekier fithess of a GA solution is
evaluated. This heuristic is designed to solverbguency setting problem. Because the main
constraint in the frequency setting problem isfteet size constraint, we can reformulate the
frequency setting problem into the problem of along the limited number of buses to the
routes defined by a GA solution. Therefore, instea@xplicitly coding the frequencies of
these routes, the solution structure for the fraquesetting heuristic is defined by a collection
of the numbers of buses allocated to each rougewr&i4 illustrates a solution of the frequency
setting heuristic. The solution represents a f&s of 176 buses allocated to 10 routes. For
example, the third gene with a value of 16 meaasttiere are 16 buses allocated to the third
route. As the total number of buses used in thevorit is not changed, the fleet size

constraint can be ensured. The simplicity of tejgresentation helps avoid creating infeasible
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solutions and thus facilitates the searching pmces

25|18 |16 (15| 15| 20| 15| 16 | 18 | 18

Sixteen buses are allocated to the third route

Figure 4 A solution of the frequency setting helizis

Based on the solution structure shown in Figura decent search heuristic is developed
to obtain a set of frequencies for a given GA sofutThis search heuristic is described as
follows:

Step 1: Initialize a solution by randomly allocatibuses tdnax routes

Step 2: For =1 toRmax

Forj =i t0 Rnax
Move 1 bus from routeto route
Evaluate the new solution
If the value of the objective function (1) is impea, then go to Step 2.
Otherwise, undo the movement
Move 1 bus from routgto routel
Evaluate the new solution
If the value of the objective function (1) is impea, then go to Step 2.
Otherwise, undo the movement
Nextj
Nexti

Step 3: Output the best solution found

The determination of the objective value in thevabbeuristic relies on the frequency
information derived from the solution of the hetidsind the GA solution through:

V
f,=—" 15
T o7 (15)

n

whereT, is the trip time of route deduced by (7);, andV, are the frequency of routeand

the number of buses allocated to route
After the heuristic is employed, the fitness oGA solution is obtained by finding the

reciprocalof the objective value. To ensure that the mininftequency requirement is met, a

11



special treatment is adopted while calculatingdbgctive value. If a frequency of a route is
smaller than the minimum frequency, a penalty teontuced through dividing the frequency
by a nonnegative parameter to increase the obgeetiue. In this way, the GA algorithm may
gradually throw away all the infeasible solutionsai gentle manner, and the efficiency of the

algorithm can be maintained.

3.4 Crossover and mutation operators

Due to the complexity of the problem, specific emgr and mutation operators are
developed to improve the effectiveness of the mycton process. Since the problem
consists of two levels, i.e., to determine the ropticombination of routes and to determine
the optimal combination of sequences of stops,eudfit crossover operators should be
designed to facilitate the exchange of good bujdifocks of the solutions. For this purpose,
two crossover operators are proposed. They amothie and stop crossover operators.

The route crossover operator is to exchange rdagegeen two solutions. It is similar to
the traditional two-point crossover. Rather tharchemging individual genes, the route
crossover operator exchanges the routes betwedwdhegarents, where routes are considered
as building blocks. The purpose of this operatdo isxplore different combinations of routes.
In the example shown in Figure 5, routes 5, 6nd, &of Parent 1 and Parent 2 are exchanged
to produce Child 1 and Child 2. If the simple cimss or two-point crossover were used
instead, a route forming a good building block dobk destroyed easily as the crossover

points were not likely located at the positiongiehes containing starting bus terminals.

10 routes
A

e I

Parentl ‘R1|R2|R3|R4 R5|R6|R7|R8 R9|R10|

Parent2 | r1| r2| r3| r4 | r5 | r6| r7| r8 | r9 Ir10|

Child 1 ‘R1|R2|R3|R4 r5|r6|r7|r8 R9|Rld

Child 2 ‘r1|r2|r3|r4 R5|R6|R7|R8 r9|r10|

Figure 5 lllustration of route crossover

Comparatively, the stop crossover operator is tharge sequences of intermediate stops
between two routes with the same destination intivee parents, where the sequences of
intermediate stops are viewed as smaller buildiogks. The purpose of this operator is to
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explore different route structures and stop segeemgth the same destination to lower total
travel time but maintain the same number of trassfi the same destination requirements
were not imposed, good building sub-blocks witlpess to the number of transfers could be
destroyed easily.

