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1. Introduction

In [4,5], the authors introduced the following problem. Given a
graph G, decide whether its vertex set V can be partitioned into two
nonempty sets such that each vertex has at least as many neigh-
bors in the set it belongs to as in the other set (such a vertex will
be called satisfied). Such a partition is called a satisfactory partition.
Not all graphs admit such a partition. Indeed, the complete graphs
Kn for instance or the complete bipartite graphs Kn1 ;n2 , with n1 and
n2 both odd, do not admit a satisfactory partition. Several variants
of the satisfactory partition problem have been defined. One of
them asks for deciding whether the vertex set of a given graph
can be partitioned into two nonempty sets such that each vertex
has at least as many neighbors in the set it does not belong to as
in its own set. Such a partition is referred to as a co-satisfactory
partition or an unfriendly partition. Any finite graph admits such a
co-satisfactory partition. In fact, such a partition can simply be
obtained by starting with any partition of the vertices and
iteratively moving a vertex that is not co-satisfied to the opposite
partition. Many other variants of the satisfactory partition problem
have been defined. For a current state-of-art, the reader is referred
to a recent survey [3].
Satisfactory partitions as well as co-satisfactory partitions have
various applications which occur in different contexts. Identifying
communities in social networks, creating alliances or coalitions
are some examples (see [3] for more applications). Notice that in
the satisfactory partition problem (resp. co-satisfactory partition
problem), the sizes of the sets of the partition are arbitrary (but dif-
ferent from zero). In fact, for many of the graphs for which it has
been shown that a satisfactory partition exists, the difference
between the sizes of the partition sets is generally very large (see
for instance [2]). In the case of a 4-regular graph G for example,
one can always find a satisfactory partition V1, V2 of V that satisfies
jV1j 6 5 or V1 = V(C), where C is a shortest cycle in G (see [2]). In
many of the applications though, one is typically interested in
finding partition sets which have mo re or less equal size. If we im-
pose that both sets have exactly the same size, we get the so called
(co-)satisfactory bisection problem.

All above mentioned problems (except the co-satisfactory prob-
lem) have been shown to be NP-complete, and thus it is natural to
look for good approximation algorithms. In [2], the authors present
a polynomial-time 3-approximation algorithm for the maximum
number of satisfied vertices in a bisection. In [3], a list of open
problems related to satisfactory graph partitions is given. Among
these problems was the following.

Design a polynomial-time (3 � c)-approximation for the maximum
number of satisfied vertices in a bisection (for as large c > 0 as
possible).

After introducing some basic notations and definitions in
Section 2, we present in Section 3 a polynomial-time 2-approxima-
tion algorithm for the maximum number of satisfied vertices in a
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satisfying bisection, and thus solve the above mentioned open
problem for c = 1.
2. Preliminaries

All graphs in this paper are finite, undirected, without loops or
multiple edges. For any graph theoretical terms not defined here,
the reader is referred to [8].

For a graph G, we denote by V and E the vertex set and the edge
set of G, respectively. An edge joining two vertices u and v is de-
noted by uv. For a subset U # V and a vertex v 2 V, we denote by
dU(v) the number of neighbors of v in U. The degree of v in G is de-
noted by d(v) and the set of neighbors of a vertex v in G is denoted
by N(v). The subgraph of G induced by a set of vertices U # V is de-
noted by G[U].

A cut-vertex of a graph G is a vertex whose deletion increases
the number of connected components of G. We write G � v (resp.
G + v) for the subgraph obtained by deleting (resp. adding) a vertex
v. Similarly, we denote by V � v (resp. V + v) the subset of vertices
in G obtained by deleting (resp. adding) a vertex v. A block of a
graph G is a maximal connected subgraph of G that has no cut-
vertex. Let G[B1], . . . ,G[Bq] be the blocks of G, where B1, . . . ,Bq # V.
We call the collection B ¼ fB1;B2; . . . ;Bqg the block decomposition of
G. It is known that a graph G that is not a single block has at least
two blocks, called leaf-blocks, which contain each exactly one cut-
vertex of G (see [8]). With a slight abuse of terminology, we will
call a vertex-set Bi # V a block of G if G[Bi] is a block of G.

In our approach, we will use the same helpful tool as the
authors of [2], that is, the Edmonds–Gallai decomposition of a
graph. Before defining this type of decomposition, let us first give
some definitions concerning matchings.

A matching M is a set of pairwise non-adjacent edges. Let M be a
matching of a graph G. The vertices of G incident to edges of M are
said to be saturated by M; the other vertices are said to be unsatu-
rated by M. A perfect matching in a graph G is a matching that sat-
urates every vertex of G. A graph G is factor-critical, if for each v 2 V,
G � v admits a perfect matching. Given a matching M, an alternat-
ing path with respect to M is a path which alternates between edges
in M and edges not in M.

