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Emergency response services are critical for modern societies. This paper presents a model and a heuristic
solution for the optimal deployment of many emergency response units in an urban transportation net-
work and an application for transit mobile repair units (TMRU) in the city of Athens, Greece. The model
considers the stochastic nature of such services, suggesting that a unit may be already engaged, when an
incident occurs. The proposed model integrates a queuing model (the hypercube model), a location model

{-:(eywords: and a metaheuristic optimization algorithm (genetic algorithm) for obtaining appropriate unit locations
Hr;l;erielzlsg respomse in a two-step approach. In the first step, the service area is partitioned into sub-areas (called superdis-

tricts) while, in parallel, necessary number of units is determined for each superdistrict. An approximate
solution to the symmetric hypercube model with spatially homogeneous demand is developed. A Genetic
Algorithm is combined with the approximate hypercube model for obtaining best superdistricts and
associated unit numbers. With both of the above requirements defined in step one, the second step pro-
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ceeds in the optimal deployment of units within each superdistrict.
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1. Introduction

Emergency response services are critical for modern societies;
they provide assistance to incidents, protect and ensure public
health and safety and preserve proper operation of lifelines. Trans-
portation networks are among those important lifelines that are
highly prone to emergencies (Nicholson and Du, 1997); because
of the frequent occurrence of incidents such as car malfunctions
and accidents and infrastructure failures, these networks are in
need such services, capable of undertaking emergency response
and network restoration activities. Transit systems in particular
are considerably affected by incidents; their operations are dis-
rupted, performance and quality of services degrade and their
credibility is diminished. Moreover, the effects of such incidents
to the road network are the same to those involving private vehi-
cles, implying traffic congestion and delays.

Transit authorities establish special services for responding to
incidents; these include tow-away vehicles and mobile repair
units, capable of accessing the site of an incident and provide
appropriate aid; units are strategically scattered around the trans-
portation network and respond to incidents in their designated
vicinity of responsibility. Design of such services includes the opti-
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mal deployment of units responsible for undertaking incidents;
these units are positioned in such a way that some service level
objective is optimized (Araz et al., 2007); typical objectives include
the minimization of the average or maximum time to serve an
emergency and the maximization of the area served by each unit
(Goldberg, 2004).

In this context, this paper presents a model and a heuristic for
the optimal deployment of many emergency response units in an
urban transportation network, an application and a decision sup-
port system (DSS) for transit mobile repair units (TMRU) in the city
of Athens, Greece. The model considers the stochastic nature of
such services, suggesting that a unit may be already engaged when
an incident occurs (such a phenomenon is characterized as conges-
tion (Boffey et al., 2007)). The number of available units is most fre-
quently limited, the transit networks extensive, the operating
conditions strenuous, and the repair times frequently long; these
conditions suggest the strong possibility of congestion and, there-
fore, an approach is adopted that considers repair unit availability.
The proposed model integrates a queuing model (the hypercube
model), a location model and a metaheuristic optimization algo-
rithm (genetic algorithm) for obtaining appropriate unit locations.

The remainder of the paper is organized as follows: in the next
section, a brief review of location models is provided; the review
focuses on location models used in emergency response services
and especially those that incorporate congestion aspects. Follow-
ing, the model developed along with its elements is described
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and analyzed. An application of the model for the Athens surface
transit network follows and its results are discussed and a DSS
incorporating the proposed method is presented. The final section
contains the conclusions of the paper.

2. Background

Facility location models have been widely applied in real life
problems with examples that include the sitting of emergency
medical services (EMS), police and fire stations, bus garages and
airline hubs (Current et al., 2002). Comprehensive reviews of such
models can be found in Drezner and Hamacher (2002), Goldberg
(2004), ReVelle and Eiselt (2005) and Jia et al. (2007) while Brot-
cone et al. (2003) provide a focused review of their application in
emergency response services. Location models are distinguished
in coverage and median type models (Berman and Krass, 2002):
Coverage-type models attempt to locate servers so that adequate
coverage is provided to demand points, implying that there is at
least one server that can undertake demand for service in a posi-
tion within a preset maximum distance. Median-typemodels mini-
mize average or total travel cost between servers and demand and
locate them accordingly. This section provides a short overview of
emergency response service related to location models and then
focuses on hypercube and its applications. The later part acts as
the basis for introducing the novelties of the proposed model.

2.1. Location models in emergency response services: A general
overview

Early efforts on emergency response service planning focused
on two basic coverage models: the set covering location problem
(SCLP) by Toregas et al. (1971) and the maximal coverage location
problem (MCLP) by Church and ReVelle (1974). Later efforts con-
sidered the case of several server types (TEAM and FLEET models
by Schilling et al. (1979) and a MCLP improvement by Marianov
and ReVelle (1992)) and multiple coverage of demand for service
(BACOP1 and BACOP2 by Hogan and ReVelle (1986), DSM and
DDSM models by Gendreau et al. (1997, 2001)). On the other hand,
the p-median problem, originally proposed by Hakimi (1964) was
used by Calvo and Marks (1973), Carbone (1974), Carson and Batta
(1990) and Paluzzi (2004); for planning emergency response
services.

Basic location models are deterministic and, in that sense, do
not capture inherent uncertainties often encountered in emer-
gency response services (Brotcone et al., 2003; Jia et al., 2007). As
a result, probabilistic models have been developed in an effort to
incorporate uncertainty in design parameters of such systems, for
example, demand, travel times, and so on, and to explicitly con-
sider congestion. Some models address variations in inputs; an
extensive review of these models is provided by Snyder (2006).
Congestion on the other hand can significantly affect the perfor-
mance of an emergency response service and should therefore be
accounted for in planning such services, an aspect widely investi-
gated by researchers (Snyder, 2006). Examples of congestion loca-
tion models include the maximum expected coverage location
model (MEXCLP) by Daskin (1983), the maximal availability loca-
tion problem (MALP LII) by Hogan and ReVelle (1986). Extensions
to the MEXCLP include travel speed variations of servers (TIME-
XCLP by Repede and Bernardo (1994)) and stochastic travel times
(Goldberg et al., 1990), while Marianov and ReVelle (1996) im-
proved the MALP model by applying queuing theory for estimating
busy fractions (QMALP) and Marianov and Serra (1998, 2003) con-
sidered congestion in coverage models by constraining queue
lengths for servers. A detailed review of these models can be found
in Galvdo and Morabito (2008).