The stop crossover operator works as follows: Fase route is randomly selected from
one of the parents. Then, another route with theesdestination as the first route is randomly
selected from the other parent. After that, a segeieof intermediate stops with arbitrary
length in each of the two routes is randomly debeech and exchanged. Finally, duplicated
stops in the same route are eliminated. Figurkustihtes of the process of the stop crossover
operator. Routein parent 1 and roufein parent 2 having the same destination (i.e.erizis)
are selected. Then, sequence 8-12 in roaed sequence 6-3-9 in roytare selected. The
two sequences of stops are exchanged. Finally,usec&top 8 appears twice on roptef

Child 2, the original one is eliminated from theit®.

8

1 18 15 12 U 17 25
Routei of Parent 1 @)—()—»(O)—»_----»__ ,_>O_>O_,©
3 9 25

14 8 6
Routej of Parent 2 ‘—»O—h’:)- --- h':)- --- ’\/\—:)—’Q

@ 1 18 15
Routei of Child 1 @—O——O—----¥_----»_—O—O—0
12 25

14 8 8
Routej of Child 2 @——O—_----»_—0)

1L

6 3 9 7 17 25

1 18 15 6 3 9 7 17 25
Routei of Child 1 @——>O—>O——_----» - _—O—>O—0
2 25 @ Origin

14 8 1
Routej of Child 2 @ ——»(---w_—)

(O Intermediate stop
@ Destination

Selected stop

Figure 6 lllustration of stop crossover

Due to the complex solution structure of the prohledifferent mutation operators are
required to facilitate exploration in the large rebaspace. The four mutation operators,
namely, the insert, delete, swap, and transfer toatg are proposed for the GA, which are

illustrated in Figure 7. For the insert mutatioremgior, a stop node is inserted into a route of
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the solution. The stop, the route, and the insepesition are all randomly determined.
Likewise, the remove mutation operator randomlyoees a stop from a route in the solution.
Both the insert mutation and remove mutation atenided to create perturbation to a single
route. By contrast, the swap and the transfer namabperators are intended to cause
exchange nodes between two routes in a solutio; sWap mutation operator exchanges two
nodes between two routes of the solution. The exgdh nodes can be starting terminals,
intermediate stops, or destinations, but must behef same type. The transfer mutation
operator randomly moves an intermediate stop orrouie to another in the solution. For all
the mutation operators, a checking mechanism iptadato avoid the same node appearing

on the same route more than once.

3.5 Sop sequence improvement heuristic

To improve the solution quality of the GA, a stoggsence heuristic is proposed for
improving the sequence of intermediate stops oheaacite. For every GA solution that
survives into the next generation, a decent sdaeanistic is adopted to improve the sequence
of stops on each route. To ensure the efficieroy, dbjective of this sequence improving
process is to minimize the trip time of the rodtattdoes not depend on frequencies and thus

is relatively easy to obtain. The process of thériséc is as follows:

For each route in the GA solution
1 Fori = the first intermediate stop to the second lat&rmediate stop

Forj =i to the last intermediate stop
Exchange and]
Evaluate the trip time of the route
If the trip time is reduced, then go to 1; othermyisndo the exchange

Nextj
Nexti

Next route in the GA solution

3.6 Repair operator

After genetic operators and stop sequence imprornehwuristic are applied to offspring,
some offspring may violate the constraint of thexmmaum number of intermediate stops or
the constraint of the maximum allowable travel timeherefore, a repair operator is

implemented for repairing these infeasible solwgion
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1 18 15 8 12 7 25
Before mutation ._>O_>O_>\':;_>O_>O_>©