For a graph G = (V,E) let us denote the Edmonds–Gallai decompo-
sition by (X,Y,W), where X, Y, W form a partition of V that satisfies
the following conditions. The set X is defined such that for every
vertex v 2 X, the size of a maximum cardinality matching in
G � v and G is the same. The set Y contains all neighbors of X in
VnX, and W = Vn(X [ Y). For more information on the Edmonds–
Gallai decomposition see for example [6].

In particular, classical results on the Edmonds–Gallai decompo-
sition imply that every component of G[X] is factor-critical, every
component of G[W] admits a perfect matching and furthermore
the size of a maximum cardinality matching in G is equal to the
number of connected components of G[X] minus jYj.

Consider a maximization problem A and an instance I of A. Let S
be a solution of I. We denote by f(I,S) the value of solution S, and by
OPT(I) the value of an optimal solution of I. Then an algorithm is
said to be a k-approximation algorithm for problem A, where
k P 1, if for any instance I of the problem it gives a solution S such

that f ðI; SÞP OPTðIÞ
k .

Let G = (V,E) be a graph. A partition V1, V2 of V is said to be non-
trivial if both sets V1 and V2 are nonempty. A partition is called bal-
anced if jV1j � jV2j 2 {�1,0,1}, and it is called a bisection if jV1j = jV2j.

In this paper we will be interested in an optimization version of
the following problem.

SATISFACTORY BISECTION PROBLEM
Input: A graph G = (V,E).
Question: Does there exist a bisection (V1,V2) of V such that for

every vertex v 2 V, if v 2 Vi (for i = 1,2) then dVi
ðvÞP dðvÞ

2

l m
?

A vertex v 2 V such that if v 2 Vi (for i 2 {1,2}) then dVi
ðvÞP dðvÞ

2

l m
is called satisfied in G (with respect to the partition V1, V2). In [1], the
authors showed that the SATISFACTORY BISECTION PROBLEM is
NP-complete. In [2], the same authors presented a polynomial-
time 3-approximation algorithm for the following problem.

MAX SATISFYING BISECTION PROBLEM
Input: A graph G = (V,E) with jVj even.
Question: A bisection (V1,V2) of V that maximizes the number

of satisfied vertices.

In Section 3 we will present a polynomial-time 2-approxima-
tion algorithm for this problem, thus settling an open problem
mentioned in [3].
3. 2-Approximation

In order to get a 2-approximation algorithm for the MAX SATIS-
FYING BISECTION PROBLEM in a graph G, we will work in the com-
plement of G, denoted by Gc. To translate the problem into Gc, we
introduce the following definition.

Definition 3.1 (strong co-satisfaction). Let G = (V,E) be a graph and
let V1, V2 be a partition of V. A vertex v 2 V is called strongly co-
satisfied (with respect to the partition V1, V2) if strictly more than
half of the neighbors of v are not in the same partition as v, i.e., if
v 2 Vi then j NðvÞ \ V3�i j> dðvÞ

2 , for i = 1,2.
The following proposition shows how the MAX SATISFYING

BISECTION PROBLEM in G can be restated in the complement
graph Gc.

Proposition 3.2. Let G = (V,E) be a graph with an even number of
vertices, and let V1, V2 be a bisection of V. A vertex is satisfied in G (with
respect to the partition V1, V2) if and only if it is strongly co-satisfied in
the complement of G with respect to the same partition V1, V2.
Proof. Let G = (V,E) be a graph with an even number of vertices
and let V1, V2 be a bisection of V. Consider a vertex v 2 V1 (the case
v 2 V2 is analogous). Then v is satisfied in G if and only if
jV2nN(v)jP jV1n(N(v) + v)j. Since jVj is even, this inequality must
be strict. Since the roles of neighbors and non-neighbors are
exchanged in the complement Gc of G, this is equivalent to say that
in Gc the vertex v has strictly more neighbors in V2 than neighbors
in V1 and is hence strongly co-satisfied in Gc. h

Due to the above proposition it is natural to define the following
problem.

MAX STRONG CO-SATISFYING BISECTION PROBLEM
Input: A graph G = (V,E) with jVj even.
Question: A bisection (V1,V2) of V that maximizes the number

of strongly co-satisfied vertices.

In what follows, we present a polynomial-time 2-approxima-
tion for the MAX STRONG CO-SATISFYING BISECTION PROBLEM.
By the above proposition, taking the complement Gc of a given
graph G and applying this algorithm to Gc leads to a 2-approxima-
tion for the MAX SATISFYING BISECTION PROBLEM in G.

Notice that the complement Gc of a graph G might be discon-
nected. Thus we will work on each connected component of Gc

separately.



Definition 3.3 (edge-flip). Let G = (V,E) be a graph. We say that we
perform an edge-flip on an edge uv 2 E with respect to a partition
V1, V2 of V, if with probability 1

2 we assign u to V1 and v to V2 and
with probability 1

2 we assign u to V2 and v to V1.

Edge-flips can be used in a variety of settings to strongly co-sat-
isfy half of the vertices. The following proposition shows that every
time two vertices connected by an edge are randomly assigned by
an edge-flip to V1, V2, in expectation at least one of these two ver-
tices will be strongly co-satisfied.