2.2. Hypercube and applications

Larson (1974) introduced queuing theory in facility location
modeling by presenting the hypercube model, an analytical tool
for evaluating the performance of a spatially distributed system
of servers. Based on the configuration of such a system, hypercube
can derive a set of performance measures, useful for planning and
decision making. Later, Larson (1975) developed the A-hypercube,
an approximation of the original model, which reduced computa-
tional difficulties encountered when implementing the original
model. Extensions of hypercube have been proposed by some
researchers (Halpern, 1977; Jarvis, 1985; Katehakis, 1985; Burwell
et al.,, 1992; Swersey, 1994), while applications and extension of
the model for planning emergency response services have been
developed by Brandeau and Larson (1986), Burwell et al. (1993),
Chelst and Barlach (1981), Sacks and Grief (1994), Mendonga and
Morabito (2001), Atkinson et al. (2006, 2008), lannoni and Morab-
ito (2007), Takeda et al. (2007) and Galvao and Morabito (2008).

As noted by Galvao and Morabito (2008), “the hypercube model
is not an optimization model; it is only a descriptive model that per-
mits the analysis of scenarios”. Goldberg (2004) and Takeda et al.
(2007) also state that hypercube must be embedded to an optimi-
zation framework for obtaining optimal server locations. Indeed, in
early studies, Berman et al. (1985) extended Hakimi’s one-median
problem by embedding it in a queuing context while Berman et al.
(1987) developed heuristics for locating mobile service units on a
network in the presence of queueing-like congestion by taking
advantage of the hypercube model and a location model for a sin-
gle service unit. Batta et al. (1989) combined the MEXCLP with
hypercube into an iterative, local search algorithm; hypercube
was used to estimate expected coverage of located servers. Saydam
and Aytug (2002, 2003) replaced the local search approach by a ge-
netic algorithm. Galvdo et al. (2005) extended Hogan’s maximum
availability location problem (MALP) by incorporating hypercube,
in an effort to relax the initial model’s assumption on server
independence.

Two recent studies by Iannoni et al. (2007, 2008), embedded
hypercube in a hybrid genetic algorithm focusing on optimizing
the configuration and operation of EMS along a highway. Their
objective was to either minimize the mean user response time or
to remediate EMS server workloads, by determining the optimal
areas of responsibilities for a single dimension space (a highway).
An important contribution of this work is the modeling of the mul-
tiple dispatch problem (more than one servers can intervene at the
same time). The authors provided a solution to the problem using
GA for a small number of servers (~5 servers). Higher dimensions
(e.g. network level), or higher number of servers increase compu-
tational times, making the use of these algorithms prohibitive.
These studies did not integrate location and districting decision
in the same optimization approach, a step done at Geroliminis
et al. (2009) for a small number of servers, as well.

Recently, Geroliminis et al. (2009) extended the hypercube
model and developed the spatial queueing model (SQM) to opti-
mally locate emergency response vehicles. This model explicitly
considers that (i) service rates are not identical and vary between
servers (non-homogeneous servers of this type are also analyzed
in Morabito et al., 2008) and (ii) for a given server the service rates
depend on the incident’s characteristics (interdistrict or intradis-
trict response). All service rates for both types of responses depend
on the location of servers. Thus, this model (iii) links districting and
dispatching to the location problem and (iv) proposes a hybrid for-
mulation for coverage and mean response time to optimally locate
servers and (v) simultaneously identify their areas of responsibili-
ties (rather than analyzing performance measures for a given sys-
tem configuration). Despite its theoretical elegance and flexibility,
the model is computationally difficult to solve for a large number
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of servers (>10). A recent review on hypercube applications in
emergency service systems is offered by Galvdo and Morabito
(2008).

To date, there exists a variety of models for designing emer-
gency services, with congestion being among those elements that
have attracted attention by the research community, as an
improvement for obtaining more realistic results. Among recent
advances in this area, is the combined use of optimization tech-
niques and hypercube models, which that can achieve promising
results for obtaining improved EMS design configurations. To the
best of our knowledge, current literature has not developed a
methodological hypercube framework to optimize the response
time in large urban networks with many servers, which unavoid-
ably leads to a more complex design problem. This step is taken
in this paper, where we propose a two-step, hypercube - optimiza-
tion based model for obtaining districts and locations of EMS for
large urban networks with more than 15 servers, which is prohib-
itive to be solved with an exact hypercube model. For this reason,
at first step we do not directly seek to obtain the response area per
server, but rather define a set of servers as a “superserver”, which
is responsible for providing service in a “superdistrict” and deter-
mine the required number of servers per superdistrict.

However, it is not straightforward to near-optimally partition a
large network to superdistrics and estimate optimal numbers of
servers in such a way that the heuristic solution — which assumes
independence between superdistircts - will be close to the solu-
tion without partitioning. Another issue is how one can estimate
the performance characteristics of a superdistrict, without solving
an exact hypercube. To this end, we formulate an approximation of
the hypercube model for a homogeneous demand network with
symmetric servers. This approximate formulation decreases the
number of state probabilities of a hypercube model from 2N to N,
where N is the number of servers and it is much faster to solve.
Subsequently at step 2, we optimally deploy required servers with-
in each superdistrict by solving a spatial queueing model (SQM),
which carries the novelties earlier described in this section. This
two-step approach is proved to be efficient for large scale networks
and when compared with an exact solution of the SQM model for
smaller network instances, it produces near-optimal locations with
errors less than 3%. If an SQM model is applied in a random parti-
tioning of the large network the solutions are far from optimal,
highlighting the necessity for careful partitioning.