1 18 15 8 10 12 7 25
After mutation Q@ — ) ——>O— - ,;_,O_,O_.O
(& Insert mutation
1 18 15 8 12 7 25
Before mutation ._>O_>O_>(:;_>O_>O_,©
1 18 15 12 7 25
After mutation ‘_>O_>O_,O_>O_.©

(b) Remove mutation

1 18 15 8 12 7 25
Rovtei - @—>O—O——O—0—0

9 7 6 5 13 24
Routej ._’O_"/\,)_’O_’O_’O

Before mutation

1 18 15 @\ 12 7 25
Routei  @—>O—>O—_—O—O0—0O

9 7 8 5 13 24
Routej ’_’O—"’\,)_’O_’O_’Q

(c) Swap mutation

After mutation

1 18 15 6 12 7 25
Routei ‘—»O—»O—h\ ’)—PO—PO—PQ
Before mutation 9 7 8 5 13 24
Routej @——>O—>_—>O—>O0—0
1 18 15 12 7 25
Rouei  @—O—>O—O—O0—0
9 7 8 6 5 13 24
Routej @—>O—» ----». ,)—PO—PO—’Q

(d) Transfer mutation ‘ Origin

After mutation

(O Intermediate stop
@ Destination

Selected stop

Figure 7 Mutation operators for the genetic aldponit

The repair operator works in the following way. leaich route that violates at least one of
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the two constraints, determine the intermediat@,st¢hose removal from the route causes
maximum reduction in the trip time of the routeefhremove this intermediate stop from the

route. This stop removal process is continued timtilconcerned constraint is satisfied.

3.7 Diversity control mechanism

Because the search space is large, how to maim@apulation diversity to avoid
premature convergence is important for the perfoceaof the GA. Therefore, other than
using mutation operators, we employ a diversitytmdmechanism which is similar to that
proposed by Shimodaira (2001). In the DCGA proposgdShimodaira (1997, 2001), the
probability of selecting an individual for surviy&ls, is based on its hamming distance from

the best individual:
h a
P, = {(1_C)I+C} (16)

whereh is the hamming distance between the individual #ed best individuallL is the
length of the entire string representing the irdlinal. c is the shape coefficient whose value is
in the range of [0.0, 1.0], and is the exponent. According to the given problem, an
appropriate selection pressure can be obtaineddghradjusting anda in equation (16). For

a complicated problem with many local optima, adowelective pressure can be produced
with a smaller value of and /or a larger value @ The values o€ anda must be tuned by
trial and error according to a given problem (Shiaica, 2001).

The hamming distance is originally defined for bynaepresentation. An extended
hamming distance has been defined for permutatpmesentation for problems like the
traveling salesman problem (Shimodaira, 1999). H@wnesince the representation in the
proposed GA is uniqgue and complicated (which carsidnultiple routes with different
lengths), we propose a new hamming distance foG#yrwhich is calculated as follows:

1. For each pair of corresponding routes in the tvdividuals, calculate the distance
between two routes, which is defined as the nurobdifferent consecutive node
pairs in the two routes.

2. The hamming distance of the two individuals is cla®d as the sum of all the
distances between the two corresponding routdseitwo individuals.

For example, Figure 8 illustrates routef individual 1 and routein individual 2. There

are totally 5 different consecutive node pairshase two routes, which are: 385, 158,

18—6, 63, and 3>8. Therefore, the distance between these two rasitesThe hamming
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distance between the two individuals is the surthefdistances between all route pairs (i.e.,
10 route pairs for the investigated problem) inttlie individuals.

1 18 15 8 25
Routei of individual 1 ‘_>O_>O_,O_.©

1 18 6 3 8 25
Routei of individual 2 ._>< )_>< )_>< )_>< )_>©

Figure 8 lllustration of the calculation of thes@ince between two routes

Based on our specifically designed hamming distatih@esurvival selection process with
diversity control proposed by Shimodaira (2001) t@nmodified and used. The modified
survival selection is described as follows:

(1) The children and parents are merged and sortedlar of their fithess values to form

the populatiorM.