Proposition 3.4. Let G = (V,E) be a graph, let uv 2 E, and let V 01; V 02
be a partition of Vn{u,v}. Let V1, V2 be a random partition obtained by
completing V 01; V 02 with an edge-flip on uv. Then in expectation at
least one of the vertices u and v is strongly co-satisfied with respect to
the partition V1, V2.
Proof. Consider the vertex v (the proof for the vertex u is analo-
gous) and assume without loss of generality that jNðvÞ \ V 01jP
jNðvÞ \ V 02j. Hence, if the outcome of the edge-flip on uv assigns v
to V2, then v is strongly co-satisfied since in this case we have

jNðvÞ \ V1j ¼ jNðvÞ \ ðV 01 þ uÞj ¼ 1þ jNðvÞ \ V 01j > jNðvÞ \ V 02j
¼ jNðvÞ \ V2j:

For a vertex w 2 V, let 1w be the random variable which is equal to
one if w is strongly co-satisfied and zero otherwise. Hence by the
above reasoning, we have E[1v] P 1/2 and E[1u] P 1/2, and hence
the expected number of strongly co-satisfied vertices among u
and v satisfies E[1u + 1v] P 1. h

The following theorem shows one setting in which the above
proposition can be used to strongly co-satisfy at least half of the to-
tal number of vertices. It nicely illustrates how the reasoning based
on randomization can be used to obtain results of this type. An
important feature of the randomization-based approach is that to
compute the expected number of strongly co-satisfied vertices,
each vertex can be considered independently because of the linear-
ity of the expectation. Due to this fact, this proof strategy is quite
flexible, and can be adapted to other settings as we will see later.

Theorem 3.5. Let G = (V,E) be a graph admitting a perfect matching.
Then there is a polynomial-time algorithm to find a bisection of V that
strongly co-satisfies at least jVj/2 vertices of G.
Proof. Let M be a perfect matching in G. Consider a random bisec-
tion obtained by independently performing edge-flips on all edges
of M, i.e., we start with V1, V2 = ; and for every edge uv 2M, with
probability 1

2 we set V1 :¼ V1 + u, V2 :¼ V2 + v or otherwise
V1 :¼ V1 + v, V2 :¼ V2 + u. For a vertex v 2 V, again we denote by 1v
the indicator variable for the event that v is strongly co-satisfied.

Consider an edge uv 2M. By Proposition 3.4, for any bisection
V 01; V 02 of V � {u,v}, when completing V 01; V 02 by performing an
edge-flip on uv, in expectation the number of strongly co-satisfied
vertices among u, v is at least one. Hence, E[1v + 1u] P 1 and
the expected number of strongly co-satisfied vertices satisfies

E
P

w2V 1w
� �

¼ E
P

xy2Mð1x þ 1yÞ
h i

P jMj ¼ jV j=2.

The random bisection procedure can easily be derandomized
using conditional expectations (see [7] for information on deran-
domization by conditional expectations). For completeness we
shortly discuss one step of the derandomization procedure. This
allows us to present the type of conditional expectations that have
to be calculated to perform the derandomization, and to show why
this can be done in polynomial time.
Let M = {u1v1, . . . ,un/2vn/2}, where n = jVj. To derandomize the
procedure, we assume that the edge-flips on M are done iteratively.
In the first step, an edge-flip on u1v1 is performed then we continue
with an edge flip on u2v2 and so on. At step k 2 {1, . . . ,n/2} of the
derandomization procedure, all the vertices in {u1,v1,u2, . . . ,vk�1}
have already been assigned to either V1 or V2. Let Vk�1

1 # fu1;v1;

u2; . . . ;vk�1g be the set containing all vertices which have already
been assigned to V1 during the iterations 1, . . . ,k � 1, and similarly
we define Vk�1

2 to be the set of vertices that have been assigned to
V2. Hence, knowing the state just before iteration k, the
expected number of strongly co-satisfied vertices is given by

E
P

v2V 1v jVk�1
1 ;Vk�1

2

h i
¼ E

P
v2V 1v jVk�1

1

h i
. Conditioning on the out-

come of iteration k we get

E
X
v2V

1v

�����Vk�1
1

" #
¼ 1

2
E
X

v2V
1v

���Vk
1 ¼ Vk�1

1 þ uk

h i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðIÞ

þ 1
2

E
X

v2V
1v

���Vk
1 ¼ Vk�1

1 þ vk

h i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðIIÞ

: ð1Þ

The main idea of derandomization by conditional expectations is to
compare the two expectations (I) and (II). At least one of these
expectations must be larger or equal than their mean which is the
left-hand side of (1). If the value of (I) is larger or equal to the value
of (II), then, instead of randomly flipping the edge ukvk, we set
Vk

1 ¼ Vk�1
1 þ uk, otherwise we set Vk

1 ¼ Vk�1
1 þ vk. By doing so, we

are guaranteed to obtain an assignment such that E
P

v2V 1v jVk
1

h i
P

E
P

v2V 1v jVk�1
1

h i
.