3. A note on the hypercube and spatial queueing model (SQM)

Consider a network J consisting of a set of regions/cells each
generating requests for service (we use notation similar to Larson
(1974)). A number of servers are to be located at points x € J. A ser-
ver’s primary response area (district) consists of those regions/cells
to which the server would be dispatched if all other servers are
available. Each server can be busy (one) or free (zero), generating
2N possible states for the system (where N is the number of serv-
ers); these are the vertices of a hypercube named B; (j=0, 1,...,
2N-1) of dimension N. Demands occur solely at the center of each
service region by time homogeneous Poisson requests for service
(input) and exponential service rates ignoring any past system his-
tory. When a request for service arrives, if the responsible server is
available, it is dispatched immediately to serve the incident and
then returns to its base location before responding to the next re-
quest. If the responsible server is busy when a request arrives, an-
other server will serve the request.

We assume that only one step transitions occur while multistep
transitions are not allowed (i.e. two servers cannot be simulta-
neously assigned). This implies that transitions are allowed be-
tween states with Hamming distance equal to 1 (the number of

digits by which the two vertices differ). Thus, the model is a fi-
nite-state continuous time Markov process (Larson, 1974), and
the model’s steady-state probabilities are determined from the
equations of detailed balance that express a conservation of flow
between consequent states. Geroliminis et al. (2009) extended
the hypercube model to explicitly consider that service rates are
not identical and vary between servers, while for a given server
may depend on the incident’s characteristics (interdistrict or intra-
district response). They also provided a heuristic to minimize aver-
age response time as this is estimated by the extended hypercube.
The location of servers and dispatch preferences is estimated
through the model which uses the closest available server policy
implying that, each time an incoming call is received, the nearest
available server is assigned.

The objective of the model is to minimize mean system re-
sponse time, T, subject to “hypercube” constraints; the formulation
of the problem is (for more details see Geroliminis et al. (2009))

N J
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where J is the total number of regions/cells, N is the total number of
response units/servers, x; is 1 if a server is located in region j and 0
otherwise, t; is the mean travel time for server n to reach regionj, f;
is the fraction of network-wide workload generated from region j,
prj is the fraction of dispatches sending unit n to region j, P{By} is
the steady state probability of state corresponding to vertex By, Ep;
is the set of states, where server n is the nearest available for region
J, C are the vertices of N-dimensional unit hypercube, d;;, d; are the
“downward” and “upward” Hamming distance between vertices B;
and B;, (the number of binary digits switching from 0 to 1 and 1 to
0), while 2; and p;; are the upward and downward mean rates at
which transitions are made from state i to state j corresponding
to vertices B; and B;, given the system is in state i. For given servers’
location and states i and j, there is a corresponding server, which
changes its condition from idle to busy or the opposite. /; is the to-
tal demand for requested service, which requires the intervention of
the aforementioned server, while y; is the service rate associated
with the demand. Qualitatively speaking, this demand is the sum
of interdistrict and intradistrict potential responses for which this
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server is the nearest among the idle ones. For a detailed formulation
of the transition rates and the partitioning of the network to areas
of responsibilities, the reader should refer to Geroliminis et al.
(2009).

Also, we should note that the objective function (1) and the sum
of state probabilities (5) assumes a zero-line capacity system,
which effectively means that in the case that all servers are busy,
new calls (expressed as overflows) are either lost or treated by spe-
cial reserve units. Alternatively one could model an infinite-line
capacity system, in which case overflows are handled in a first-
come first-served manner by the regular units within the region.
The modifications for this formulation can be found in Larson
(1974).

Once the number of servers becomes larger the minimization
problem described in (1)-(5) is computationally very difficult to
solve since the spatial queueing model is an NP-hard problem. A
special case, the p-median problem, belongs to the class of NP-hard
problems in the strong sense (Mirchandani and Francis, 1990). As
Geroliminis et al. (2009) discussed, if all servers had infinite trav-
elling speed and were spending zero service time at the incident,
then all would be readily available to intervene and the optimal
location of servers for the SQM would be the same with that of
the p-median. In the case of the p-median, the number of dis-
patches requested by a server in a specific region (Eq. (4)) is the re-
gion’s demand if the server is the nearest, and zero otherwise. The
SQM formulation (or any other hypercube formulation) is more
complex, as it requires to solve a 2V x 2N linear system in each in-
stance of the model. For example, the Coppersmith-Winograd
algorithm in linear algebra, is one of the asymptotically fastest
algorithms for matrix inversion with computational complexity
of 0(k?37) (Coppersmith and Winograd, 1990); given that the linear
system in (4) is 2V x 2V the optimal solution of the problem for
N+1 servers will require 2237 =5.2 times higher computational
time when compared with the problem for N servers, even if the
number of iterations needed to reach the optimal solution is the
same.

As the spatial queueing model (SQM) is difficult to solve for
large N, an elegant heuristic could be developed if we were able
to partition the service region in I sub-regions with N; servers each
(3=iN;i = N) and solve an SQM in each sub-region. However, it is not
straightforward to near optimally partition and estimate optimal
Ny's in such a way that the heuristic solution - which would assume
independence between subregions - would be close to the solution
without partitioning. Although there are cases in real life where
physical boundaries (e.g. mountains, rivers) provide some form of
partitioning, a generally applicable computational methodology
is required; to this end, we provide an approximate solution to
the symmetric Hypercube model with spatially homogeneous de-
mand, where all servers are treated equally. In this manner, instead
of 2V possible states for the queueing system, there are only N
states (the number of servers).