(2) Duplicate individuals iM are eliminated.

(3) Select the best individual M for survival into the next generation

(4) Select individuals iM (except the best individual) in the order of tHemess values

based on the probability calculated by equation, (@Bereh is the hamming distance
between the concerned individual and the best icdal in M, andL is re-defined as
the total number of consecutive node pairs in tivseandividuals.

(5) If the number of the individuals selected in stépi¢ smaller than the population size,

then new individuals randomly generated as in th#ialization process are

introduced by the difference of the numbers.

4. Experiments

Using the information given in Section 3, computaél experiments were conducted to 1)
tune GA parameters, 2) illustrate the effect ofghies on the objective values, 3) demonstrate
of the effectiveness of the proposed diversity mmrdn solution quality, and 4) illustrate the
quality of the solution obtained. The proposed sotumethod was coded in Visual C++ 2003,
and ran on a computer with 1.73 GHz CPU and 1 G RAMll experiments, the in-vehicle

travel times between each pair of nodes was olitdigea shortest path algorithm.

4.1 Finetuning of the GA

Experiments were conducted to determine the dmitabmbination of the operators
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discussed in the previous section. Totally, eigtts of GAs with different settings were
implemented. Each GA was run 20 times. For allgheght GAs, the population size is set to
20. In each generation, 16 offspring are generdibedugh genetic operators. Then, 20
individuals are randomly selected from the 20 pwrand 16 offspring to form the population
in the next generation. The best 20 out of 36 iddials can survive into the next generation.
The weights for the number of transfers and thal toavel time, i.e.B; andB,, are set to be
80 and 1, respectively. This combination is usezhbse both total travel time and the number
of transfers are lowered by using this combinaliased on the tuning study in section 4.2.

Each GA terminated when 500 generations were peafut should be noted that from
our preliminary study (not shown here due to sp#odtation), the stop sequence
improvement heuristic proposed in Section 3.4 caprove the objective values by 5-8%.
Therefore, the stop sequence improvement heuwisticincluded in all the experiments.

Table 1 summarizes the computational results cfelexperiments. For all the eight GAs
(GA-1 to GA-8), the computational time is similardaacceptable, and is about 3 minutes per
run. GA-1 only uses route crossover to generatepuoffg, while GA-2 only uses stop
crossover. For these two GAs, no mutation opernatarsed. It can be seen that GA-1 and
GA-2 have similar performance in terms of the f#mevalue. GA-3 uses both crossover
operators (without using any mutation operators), for each pair of selected parents, either
route crossover or stop crossover is randomly smlewith the same probability. It can be
seen that GA-3 achieves a better fithness value ttheuprevious two GAs, indicating that it is
advantageous for incorporating the two crossoveraiprs in the algorithm. GA-4, GA-5,
GA-6, and GA-7 are the same as GA-3 except that ating crossover operators, they also
adopt the insert, delete, swap, and transfer nmutaiperators respectively. All the four GAs
have a better performance than GA-3. For GA-4 whisks insert mutation, the number of
transfers is the smallest, because insert mutaticneases the number of intermediate stops
on the selected routes without decreasing the nuibmtermediate stops of other routes.
However, the lower number of transfers is obtawét the sacrifice of the total travel time.
Comparatively, GA-5 which uses delete mutation thes reverse effect. GA-7 which uses
transfer mutation seems to perform the best amioadour GAs as it has the highest average
fitness value and the smallest standard deviatiditne@ss values. In GA-8, the four mutation
operators and two crossover operators are incagubren the algorithm: For each child
randomly generated by either route or stop crogsoperator with equal probability, one of
the four mutation operators is randomly applied tbe child based on the selection

probabilities of the mutation operators. The s&@cprobabilities of the insert, delete, swap
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and transfer mutation operators are 0.4, 0.4, dnil, 0.1, respectively. This combination of
selection probabilities is the best for this stahyl was fine-tuned in a preliminary study. For

other studies, it is recommended to tune the seteprobabilities to obtain the best result.