To perform the above derandomization, we have to determine
the conditional expectations (I) and (II). Consider for example
(I) (the case (II) is analogous). By linearity of the expectation, (I)
is equal to

P
v2V E½1v jVk

1�. Hence, to evaluate (I), it suffices
to determine terms of type E½1v jVk

1� ¼ Pr½v is strongly
co-satisfied jVk

1� for v 2 V, i.e., given is a partial assignment of the
vertices to the sets of the partition and one has to determine for a
given vertex v the probability that v will be strongly co-satisfied.
We distinguish two cases depending on whether v has already
been assigned to one of Vk

1; Vk
2, i.e., v 2 {u1,v1, . . . ,uk,vk}, or not.

Case (a) v 2 Vk
1 [ Vk

2. Let n0 and n00, respectively, be the number of
already assigned neighbors of v that are in the same partition as v
and the opposite partition, respectively. The non-assigned neigh-
bors A of v can be partitioned into two groups A0, A00, where A0 con-
sists of the endpoints of all edges e 2M \ (A � A), and A00 = AnA0.
Notice that since we are performing edge-flips on the edges in
M, exactly half of the vertices of A0 will be in the same partition
as v. Hence, the probability of v being strongly co-satisfied only
depends on how the vertices in A00 will be assigned to the parti-
tions. Note that every vertex in A00 is assigned to a partition inde-
pendently of the other vertices in A00, since every vertex in A00 is
incident to a different edge of M. Let X be the random variable cor-
responding to the number of vertices in A00 that will be assigned to
the opposite partition of v. Observe that after all edge-flips, v is
strongly co-satisfied if and only if X > n0 � n00. Since X is a binomial
random variable with parameters jA00j and 1/2, the probability
Pr[X > n0 � n00] can easily be evaluated in polynomial time.
Case (b) v R Vk

1 [ Vk
2. We have v = vj for some j 2 {k + 1, . . . ,n/2}.

Since all edge-flips that still have to be performed are done
independently we can assume j = k + 1 by renumbering the ver-
tices in {vk+1,uk+1 , . . . ,vn/2,un/2}. To evaluate the expectation
E½1v jVk

1�, we can condition on the outcome of the next flip which
involves v, i.e., the flip of the edge vk+1uk+1, i.e.,
E½1v jVk
1� ¼

1
2

E½1v jVkþ1
1 ¼Vk

1þvkþ1�þ
1
2

E½1v jVkþ1
1 ¼Vk

1þukþ1�:



The two expectations to the right are again of the form of case (a)
and can thus be evaluated in polynomial time, leading to a polyno-
mial-time procedure for evaluating E½1v jVk

1�.

Finally, by repeating the above derandomization step until all
edge-flips are done, a bisection V1 ¼ Vn=2

1 ; V2 ¼ Vn=2
2 is obtained,

such that the number of strongly co-satisfied vertices is lower-
bounded by
E
X
v2V

1v

�����V1

" #
¼ E

X
v2V

1v

�����Vn=2
1

" #
P E

X
v2V

1v

�����V0
1

" #
¼ E

X
v2V

1v

" #
P jV j=2: �

Our next theorem shows another setting in which we are able to
strongly co-satisfy at least half of the total number of vertices.
Theorem 3.6. Let G = (V,E) be a graph with an even number of
vertices. Let (X,Y,W) be an Edmonds–Gallai decomposition of G. If
jYj > 0, then there is a polynomial-time algorithm to find a bisection
that strongly co-satisfies at least jVj/2 vertices of G.
1 In fact, one can easily show that the probability of vi being strongly co-satisfied is
even at least 0.5.
Proof. Let X1, . . . ,Xp (resp. W1, . . . ,Wq) be the partition of X (resp. of
W) corresponding to the connected components of G[X] (resp. of
G[W]). The Edmonds–Gallai decomposition satisfies p P jYj (see
[6]). Furthermore, since jVj is even we can deduce that p + jYj is
even, because jXij for i 2 {1, . . . ,p} is odd, and all components of
G[W] are even. In each set Xi we fix an arbitrary vertex vi 2 Xi.

In the following, we construct a bisection V1, V2 satisfying the
claim of the theorem. We start with V1, V2 = ; and successively add
vertices to V1 and V2. All vertices of Y are assigned to one part of the
partition, say V1. Furthermore, the vertices v1, . . . ,v(p+jYj)/2 are
included in V2 and the vertices v(p+jYj)/2+1, . . . ,vp are included in V1.
Let V0 = Vn(Y [ {v1, . . . ,vp}) be the vertices which have not been
assigned to either partition so far. Notice that exactly half of the so
far assigned vertices are in V1 and half in V2.

Furthermore, notice that G[V0] admits a perfect matching
because of the following. G[V0] is the union of G[W] and the
connected components G[Xi � vi] for i 2 {1, . . . ,p}. Since (X,Y,W) is
an Gallai–Edmonds decomposition, G[W] admits a perfect match-
ing. Furthermore, each graph of the form G[Xi � vi] also admits a
perfect matching since G[Xi] is factor-critical. Hence, let M be a
perfect matching in G[V0].