4. Model
4.1. Overview and novelties

Design of emergency response services often requires the
implementation of inherently NP-Hard facility location models
which are usually intractable in cases of sizeable urban systems
requiring the positioning of a large number of servers (Dimopoulou
and Giannikos, 2007). An alternative strategy for solving such
problems involves partitioning the service area into smaller ones
and then developing individual location models for each sub-area.
While such an approach could potentially lead to a “system-wide
level” sub-optimal design, from a practical perspective it provides

a set of tractable models along with an efficient design in each sub-
area. Similar approaches have been followed by researchers for
emergency response systems (Zografos et al., 2002), facility loca-
tion (Novaes et al., 2009), and arc routing (Mourao et al., 2009).

Similarly, the problem of positioning transit mobile repair units
(TMRU) in a large surface transit network involves the consider-
ation of numerous bus lines with individual buses spread along
them; this implies a considerable number of potential “demand
generating” points and deployed TMRUs, in an extended service
area. Therefore, a stepwise approach is proposed, consisting of
two steps, as shown in Fig. 1:

1. Districting of the overall service area and determination of nec-
essary TMRUs (Step A),
2. Optimal location of TMRUs within each district (Step B).

In step A, the service area is partitioned into sub-areas (called
superdistricts) while, in parallel, the necessary number of TMRUs
is determined for each district. A Genetic Algorithm is combined
with an approximation of hypercube model for obtaining best
superdistricts and associated TMRU numbers - that approximation
is described in detail in the next section. With both the superdis-
tricts and their TMRU requirements defined, step B proceeds in
the optimal deployment of TMRUs within the district. Efficient
locations for the units are determined through a hybrid-metaheu-
ristic algorithm which again exploits genetic algorithms along with
the spatial queueing model (Geroliminis et al., 2009).

4.2. Approximate hypercube with homogeneous demand

Consider an infinite area with homogeneous demand /; acci-
dents/hour/km?. If all servers are located symmetrically in the area,
average workloads and service rates will be the same along all
servers, because boundary conditions are omitted. Let’s now focus
on a subset of the area, A;, where N servers are located and demand
for intervention is A=/, A;. As each server may be idle or busy,
there are 2N different states for this system, which create a hyper-
cube of dimension N. Then, we can describe this system as a finite
state continuous time Markov process with N servers. As all servers
are identical all the vertices of the same hyperplane (vertices with
the same number of busy servers) have the same steady-state
probabilities. This suggests that instead of a system with 2N linear
equations, only N linear equations describe the system and deter-
mine steady-state probabilities.

The notation needed for this type of formulation is simplified
(when compared with the general hypercube formulation). Denote
P; the probability of a vertex in the jth hyperplane (j busy servers),
Z%j, 1 the upward and downward transitions for j busy servers.

Superdistricts

Districting Step (Step A)

Number of TMRUS per superdistrict

Locations of TMRU s for a
superdistrict

Location Step (Step B)

Fig. 1. TMRU deployment approach.
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Notice that a vertex in the jth hyperplane is connected with verti-
ces in the (j — 1)th hyperplane and with N —j vertices in the
(j + 1)th hyperplane.

(0

j=0

Pi((N =)k +jty 1) =jPiq41 + (N =P, j=1,2,....n

(7)
Eq. (6) states that the sum of the steady-state probabilities should
be equal to 1, where ('; )Pj is the probability that exactly j servers

are busy. Upward and downward transition rates are estimated as
follows. Rate /; is the demand for requested service that will create
a transition from one vertex of the jth hyperplane to a vertex of the
(j + 1)th hyperplane and equals the sum of interdistrict (served by
the nearest server) and intradistrict (served by another server as
the nearest is not available) demand. If we assume up to 2nd order
dispatching policy (service in a region is provided by the responsi-
ble (nearest) server and the 2nd nearest if the first one is busy at a
different location) and symmetry among all servers, then

i,

=Nt NN-1)

5 (8)
The first component in (8) is the demand for the available servers
(1st order dispatching policy) while the second component is the
2nd order dispatching policy. Fig. 2a illustrates how an area A; is
partitioned into N homogeneous circles (one area of responsibility
for each of the N servers) and how upward and downward transi-
tion rates are estimated for an example with 7 servers and transi-
tion from 2 to 3 busy servers. Fig. 2b shows the intervention area
of the server that changes state in Fig. 2c for 1st and 2nd order dis-
patching; that is, Ry is the primary area of responsibility (nearest
server), while R, shows the area that, if a request occurs, this server
should intervene as the nearest servers are busy in other locations
(colored circles in Fig. 2).

Variable p;, is the service rate corresponding to the aforemen-
tioned demand /; and is estimated as the harmonic mean of service
rates for all interdistrict and intradistrict requests of demand J;
(the reciprocal of the arithmetic mean of the reciprocals),

i
" _(1(””’07 (9)

b T R
T T <N—1>um>

where u;, is the average service rate for interdistrict responses,
while .y is the average service rate for intradistrict responses.

The average response time in this case, rather than Eq. (1) which
represents the general case, becomes

1
Z; 0( ) m (10)

Note: An interesting observation is that the steady-state probabili-
ties of an approximate hypercube when pn= ey estimated
through Eqgs. (5) and (6), are very close to the steady-state probabil-
ities of an M/M/n queueing system, when probability of a lost call is
small (for example, for N=8 servers, Z=3 accidents/hour, g, =
Uexe =1 we get an average error of the steady-state probabilities
equal to 1.7%).

The average service rate for interdistrict and intradistrict re-
sponses, Ui, and L.y respectively, are estimated as follows:

Each server’s area of responsibility is A;/N. If we approximate
this area with a circle of radius r = n%'z' the average distance be-
tween a random point in the circle and a point distance from the
center of the circle is

VrZ;yz V(x—a)? +y? dx dy
d(a,r>: vy (11)
I jvfzfyz 1 dx dy

T=

The average distance traveled for an interdistrict response, dj;, is
approximated with the average distance between a random point
in a circle and its center, d(0,r) = 0.67r, while the average distance
traveled for an intradistrict response, dey, is approximated with
the average distance between a random point in a circle and the
center of a circle tangent to the first one, d(2r,r) = 2.06r. After some
calculations we get

dine = d(0, 1) = 0.376,/A;/N, (12a)
dexe = d(2r,7) = 1.164,/A;/N. (12b)

The average time needed per intervention is the sum of the travel
time from the server location to the incident plus the time spent
at the incident, t;,, and can be given as

1 2d

—=—+7 (13)
K v

where x € {interdisric,intradistrict} and v is the travel speed of a
server.