Table 1 Computational results of different GA sejs

GA-1 GA-2 GA-3 GA-4 GA-5 GA-6 GA-7 GA-8
Crossover Route + Route + Route + Route + Route + Route +

Route Stop
operator used stop stop stop stop stop stop
Mutation

No No No Insert Delete Swap Transfer All four
operator used
fitness(10))? 4.64 4.67 4.84 5.09 4.87 5.11 5.17 5.27
std. dev® 0.11 0.20 0.11 0.09 0.11 0.12 0.06 0.09
transfers 11308 11083 9979 7652 10739 9174 8855 7700
std. dev” 919 1703 874 699 893 868 398 633
travel time® 1253225 1259593 1268335 1353537 1197380 12259 1227319 1282480
std. dev® 24988 45988 25352 26597 26934 25745 11075 8574
CPU time® 3.21 3.28 3.19 3.23 3.31 3.15 3.04 3.24
std. dev” 0.07 0.06 0.05 0.05 0.21 0.05 0.06 0.44

2 Average fitness value for 20 runs

P Standard deviation

¢ Average number of transfers for 20 runs

d Average total travel time (in minutes) for 20 runs

€ Average computational time (in minutes) of eaah ru

From the results in Table 1, it can be seen that8G@btained the best fitness value
among all the GAs. It indicates that it is advaetags for incorporating all mutation operators
in the algorithm. Indeed, other combinations oesgbn probabilities have been tested and
the conclusion is the same. It is beneficial to aBemutation operators in the algorithm.
However, GA-8 gives the best performance. Thereforeghe remaining experiments, the
setting of GA-8 will be used.

Figure 9 illustrates the convergence process oalgparithm over 3000 generations. It can
be seen that, although the population size is @fly the algorithm requires about 2000
generations for convergence, indicating the greatptexity of the algorithm. A replicate of
the GA with a population size of 50 was also run3000 generations. The solution found is
much similar to those obtained by GA-8 shown inl@&ab but the computation time is
increased greatly from 3.24 minutes to 31.7 minytesby more than 10 times). This
indicates that increasing the population size ntaatly extend the convergence process. For

this reason, in the following experiments, the papaon size is kept to 20.
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Figure 9 Convergence process of the algorithm

4.2 Effect of weights

Due to the multi-objective nature of the formulatithe settings of the weighiBs andB;
are important for achieving a good balance betw®ennumber of transfers and the total
passengers’ travel time. Replicates of the algorithith different weights were run. Each
replicate was run only once and terminated untd3@enerations were generated. In these
experiments, th8, value was kept to be 1, and tBgvalue was varied from 0 to 200.

Figure 10 shows the computational results of tleeperiments. From the figure, it can be
seen that the two objectives, i.e., the numberrafisfers and the total travel time, are
generally conflicting. For the first GA replicatB; was set to 0, meaning that the algorithm
does not consider the number of transfers at &l dlgorithm gives the largest number of
transfers (9973) and smallest total travel time8fB25 minutes) among all replicates.
Comparing to the existing design with the numbetrahsfers of 6966 and the total travel
time of 1578830 minutes, the number of transfersdeeased by 43.2%, while the total travel
time is reduced by 31.4%. The significant increasethe number of transfers renders the
solution not acceptable. WitB; increasing andB, unchanged, the number of transfers
increases and the total travel time decreasesataime time. WheB; was increased to 200,
the algorithm achieves the smallest number of feaa$3923) and the largest total travel time

(1642853 minutes). Comparing to the current desathough the number of transfers is
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reduced significantly (by 43.7%), the total trawehe is increased by 4.1%. Figure 9 also
shows that using th®; values ranging from 40 to 160 can reduce botmthmber of transfers

and the total travel time. In the following expeeints,B; is set to 80.