In the following, we consider each connected component of
G[X [W] separately and assign for each connected component the
non-assigned vertices to V1 and V2. This is done in such a way that
for every connected component of G[X [W], exactly half of the
non-assigned vertices will be assigned to V1 and the other half to
V2. This will guarantee that at the end of the procedure we obtain a
bisection. We distinguish between three types of connected
components:

(i) Connected components G[Xi] of G[X], such that vi 2 V2. These
are the components G[Xi] for i 2 {1, . . . , (p + jYj)/2}.

(ii) Connected components G[Xi] of G[X], such that vi 2 V1. These
are the components G[Xi] for i 2 {(p + jYj)/2 + 1, . . . ,p}.

(iii) Connected components G[Wi], for i = 1, . . . ,q, which all have
an even number of vertices and admit a perfect matching.

Notice that since all non-assigned vertices are part of G[X [W],
the non-assigned neighbors of a non-assigned vertex v are all in the
same connected component as v. Hence, any assignment of the
non-assigned vertices in one connected component of G[X [W]
does not have any influence on whether vertices in another
connected component of G[X [W] will be strongly co-satisfied or
not. Hence, we can assign the non-assigned vertices of any
connected component of G[X [W] independently of the other
connected components of G[X [W]. We will show how to assign in
polynomial time the non-assigned vertices to V1 and V2 such that
the following holds.

(a) In every component G[Xi] of type (i), at least (jXij + 1)/2 ver-
tices will be strongly co-satisfied.

(b) In every component G[Xi] of type (ii), at least (jXij � 1)/2 ver-
tices will be strongly co-satisfied.

(c) In every component G[Wi] of type (iii), at least jWij/2 vertices
will be strongly co-satisfied.

Notice that once the three statements above are proven we are
done, since the total number of strongly co-satisfied vertices is
then at least

XðpþjYjÞ=2

i¼1

ðjXij þ 1Þ=2þ
Xp

i¼1þðpþjYjÞ=2

ðjXij � 1Þ=2þ jWj=2

¼ jXj=2þ jWj=2þ jY j=2 ¼ jV j=2:

Hence it remains to prove that we can achieve (a), (b) and (c).
Proof of (a) and (b): Consider a connected component G[Xi] of

G[X]. We will distinguish later whether we are in the case vi 2 V2

(case (a)) or vi 2 V1 (case (b)). Consider the procedure that assigns
the non-assigned vertices in Xi in a random way to V1 and V2 by
performing edge-flips on the edges of M in G[Xi]. By Proposition 3.4
we can deduce that in expectation, such an assignment will
strongly co-satisfy at least (jXij � 1)/2 vertices among the vertices
of Xi � vi. Similarly to the proof of Theorem 3.5 this approach can
be derandomized using conditional expectations to get a polyno-
mial-time procedure to assign the vertices in Xi such that at least
(jXij � 1)/2 vertices in Xi are strongly co-satisfied. This already
proves part (b).

Furthermore, if vi 2 V2 then there is a strictly positive probabil-
ity that in the random assignment, the vertex vi will be strongly co-
satisfied, because all neighbors of vi in Y are in the opposite
partition and every other neighbor is with probability 1/2 in the
opposite partition.1 Hence, in this case, the expected number of
strongly co-satisfied vertices in Xi is strictly more than (jXij � 1)/2.
By derandomizing we obtain a polynomial-time procedure to
assign the vertices in Xi such that at least (jXij + 1)/2 vertices are
strongly co-satisfied, proving (a).

Proof of (c): Let G[Wi] be a connected component of G[W]. Again,
we first consider a random bisection of Wi obtained by performing
edge-flips on the edges of M in G[Wi]. As before, we observe that
the expected number of strongly co-satisfied vertices is at least
jWij/2 and the result follows by derandomization via conditional
expectations. h

Theorems 3.5 and 3.6 show already how to obtain a 2-approxi-
mation for the MAX STRONG CO-SATISFYING BISECTION PROBLEM for
a large class of graphs. It remains to deal with the case where we
have a Gallai–Edmonds decomposition (X,Y,W) of the given graph
G that satisfies Y = ;. In this case G consists of factor-critical con-
nected components, i.e., the components in G[X], and connected
components that contain a perfect matching, i.e., the components
in G[W]. In the following, we show how to efficiently find a bal-
anced partition for each connected component C of G, such that
this partition strongly co-satisfies at least half of the maximum
number of vertices in V(C) that can be strongly co-satisfied by
any (not necessarily balanced) partition of V(C). Having determined
such a balanced partition V 01; V 02 for every component C of G, we



will then put all vertices in V 01 in one set of the partition V1, V2 and
the elements of V 02 in the other set, in such a way, that after having
processed all components of G, we get jV1j = jV2j. This can easily be
achieved because of the balancedness of the partition V 01; V 02.