4.3. Districting algorithm

The problem: Given area A with demand 4(x), number of serv-
ers, N, and number of sub-regions (call superdistricts from now

| B: BUSY | | R;: Request for 1* nearest server |

I: IDLE R,: Request for 2™ nearest server
| || |

Fig. 2. Area partitioning and transition description for an area with servers: (a) system with 2 busy servers and the responsibility area of each of the servers; (b) request for
intervention for the central server showing 1st and 2nd order dispatching; (c) system with 3 busy servers.
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on), k, divide A in such a way to minimize mean response time 7,
where T = %Zfri).i and N = ZLN,- (i is a superdistrict with area
Ai, Nj, servers and 4; demand). We will focus only on convex shape
superdistricts and we require that the plane has no overlaps or
gaps (in art history or mathematics this is frequently referred to
as tessellation).

Area A is divided in cells, where each cell has demand d;, and
coordinates (x;y;). To accurately define a possible partition, one
should describe the cells belonging to each superdistrict. There is
a vast literature and reviews for data classification and partitioning
algorithms in many disciplines, e.g. computer science (Jain et al.,
1999), health sciences (Clatworthy et al., 2005), geography (Open-
shaw, 1995), social networks etc. (e.g. using triangles, squares or
other polygons of different shapes and sizes). We propose a simple
partitioning algorithm not restricted by a specific shape, based on
the Voronoi diagrams (Voronoi, 1907). As it is computationally
prohibitive to consider all possible partitions, Voronoi diagrams
may omit some; given k random points in the surface of A (called
superdistrict centroids) “almost” each cell is assigned to the near-
est centroid, yielding one superdistrict division. The word “almost”
is used to indicate exceptions where a cell may be equidistant to
two or more points of A. These centroids have nothing to do with
the servers’ location and dispatching policy; it is essentially a trick
to divide the area in superdistricts and requires minimal computa-
tional effort. This procedure can generate the majority of possible
divisions of the area in convex sub-areas to avoid restricting our
search (an example for 5 superdistricts is given in Fig. 3). The seg-
ments of the Voronoi diagram are all the points in A that are equi-
distant to two centroids; the Voronoi nodes are the points
equidistant to three centroids. Voronoi diagrams, in contrast with
other partitioning algorithms, require the minimum information/
number of variables to de defined, as a partitioning of N clusters
can be perfectly described by the location of the N centroids/cen-
ters of mass.

For a given set of centroids, there is a unique Voronoi diagram
(partitioning). If the number of servers in each partition is defined,
such as N = ZleN,v, then the mean response time can be approxi-
mated as follows:

1. Choose k random points (centroids) in area A and assign each
cell to the nearest centroid.

2. For each of the k superdistricts compute the total demand /; and

area A;.

. Choose integer N;'s such that N = Zﬁ‘:lN,;

. Compute 1, ui,. for each superdistrict.

5. Estimate t; = f(n;.A;, /i, ti,, 1, ), where f(-) is the “approximate
hypercube” operator that uses (6)-(10) and then 7.

AW

In total there are 2k decision variables (k for the centers of
superdistricts and k for the Ny's). To estimate the partitioning and
the number of servers for each superdistrict that minimizes the
average response time a GA approach is employed. The role of
the k centroids in the partitioning algorithm is only to define the
superdistricts. In the general case, to define superdistricts for an

Fig. 3. A possible partition for superdistricts, based on Voronoi diagrams.

area with I cells (e.g. I = 500), one needs to introduce I x N binary
variables, which is a very expensive procedure to be embedded
in the algorithm and would slow down the optimization. Instead,
by using Voronoi diagrams, only N variables are needed, the cen-
ters of mass or centroids.

The analysis presented here considers cooperation of servers
and secondary dispatches (when the nearest server is not avail-
able) only within each superdistrict and omits inter superdistrict
responses. From a practical perspective upper level intervention
is not desirable in emergency response systems, as system effi-
ciency and reliability decreases dramatically. We should note that
for systems where intervention times are small comparable to the
time spent at the incident site, higher order dispatches might im-
prove overall performance. One could approximate inter superdis-
trict responses with Egs. (3)-(5) from the exact hypercube model,
by considering a “superserver” for each superdistrict.

4.4. Optimization framework

As mentioned in previous sections, a genetic algorithm is com-
bined with the hypercube model, in an effort to determine super-
districs and locations of TMRUs in steps A and B. Genetic
algorithms (GA) were first introduced by Holland (1975) and are
described as search techniques based on the process of natural
evolution (Goldberg, 1989). Over the past two decades, GAs have
been widely implemented in solving difficult optimization prob-
lems, with a rich literature of relevant papers and textbooks
describing relevant applications in location theory, network de-
sign, scheduling problems, optimization of structures etc. Indeed,
GAs exhibit inherent advantages such as their robust performance
when solving combinatorial problems (Gen and Cheng, 2000) as
well as their ability to incorporate external declarations/proce-
dures and logical conditions to the optimization procedure and
to handle discrete variables and non-linear constraints in a
straightforward manner (Chakroborty, 2003). These qualities make
GAs particularly attractive for potential combination with other
methods and external procedures such as hypercube, with the
background section revealing relevant past approaches.

In the same context, we use GAs for obtaining optimal superdis-
tricts and number of servers per superdistrict (Step A) and server
locations (Step B). An external procedure (incorporating Hyper-
cube) acts in both steps as the fitness measure and guides the GA
into improved solutions. The associated framework for embedding
the GA with hypercube for Steps A and B is presented in Fig. 4a and
b respectively.