Total travel time

—=— Number of transfe

Number of transfe Total travel time (minutes)
11000 1 1700000
10000} = 4 1600000

SREEREEEEEEE, 1578830
9000 ¢ ! 1 1500000
8000 |
: | 1400000
70000 N\ ;
6966 ! ! | 1300000
6000 ; i
: : | 1200000
5000 - . :
4000 ¢ | : 1 1100000
2000 | i i ~ 1000000
2000 ! ; 900000

0 20 40 60 80 100 120 140 160 180 200

Figure 10  Effects of weigh®; andB;

4.3 The effect of diversity control

This example is to compare the solutions obtaineah the GA with and without diversity
control. Through trial and error, the valuescanda in equation (16) are set to be 0.08 and
0.002, respectively. Each GA was run for 2000 gati@ms. Figure 11 illustrates the average
hamming distance for the 2000 generations. It aasden that for the GA without diversity
control, the average hamming distance decreasaliyrapthe first 1000 generations whereas
for the GA with diversity control, the average hamghdistance does not change much over
generation.

The GAs with and without diversity control were batin 100 times for the investigated
problem and the results were compared and shovialite 2. It can be seen that the GA with
diversity control outperforms the GA without divigyscontrol in solving the problem.
Comparing to the GA without diversity control, t&& with diversity control can reduce the

number of transfers, the total travel time, theghted objective value by 5.05%, 4.39%, and
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4.56%, respectively. A-test was also conducted to examine whether thereifces are
statistically significant. The-test results show that the differences are ahisaant with a
practically zero probability tail. These resultslicate that the diversity control mechanism

can significantly improve the performance of the @Aolving the investigated problem.

Average hamming distance . GA without diversity control
140 — GA with diversity control
120
100 |
80
60
40
20
0
0 500 1000 1500 2000
Generation
Figure 11 Average hamming distance over genemtion
Table 2 A comparison of GAs with and without dsigy control
Weighted Objective Number of transfers Total tidiee
Average Std. dev. Average Std. dev. Average Sid. d
GA without 1783436.36 31740.20

: ) 5938.24 24582 1308377.16 39146.68
diversity control

CGOAn;’;’('Jtlh diversity 1702037.76 25904.755440 45 18674  1250961.76 29942.43

Improvement 4.56% \ 5.05% \ 4.39% \

®Average weighted objective value for 100 runs.
PStandard deviation of weighted objective value$@f runs.

4.4 Comparison of the sequential approach and the simultaneous approach

Another experiment was conducted by solving theterodesign problem and the
frequency setting problem in a sequential mannest,Rhe route design problem was solved
by the GA with the objective to minimize the numlzértransfers only (because the total
travel time cannot be known without the frequenafpimation). After that, with the route
structure obtained by the GA, the frequency settiagristics was run once to optimize the

total travel time. Due to the isolation of the mulesign and frequency setting problems, the
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total computational time was as short as 13 secgamitish is about 1/20 of that time required
to solve the route design problem and frequendinggbroblem simultaneously. Although the
computational time and complexity are much redutiesl solution obtained is not satisfactory.
The number of transfers is 3733 and total traveketis 1666721 minutes. Considering the
current total travel demand of 21751 passengers thig number of transfers of 6966, the
percentage of passengers who need to transfetused from 32% to 17%. This is equivalent
to an increase of 15% of passengers who do not teg@dnsfer. However, the total travel
time is increased by 87891 minutes, which is edentato an increase of travel time of 4.04
minutes for every passenger on average. The resulbt satisfactory because the direct
service for the additional 15% of users is obtaiaethe expense of 4.04-minute longer travel
time for every user on average. This experimenisithtes that solving the route design
problem and frequency setting problem in a seqakentanner does not necessarily result in
an overall better solution than the existing designs contrasts to the proposed simultaneous
approach that can generate a better solution tmarexisting one (see figure 10) once the

parameter values are properly chosen.

4.5 Comparison with the current design

In order to verify the effectiveness of the prombseethod, the solution obtained was
compared with the existing design. In the currezgigh, there are 10 bus routes in operation
(listed in Table 3). The total number of transfier6§966, while the total travel time is 1578830
minutes. For all the 100 algorithm runs performe&ection 4.3, both the number of transfers
and the total travel time are smaller than thosehe existing design.