The components in G[W] are easy to handle, since they admit a
perfect matching. Hence, we can apply Theorem 3.5 to each
component G[Wi] of G[W], to find a bisection of Wi that strongly
co-satisfies at least jWij/2 vertices of Wi. The factor-critical compo-
nents in G[X] are more challenging to find a good partition. Here
we distinguish several cases. In many settings the result can again
be obtained by using edge-flip techniques. More precisely, we
introduce the following notion of matched neighbors property
and show that for any graph not having this property, we can find
a good balanced partition by edge-flips.

Definition 3.7 (matched neighbors property). We say that a factor-
critical graph G = (V,E) has the matched neighbors property, if for
any vertex v 2 V and any perfect matching M in G[V � v], M induces
a perfect matching in N(v).

We first observe that it is possible to check in polynomial time
whether a given graph G satisfies the matched neighbors property,
and if not, to find a corresponding certificate, i.e., a vertex v 2 V and
a perfect matching M in G[V � v] such that M does not induce a per-
fect matching in N(v). This can be done as follows. Consider a fixed
vertex v 2 V and a fixed neighbor u 2 N(v) of v. To check whether
there is a perfect matching M in G[V � v] such that u is not linked
to another vertex in N(v) by M, we consider the graph
G0 = (V � v,En{uwjw 2 N(v)}), and check whether G0 admits a perfect
matching. If this is the case, then G does not satisfy the matched
neighbors property, because the vertex v together with the match-
ing M is a certificate therefor. Notice that G satisfies the matched
neighbors property if and only if for every pair of vertices v 2 V
and u 2 N(v), the corresponding graph G0, as defined above, does
not admit a perfect matching. Hence, this can easily be checked
in polynomial time.

The following proposition shows that in any graph that does not
satisfy the matched neighbors property, we can find a good parti-
tion using edge-flips.

Proposition 3.8. Let G = (V,E) be a factor-critical graph that does not
satisfy the matched neighbors property. Then, there is a balanced
partition that strongly co-satisfies at least (jVj + 1)/2 vertices.
Proof. Since G does not satisfy the matched neighbors property,
we can find a vertex v 2 V and a perfect matching M in G � v such
that there is an edge ab 2M with a 2 N(v) and b R N(v). We put v
in one partition, say V1, and perform edge-flips on all edges of M.
Observe that there is a strictly positive probability that v is
strongly co-satisfied because of the following. Every neighbor of
v is in V2 with probability 1/2. Furthermore, the event that
a 2 V2 is independent of the event that any other neighbor of v
is in V2. Hence, we can conclude that with strictly positive prob-
ability more than half of the neighbors of v are in V2, in which
case v is strongly co-satisfied. Notice that in the above reasoning
we crucially exploit the fact to have an edge ab with a 2 N(v) and
b R N(v), since otherwise if all vertices of N(v) were perfectly
matched by edges of M, then always exactly half of the neighbors
of v would be in V2, and hence, v would never be strongly
co-satisfied.

By Proposition 3.4 each vertex of V � v is strongly co-satisfied
with probability at least 1/2. Hence, the expected number of
strongly co-satisfied vertices is strictly more than jVj/2. Using
derandomization through conditional expectations, we can find in
polynomial time a balanced partition strongly co-satisfying at least
djVj/2e = (jVj + 1)/2 vertices. h

To complete the discussion of factor-critical graphs, we now
consider factor-critical graphs satisfying the matched neighbors
property. We first observe, that by using edge-flip techniques, we
can easily strongly co-satisfy (jVj � 1)/2 vertices in any factor crit-
ical graph.

Proposition 3.9. Let G = (V,E) be a factor-critical graph. Then there is
a polynomial-time algorithm to find a balanced partition strongly co-
satisfying at least (jVj � 1)/2 vertices.
Proof. Fix an arbitrary vertex v 2 V, and let M be a perfect match-
ing in G[V � v]. We associate v with the first partition, i.e., v 2 V1. By
Proposition 3.4, we strongly co-satisfy in expectation at least
(jVj � 1)/2 vertices of V � v by performing edge-flips on M. The
result follows by using derandomization through conditional
expectations. h

A priori it is not clear whether the above procedure yields a 2-
approximation for the problem of finding a balanced partition that
strongly co-satisfies the maximum number of vertices, since it
might be possible, that there is a balanced partition strongly co-
satisfying all vertices. In the following we show that if G is a fac-
tor-critical graph with the matched neighbors property, then no
partition strongly co-satisfies all of the vertices. This will be proven
by showing that the factor-critical graphs with the matched neigh-
bors property have a very special structure. More precisely, we will
show that each block of such a graph is an odd clique. We start by
showing that the matched neighbors property in a factor-critical
graph holds block-wise.