4.4.1. Optimization framework and GA Fitness measures

For Step A (Fig. 4a), the GA generates candidate solutions, which
include superdistrict centers and number of servers per superdis-
trict. The districting algorithm of Section 4.3 is the used for deter-
mining superdistricts i and their average response time t; The
average response time for the overall area is then calculated as:

o=

k
T==) Tk (14)
i=1

Eq. (14) is used as a fitness measure, which guides the GA into
superdistricts with a minimized average response time. However
T =f(ni - Ai, 4, Wy, IHiy,) estimates the average response time for a
superdistrict with homogeneous demand. As a result, if T is used
as a fitness measure, the GA converges to a solution with the max-
imum number of servers concentrated in a single, large superdis-
trict and minimum few servers to the rest of the superdistricts (a
fact also indicated by preliminary tests of the algorithm). This large
superdistrict includes the part of the network with the highest de-
mand and integrates some areas with lower demand and thus, the
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Fig. 4. Framework of hypercube incorporation in a GA.

average demand applied in 7; for the large superdistrict is smaller
than it should be. To avoid that algorithmic ineffectiveness, we
added one additional component to the average response time of
the approximate hypercube (representing the inhomogeneity of
superdistrict i). The metric for this inhomogeneity is the standard
deviation of spatial variation of demand across all cells that belong
to superdistrict i, V;. Thus, instead of t;, the average response time is
approximated as t; + 6 - V;, where § is a weighting factor. The final
fitness measure is then calculated by Eq. (14).

Similarly, in Step B, the exact hypercube with spatial queues
(SQM) is used for evaluating performance of TRMUs for candidate
locations again generated by a GA. In that case, the sum of average
response times for all TRMUs (as obtained by SQM) acts as the GAs
fitness measure; that measure is expected to be minimized
through the GA optimization procedure.

4.4.2. Representation scheme

Both the districting and location steps require the determina-
tion of points along an area (superdistrict centers and exact server
positions respectively). Furthermore, in the districting Step A, the
number of servers needed per superdistrict should be derived. As-
sume that the analysis area consists of a set Q={q}={1,...m} of
elementary quadrants (implying that each quadrant has a unique
identification number between 1 and m). Each superdistrict s € S
(S is the set of superdistricts) is expected to include some of these
quadrants Qs C Qand have a central point gs € Q The number of
TMRUs per superdistrict is denoted as g;. Each candidate solution
for districting Step A includes the superdistrict centers qs and
TMRU number per superdistrict gs; these are represented by two
integer-value strings

(@1 - 4], (15)



294 N. Geroliminis et al./European Journal of Operational Research 210 (2011) 287-300

(& - &l (16)

For example, a candidate set of centers for an area of 60 quadrants
divided in three superdistricts would be represented as [3 10 21],
meaning that quadrants 3, 10 and 21 would be the centroids of
the superdistricts. Futhermore, assuming a total of 10 servers, a po-
tential solution would be represented as [4 3 3] - the first superdis-
trict would have four servers, while the second and third would
each have three.

As for the location Step B, TMRUs per superdistric s will be lo-
cated in quadrants q; s C Q.. Since the number of TMRUs for each
superdistrict s is fixed (obtained through Step A), the following
integer representation is used for the location step:

[ql,s ql,s] (17)

Again, if a superdistrict of 20 quadrants was assigned to 4 TRMUs, a
candidate solution for Step B would be [3 8 12 15], meaning that
TMRUs would be located at quadrants 3, 8, 12 and 15. Steps A
and B exploit a districting algorithm and SQM respectively, as fit-
ness measures for evaluating candidate solutions.

4.4.3. Genetic operators and constraint handling

Selection and variation operators used are the same for both
steps and are implemented independently for each representation
scheme (for the Step A case). A Binary Tournament Parent Selection
method, as described by Goldberg (1989) and proposed by Sys-
werda (1989). The method is straightforward to implement and
according to Beasley and Chu (1996) gives results comparable in
quality to those of other methods. According to this approach, a
pair of strings is randomly selected from the population and the
best individual of the pair is selected for reproduction. The process
is repeated until a new population is set. A uniform crossover
method is used (Gen and Cheng, 2000); that method randomly se-
lects genes from each parent string to perform crossover according
to a probability value and the probability value defines the per-
centage of genes for each string to be crossed over. Regarding
mutation, the mutated gene is replaced by a randomly generated
number within its valid range. Optimal mutation rates range,
according to a rule-of-thumb between 1/P and 1/I, where P is the
population size and [ is the string length (Eiben and Smith,
2003). The population replacement method used replaces worse
strings from the old population by best strings created by the
recombination, crossover and mutation operators. In both cases,
resource constraints do exist (available number of TMRUs); we
consider these as hard constraints and discard all violating solu-
tions. The GA is in both steps terminated when the solution could
not improve more than 1% after a number of iterations.

5. Application and results

The model is demonstrated for the case of the Athens (Greece)
surface public transportation network; the network consists of
over 390 bus and electric bus lines, with a daily passenger demand
of 1.7 million passengers, spread over an area of about 650 km?,
and served by over 3000 buses of different sizes. The Athens Public
Transport Organization (OASA) is responsible for planning and
managing the bus system, while daily operations are handled by
the city’s bus company (ETHEL). In an effort to provide high level
services, OASA uses approximately 25 TMRUs, ready to respond
and provide rapid repair services in cases of bus accidents and/or
malfunctions, tow-away of illegally parked vehicles (along bus
lanes), and so on. Currently, all transit repair vehicles are stationed
in the bus depots of OASA (located in the city’s outskirts) and need
on average 30 minutes to approach an incident site. Step A and B
are applied to the Athens network. The implementation of the
developed algorithm in this paper considers up to 3rd order dis-

tricting when solving the exact hypercube model of Step B. This
is a realistic assumption, given that the probability of having more
than 3 accidents in the aggregated area of responsibility of 3 adja-
cent servers in a 15 minutes interval is less than 1%.