Table 3 Existing routes and bus allocation in teevork

Number Headway In-TSW

Routes Stop sequence of buses (minute) time

1 20,19, T, 25 12 10.1 10.2
2 16, 17, 18, 23, 22,21, T, 25 17 8.3 20.0
3 1,6,9,10,12,13,19,21,T, 25 19 8.7 32.1
4 14, 13, 12, 10, 8, 16, 17, 18, 23, 22, T, 26 18 0091 40.3

5 1,6, 8, 16,17, 18, 23, 22,21, T, 28 30 4.2 733.
6 9,10, 11,5,6,8, 16, 17, 18, 23, 22, T, 27 16 11.5 42.0

7 16, 17, 18, 23, 22,21, T, 24 19 5.1 20.0
8 7,6,1,2,3,4,11,12,13,19, T, 24 11 12.3 8.93

9 1,6,5,4,11,12,13,19, T, 24 23 5.3 32.3
10 14,15, 8,9, 10, 12, 13,19, T, 24 11 11.1 32.6
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Table 4 shows the detailed route structure of #e solution among the 100 runs. For the
solution, the number of transfers is 5508, whict2@9% smaller than that of the current
design, and the total travel time is 1220128 misyuehich is 22.7% smaller than that of the
current design. This is equivalent to an averageetrtime reduction of 16.5 minutes for
every user. In addition, the numbers of intermedsibps of the routes are generally reduced.
The maximum number of intermediate stops is reddomd 11 to 9. The maximum travel

time within TSW district is also reduced from 420034.1 minutes.

Table 4 The best solution obtained by the proposethod

Number Headway In-TSW

Routes Stop sequence of buses (minutes) time

1 1, 2,3,10,15,14,19,T, 24 11 10.9 31.3
2 1,5,6,7,8,16,23,T,25 20 8.3 33.0
3 9,1,5,4,11,12,13, T, 24 13 9.5 33.1
4 1,5,6,7,8,16,17,19, T, 26 21 8.5 32.0
5 7,6,9, 15, 14, 10, 12,13, T, 28 14 9.0 34.1
6 1,5,6,7,9,15, 16,17, T, 27 29 5.8 33.8
7 9,15,14,21, T, 26 16 9.5 18.2

8 9,6,7,8,16,23,22, T, 24 16 7.3 30.3
9 1,7,9, 15,14,20, T, 25 17 9.8 32.4
10 1,5,7,8,16,18,23,T, 28 19 6.5 33.0

4.6 Robustness of the obtained solution

The travel demands of the network are estimatedtadeal demands may vary from day
to day. To evaluate the robustness of the soluiotained by the proposed design, 1000
demand matrices are generated by perturbing thmatstt demand matrix and used for the
evaluation. For each perturbed demand matrix, é#meashd from nodeto destination, d'ij, is
randomly generated from a uniform distribution [6;91.1d;], whered; is the demand of the
estimated matrix.

Table 5 compares the proposed, existing, and séguémentioned in Section 4.4)
designs using the perturbed demand matrices. Ibeaseen that the three designs give very
different (weighted) objective values in generalor®bver, in terms of average weighted
objective value, the existing design is the worsd the proposed design is the best. This
conclusion has been confirmed by the results oftttest on the differences of average
weighted objective values shown in Table 6, whiodigate that all the differences are

statistically significant.
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Table 5 A comparison of existing, sequential, arappsed designs under perturbed demands

Weighted objective value Number of transfers Totalel time
Design Average  Std.de’  Averagé Std.de¥  Averagé  Std. deV
Existing  2129564.03 14414.94 6941.03 69.50 1574282.280838.17
Sequential 1958784.36 12677.14 3713.50 43.16 1661831.480826.12
Proposed 1655690.64 10238.57 5485.49 56.34 1216833.558277.29

®Average weighted objective value for 1000 runs.
®Standard deviation of weighted objective value$@d0 runs.