Proposition 3.10. Let G = (V,E) be a factor-critical graph that satisfies
the matched neighbors property. Then every block of G is also factor-
critical and satisfies the matched neighbors property.
Proof. Let G = (V,E) be a factor-critical graph that satisfies the
matched neighbors property. Let B ¼ fB1; B2; . . . ;Bqg be the block
decomposition of G. We first claim that every leaf-block Bi 2 B
has odd size. Indeed, let Bi be a leaf-block and let w 2 Bi be the
unique cut-vertex of G in Bi. Since G is factor-critical and G[Bi � w]
is a connected component of G � w, it follows that any perfect
matching M in G � w induces a perfect matching in Bi � w. Thus
Bi has odd size.

Next we claim that for every leaf-block Bi 2 B, the graph G0 =
G[Vn(Bi � w)] is factor-critical and satisfies the matched neighbors
property. Let v 2 Vn(Bi � w). Since G is factor-critical, it follows that
there exists a perfect matching M in G � v. First assume that v – w.
Let w0 2 V such that ww0 2M. Since Bi has odd size, we conclude
that w0 2 VnBi. Thus M induces a perfect matching in G0 � v, and
hence G0 is factor-critical. Now assume that v = w. Then clearly M
induces a perfect matching in G0 � v, since G0 � v is a connected
component of G � v. Thus G0 is factor-critical.

Furthermore, since G has the matched neighbors property, M
induces a perfect matching in N(v) \ V. If w – v, then
N(v) \ V = N(v) \ V(G0) and we are done. If w = v, let Ni(v) = N(v) \ Bi

and N0(v) = (N(v) \ V)nNi(v). Since M induces a perfect matching in
N(v) \ V, and there are no edges between Ni(v) and N0(v), it follows
that M induces a perfect matching in N0(v). Hence, we conclude
that G0 has the matched neighbors property.

Since every block B 2 B can be obtained from G by successively
deleting leaf blocks (without the corresponding cut-vertices), it
follows from the above that every block in G is factor-critical and
satisfies the matched neighbors property. h



Proposition 3.11. Let G = (V,E) be a factor-critical graph satisfying
the matched neighbors property. Then either G is a complete graph
or G has a cut-vertex.
Proof. We assume by contradiction that G is not a complete graph
and that G has no cut-vertex. Thus there exists a vertex v 2 V which
has a non-neighbor. We consider the partition of G � v given by
N = N(v) and N ¼ V n ðNðvÞ þ vÞ. Since G is connected (this follows
from the fact that G is factor-critical) and since v has a non-neighbor,
it follows that N; N–;. Also, from the connectivity of G, it follows
that there is a vertex u 2 N which is adjacent to some vertex
w 2 N. Since G is a factor-critical graph which satisfies the matched
neighbors property, it follows that there exists a perfect matching M
in G[V � v] which induces a perfect matching in N and a perfect
matching in N. Let us denote by u0 2 N and w0 2 N the vertices such
that uu0, ww0 2M. We claim that uw0 2 E and u0w, u0w0 R E. Indeed, if
uw0 R E, then M0 = (Mn{uu0}) [ {vu0} is a perfect matching in G � u
which does not induce a perfect matching in N(u), since ww0 2M0

and w 2 N(u), w0 R N(u). This would contradict the fact that G has
the matched neighbors property. Thus uw0 2 E. By symmetry, it
follows that it is enough to show u0w R E, for concluding at the
same time u0w R E and u0w0 R E. Suppose that u0w 2 E. Then
M0 = (Mn{uu0,ww0}) [ {uw0,u0w} is a perfect matching in G � v which
does not induce a perfect matching in N(v), since for instance
uw0 2M0 and u 2 N(v), w0 R N(v). Again, this contradicts the fact that
G has the matched neighbors property, and hence u0w, u0w0 R E. Next,
consider the graph Gu ¼ G½N þ u�. Let Mu = M \ E(Gu). We claim that
for each vertex y 2 N that belongs to the same connected compo-
nent as u in Gu, there exist two alternating paths with respect to
Mu, one, say Py, from u to y such that y is incident with an edge of
Mu in Py, and one, say P0y, from u to y such that y is not incident with
an edge of Mu in P0y. This trivially holds for w, w0. Now consider y 2 N
such thatwy 2 E. Let y0 2 N such that yy0 2Mu. First notice that
wy0 2 E. Indeed, if wy0 R E, then M0 = (Mn{uu0,ww0}) [ {vu0,uw0} is a
perfect matching in G � w which does not induce a perfect matching
in N(w), since yy0 2M0 and y 2 N(w), y0 R N(w), a contradiction. Thus
wy0 2 E. Now we get the desired paths: Py = u � w0 � w � y0 � y and
P0y ¼ u�w0 �w� y. Similarly we obtain Py0 ¼ u�w0 �w� y� y0

and P0y0 ¼ u�w0 �w� y0. Thus the claim also holds for all vertices
y; y0 2 N such that yy0 2Mu and at least one of y, y0 is adjacent to
some vertex in {w,w0}. Now by repeating the above argument, we
conclude that the claim holds.