In order to apply the model to the examined network, we follow
the approach of Karlaftis et al. (2004) which divides the network
according to a grid of 1 km x 1 km cells (with each cell correspond-
ing to a hypercube atom and a GA quadrant; a map of the city and
the grid is shown in Fig. 5). Incident rates per cell are then derived
as a function of the total length of bus lines within the cell and ac-
tual 10-year statistics on the average number of incidents per line
type and vehicle size within the network. We assumed each server
to be located in the center of each cell, while a Manhattan distance
is considered between cells. The advantage of such a representa-
tion is related to the relatively frequent changes in bus routes of
the Athens network; incident rates per cell can be easily recalcu-
lated as a result of obtaining new cell service ‘density’.

5.1. Comparison of methods for small problem instances

To evaluate the performance of the developed two-step heuris-
tic, we provide an application of the algorithm to two small regions
(approximately 10 x 10 cells) of the Athens network. Region A is a
medium demand region South-East of the Athens center, while re-
gion B is one of the highest demand region in the city center. We
solved two instances of the exact hypercube optimization model
(HC), as described by (1)-(5) for 7 servers (region A) and 10 servers
(region B) using GA. Our goal was to obtain solutions as close to the
optimum as possible and we let the GA to run for long times. We
also estimated the approximate solutions with (i) the developed
two-step heuristic for the same total number of servers divided
in 2 superdistricts (M); (ii) an approximation of this heuristic
(M-appr) without optimization for the size of superdistricts (only
the number of servers per superdistrict was a variable; each region
was horizontally divided in 2 equally sized superdistricts) and (iii)
a p-median solution. After obtaining the location of servers, for
each of the 3 problems, we applied these locations to an exact
hypercube instance to estimate the mean response time (columns
3 and 5 of Table 1).
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Fig. 5. Maps and model grid for the Athens Surface Public Transportation Network.
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Table 1
Comparison of different approaches for a small network.
Mean response time (hour) Network A (7 servers) Network B (10 servers)
GA solution Locations applied to HC GA solution Locations applied to HC
Exact (HC) 0.162 0.162 0.197 0.197
2-step (M) 0.175 0.165 (+1.8%) 0.221 0.204 (+3.5%)
2-step (M-appr) 0.192 0.185 (+14.2%) 0.246 0.232 (+17.7%)
p-median 0.173 (+6.8%) 0.233 (+18.3%)

m0-20 ®m20-40 w40-60 m60-80 m80-100 m0-50 ®50-100 = 100-150 m150-200 m 200-250

Fig. 6. Contour plot of demand for regions A and B and location of servers according to the 2-step model (M).

The results are summarized in Table 1. The 2-step heuristic pro- 5.2. Districting application and results
vides near-optimal solutions (errors 1.8% for region A and 3.5% for
region B), while both the p-median and the 2-step approach with- Firstly, the two-step heuristic presented in Section 4 is solved
out optimizing the size of superdistricts (M-appr), provide much for different demand levels and different number of TMRUs. De-
higher errors. Fig. 6 provides a contour plot of the demand for re- mand scenarios vary between the average daily demand (ADD)
gion A and B, the location of servers for the two-step heuristic (M) for interventions and the peak-hour demand which was assumed
and the separation line of the two superdistricts. 10 times higher than ADD, as reported by OASA organization.
Table 2
Districting results.

ID Population size Crossover rate Mutation rate Tot-t Variance Objective function

1 20 0.2000 0.0500 735.6529 158.9520 2325.1725

2 20 0.2000 0.1000 731.3319 160.5516 2336.8480

3 20 0.2000 0.2000 736.3738 160.6393 2342.7670

4 20 0.4000 0.0500 731.0644 169.2480 2423.5445

5 20 0.4000 0.1000 736.2546 158.7998 23242530

6 20 0.4000 0.2000 737.7657 159.0544 2328.3097

7 20 0.6000 0.0500 736.9229 160.1418 2338.3412

8 20 0.6000 0.1000 728.9308 166.7685 2396.6161

9 20 0.6000 0.2000 736.2505 161.0616 2346.8669

10 40 0.2000 0.0500 731.1240 159.6966 2328.0899

11 40 0.2000 0.1000 735.8488 155.6935 2292.7840

12 40 0.2000 0.2000 736.0291 159.8463 23344916

13 40 0.4000 0.0500 737.0534 165.0621 2387.6746

14 40 0.4000 0.1000 734.2163 153.2082 2266.2980

15 40 0.4000 0.2000 736.7877 159.2933 2329.7210

25 60 0.6000 0.0500 735.9129 156.4422 2300.3353

26 60 0.6000 0.1000 736.1473 163.5624 2371.7715

27 60 0.6000 0.2000 735.7490 153.3565 2269.3140

Average 2334.0391

Standard deviation 39.69624

Coefficient of variation 1.7%
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Fig. 7. (a) Best districting solution for 20 servers (ID 14); (b) districting solutions for 15 and (c) 25 servers (for the best districting solution GA parameters corresponding to ID
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Fig. 8. Fitness function evolution for Step A with respect to time (ID 14).

Three values of TMRUs are applied, 15, 20 and 25. As explained in
Section 4.4.1, the average response time per superdistrict is esti-
mated by (15) plus a heterogeneity component equal to the stan-
dard deviation, V;, of demand among all cells in a superdistrict, i,
multiplied by a weighting factor J. Factor § was estimated as the
best fit value that minimizes the error between different in-
stances of the exact hypercube (Egs. (1)-(5)) and the approximate

hypercube 7;+ 6 - V; for different areas of the study network and
for different server locations. The value of § applied in the model

is 8.2 with units hour/2gdent, Resylts were obtained for different
GA parameters and for the highest demand levels. They are sum-

marized in Table 2. Results differ by 1.7% at most, providing a
good indication of algorithmic performance and robustness.
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Table 3
Optimal location results for various GA parameters.