Table 6 t-tests on the difference of average obgewvalues on perturbed demands

Test Difference of mean t-value Probability
Existing - proposed 473873 846.75 0.000
Sequential - proposed 303094 587.62 0.000

5 Conclusions

A trunk bus network design problem for a suburbasidential area in Hong Kong has
been investigated. The problem aims to reduce timeber of transfers and the total travel
time of the network. Because these two objectivescanflicting and the latter is determined
by both the route design and the frequency sefinodplems, the route design problem and
frequency setting problem is considered simultasgourhe analysis of the established
integrated mathematical model points out that ttublem is a mixed integer programming
problem and a heuristic method is required to stitegproblem efficiently.

An integrated solution method is proposed to stieeroute design and frequency setting
problems simultaneously. The solution method irgtsg a specific genetic algorithm which
aims to optimize the route design, and a neighklmthsearch heuristic which aims to
optimize the frequency setting. A new solution esentation scheme is proposed, which
enables the genetic algorithm to search withinpa#sible route structures. To improve the
effectiveness of the solution process, two cross@eeite crossover and stop crossover) and
four mutation operators (insert, remove, swap, tegwasfer) are developed. Experiments show
that incorporating all these operators in the algor is beneficial for improving the
performance of the algorithm.

Through experiments, we find that the setting ef weights is important for achieving a
good balance between the two objectives, i.e., maing the number of transfers and
minimizing total travel time. Although the best &ate between the two objectives depends
on the discretion of the operator or the public wimay concern, there is a wide range for the

parameters that can lead to a design better tleanutrent design in terms of both objective
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measures.

A diversity control mechanism is proposed to imgrdhe performance of the GA in
solving the investigated problem. Experiments shbat the GA with the diversity control
mechanism outperforms the GA without the diversityntrol mechanism in terms of lower
number of transfers, smaller total travel time, amdaller weighted objective values. The
differences are statistically significant.

To illustrate the robustness and quality of sohdi@btained, computational experiments
are performed based on 1000 perturbed demand emtrihe t-test results show that the
design obtained by the proposed solution methoddast under demand uncertainty, and the
design is better than both the current design aeddesign obtained by solving the route
design problem and the frequency setting problequesatially. Compared with the current
bus network design, the proposed method can genardesign which can reduce both the
number of transfers and total travel time at |&§s20.9% and 22.7% respectively.

This study opens many future research directiome €ample is that the study can be
extended to consider bus service timetables ashao Aand Zeng (2008), multi-period as in
Marina and Jaramillof2008), clean bus allocation as in Beltran et @00Q), and
limited-stop services as in Leiva et al. (2010) ofer example is that other meta-heuristics
can be developed for the studied problem and cosdparth the proposed solution method.
One can also incorporate existing route constrocigorithm (e.g., Mauttone and Urquhart,
2009) in our proposed solution method and studyitif@ovement of solution quality and
computation time. Finally, extending the proposedutson methodology to solve other
transport network design problems (e.g., Part.2@09 and Chen et al. 2010) can be another

future research direction.
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Appendix | Travel demands of the network
Node 24 25 26 27 28 Total
1 595 372 256 192 441 1856
2 167 99 97 46 162 571
3 147 100 97 57 164 565
4 106 57 53 29 92 337
5 313 187 196 114 301 1111
6 270 194 179 95 336 1074
7 349 192 178 94 307 1120
8 313 191 179 97 345 1125
9 298 158 124 71 254 905
10 104 62 48 33 101 348
11 60 36 35 21 70 222
12 485 337 287 142 488 1739
13 547 264 226 158 423 1618
14 196 120 92 62 177 647
15 316 203 158 82 276 1035
16 784 425 375 258 629 2471
17 87 52 50 30 81 300
18 237 158 147 79 211 832
19 107 63 57 30 90 347
20 186 98 77 55 147 563
21 113 58 57 32 83 343
22 104 63 51 35 87 340
23 638 461 369 197 617 2282
Total 6522 3950 3388 2009 5882 21751
Note: 1. The demands are from 23 TSW nodes wskirttions in the city

2. The demands are hourly demands during peak hours
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