ID Population Crossover Mutation Objective function
size rate rate (h)
1 20 0.2 0.05 0.2307
2 20 0.2 0.1 0.2096
3 20 0.2 0.2 0.1934
4 20 0.4 0.05 0.2006
5 20 04 0.1 0.2013
6 20 0.4 0.2 0.1867
7 20 0.6 0.05 0.2025
18 40 0.6 0.2 0.1869
19 60 0.2 0.05 0.2066
20 60 0.2 0.1 0.2021
21 60 0.2 0.2 0.1969
22 60 0.4 0.05 0.1934
23 60 0.4 0.1 0.1972
24 60 0.4 0.2 0.1991
25 60 0.6 0.05 0.2097
26 60 0.6 0.1 0.2027
27 60 0.6 0.2 0.1904
Average 0.2005
Standard deviation 0.009197
Measure of coefficient 4.59%

8 13 18 23 28 33

Fig. 9. TMRU locations in the Athens CBD for best solution (ID 18).
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Fig. 10. Fitness function evolution for Step B with respect to time (ID 18).

Fig. 7a presents the results for the best derived solution (ID 14),
while Fig. 7b and ¢ show districting results for 15, 20 and 25 TMRU

respectively. According to Fig. 7a, district B2 includes the Athens
central business district (CBD) and densely populated suburbs; since
the Athens bus network is relatively radial, most of that metropoli-
tan area’s bus lines cross and/or serve that district. This explains
the finding that, compared to the district’s size, there is an increased
need for TMRUs. Fig. 8 results indicate again that the CBD is con-
tained in a central superdistrict, with an increased number of TMRUs
allocated in that super district. Also, the eastern district has a large
number of TMRUSs, which is attributed to the size and considerably
lower density of bus lines in that part of the city.

Further to the above results, Fig. 8 depicts evolution of the GA
fitness function value with respect to time for a total of about
20 minutes, on a Pentium Core Duo processor with 1 GB of RAM.
As can be seen from Fig. 8, improvement of the solution after about
two minutes of running time is very low, indicating that the algo-
rithm can provides good results in a relatively low amount of time.

5.3. Location of TMRUs

We apply Step B (the exact SQM as developed by Geroliminis
et al., 2009) for all districts using the GA approach of Section 4.4.
We have to notice that in the aforementioned paper, the authors
used a different heuristic to approximate the optimal locations (a
random search followed by a steepest decent method). The results
of the methods are similar, but the GA approach has been proved
faster. We show here detailed results of the GA approach for dis-
trict B2 since that district contains most of the system’s bus lines,
it is the most demanding among districts, in terms of TMRU ser-
vices. Results for Step 2, district B2 and various GA parameters
are presented in Table 3.

Again, results indicate low differences of the objective function
for various GA parameters, while solution with ID 18 provides the
best results depicted in Fig. 9. Fitness function evolution for ID 18
with respect to time, is presented in Fig. 10; it takes less than two
minutes (on a Pentium Core Duo with 1 GB of RAM) to reach a good
solution.

Furthermore, by comparing obtained results with the current
TMRU response time (for the existing configuration where TMRUs
are stationed in the transit system depots), the improvement is sig-
nificant. Indeed, the new configuration has an average response
time of 12 minutes (0.2 hour), which is lower than the current
30 minutes average response time.

6. Decision support system

The need for a tool that can aid planners in obtaining alterna-
tives regarding possible areas of responsibility and locations of
TMRU’s, led to the development of a Decision Support System
(DSS), tailor made for that purpose. The DSS incorporates the dis-
tricting and location models of Steps A and B, a genetic algorithm
solving module, a database, and an export procedure to a geo-
graphic information system (GIS), so that maps depicting the DSS
results can be produced. A graphical user interface (GUI) is used
to manage the database, model and GA components. In particular,
the DSS consists of a set of modules, which are used for:

e Formulating and solving the models of Steps A and B.

e Setting the genetic algorithm parameters (population size,
mutation and crossover rates, convergence time, etc.),

o Setting the service parameters (number of servers, travel speed,
time at the incident, etc.),

e Performing sensitivity analysis of model and GA parameters,

e Producing reports, and

e Producing GIS maps with server locations and areas of
responsibility.
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The DSS is built using MS-EXCEL™ spreadsheets and VBA™
environment; the rationale behind the selection of such an envi-
ronment was its popularity among organizations worldwide, along
with its user-friendliness and ability for efficiently setting up the
models. The EXCEL™ environment is used for storing and manipu-
lating network and service data, as well as the for model setup and

any intermediate (worksheet based) calculations, while the GUI
interface and solvers are built with the use of VBA™ and external
libraries (Fig. 11 presents the main GUI screen for the DSS).
Through the GUI, the user can modify transit network parame-
ters (number and type of lines for each quadrant) and service
parameters. Further, GA parameters for each model step can also
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be altered to perform sensitivity analyses and obtain improved re-
sults if possible. The GA solving component is triggered through
the GUI and results are extracted in the forms of reports; the latter
can also be exported to GIS maps (such a map is presented in
Fig. 12 for the case of Fig. 9 locations).

7. Conclusions

In this paper we formulated an analytical approach for opti-
mally deploying many emergency response units in an urban trans-
portation network, and presented a heuristic solution methodology
for that purpose. We also presented an application for TMRUs
(transit mobile repair units) in the city of Athens, Greece. The
developed model integrates a hypercube queuing model, a location
model, and a genetic algorithm for obtaining appropriate unit loca-
tions in a two-step approach as a one-step approach is computa-
tionally infeasible. The results from the model application
indicate that the proposed model is an important optimization
tool, particularly in cases of high demand where the responsible
server for an incident is not available to intervene although
needed, and when many servers need to be located. Ongoing and
future research includes extensions of the proposed model to large
scale transportation networks where more than one servers may
be needed to intervene during the same incident. Extensions of
the model to capture demand scenarios during different times of
the day is also an area of some research priority.
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