Since G has no cut-vertex, G � u contains a path from w to a
vertex in N(v). Let yx be the first edge on this path, that goes from N
to N. Hence x 2 N, and y 2 N is a vertex that is in the same
connected component as w in the graph G½N�. If x = u0, then consider
the cycle C = Py [ {u0y,u0u}. Clearly C is alternating with respect to
M. Thus, by switching the edges of C, we obtain a perfect matching
M0 in G � v such that u0y 2M0. Thus M0 does not induce a perfect
matching in N, a contradiction. So we may assume that x – u0. Let
x0 2 N be such that xx0 2M. Then v � u0 � u � Py is an alternating
path from v to y with respect to M. By switching the edges of this
alternating path, we obtain a perfect matching M0 in G � y. Let
z 2 N such that uz 2M0. As discussed in the first paragraph of the
proof, every neighbor of u in N is not connected to u0; hence, u0z R E.
Since M0 induces a perfect matching in N(y), it follows that yx0 2 E.
But now M00 = (M0n{vu0,xx0}) [ {vx,x0y} is a perfect matching in
G � u0 which does not induce a perfect matching in N(u0), since
uz 2M00 and u 2 N(u0), z R N(u0), a contradiction. h

The following result immediately follows from Propositions
3.10 and 3.11.

Corollary 3.12. Let G be a factor-critical graph satisfying the matched
neighbors property. Let {B1,B2, . . . ,Bq} be the block decomposition of G.
Then each block Bi, i = 1,2, . . . ,q, is an odd clique.
Using the above corollary, we now show that no partition al-
lows to strongly co-satisfy all vertices in a factor-critical graph that
satisfies the matched neighbors property. First let us consider the
case when having a single block, i.e., G is a clique of odd size.

Proposition 3.13. Let G be a clique of odd size. Then any partition of
V (not necessarily balanced) strongly co-satisfies at most (jVj � 1)/2
vertices of G.
Proof. Observe that for any partition V1, V2 of V, all vertices in the
larger set of the partition are not strongly co-satisfied.
Proposition 3.14. Let G = (V,E) be a factor-critical graph satisfying
the matched neighbors property. Then no partition V1, V2 of V strongly
co-satisfies all vertices in V.
Proof. Consider a leaf block B of G, and let w be the cut-vertex cor-
responding to B. Let V1, V2 be a partition of V. By Proposition 3.13 the
partition V1, V2 strongly co-satisfies at most (jBj � 1)/2 vertices of B
in the graph G[B]. Since every vertex v 2 B � w has no neighbors
outside of B, the partition V1, V2 strongly co-satisfies v in G if and
only if it strongly co-satisfies v in G[B]. Hence at most (jBj � 1)/2
vertices in B � w are strongly co-satisfied. Since jBjP 3, at least
one vertex in B � w is not strongly co-satisfied by V1, V2. h

Even though Proposition 3.14 is sufficient for our purposes, we
would like to highlight that the following stronger result holds as well.

Proposition 3.15. Let G = (V,E) be a factor-critical graph satisfying
the matched neighbors property. Then any partition of V strongly co-
satisfies at most (jVj � 1)/2 vertices.
Proof. We prove the result by induction on the number of blocks
of G. Notice that in the proof of Proposition 3.10, we showed that
if a graph G is factor-critical satisfying the matched neighbors
property and Bi is a leaf-block of G with corresponding cut-vertex
w, then G0 = G[Vn(Bi � w)] is factor-critical and satisfies the
matched neighbors property. If there is just one block, then, by
Proposition 3.12, G is necessarily a clique of odd size and thus
the result follows from Proposition 3.13. So we may assume that
there exist at least two blocks. Let V1, V2 be a partition of V and
let B be a leaf block of G. Let w 2 B be the (unique) cut-vertex of
G in B. Let V0 = Vn(B � w). Recall that B is a clique (see Proposition
3.12). We will distinguish two cases, depending on whether
jV1 \ (B � w)j– jV2 \ (B � w)j or jV1 \ (B � w)j = jV2 \ (B � w)j.

Case (a): jV1 \ (B � w)j– jV2 \ (B � w)j. Assume without loss of
generality that jV1 \ (B � w)j > jV2 \ (B � w)j. Observe that all
vertices in V1 \ (B � w) are not strongly co-satisfied with
respect to V1, V2. Since jV1 \ (B � w)jP (jBj + 1)/2, there are at
most (jBj � 3)/2 vertices in B � w that are strongly co-satisfied
with respect to V1, V2. Furthermore, by induction, the partition
V1 \ V0, V2 \ V0 strongly co-satisfies at most (jV0j � 1)/2 vertices
of G[V0]. Notice that the vertex w might be strongly co-satisfied
with respect to V1, V2 in G[V] but not with respect to V1 \ V0,
V2 \ V0 in G[V0], since w has neighbors in B. This implies that
the partition V1, V2 strongly co-satisfies at most (jV0j � 1)/2 + 1
vertices in V0, where the +1 is due to the vertex w. Hence the
total number of strongly co-satisfied vertices is at most
(jV0j � 1)/2 + 1 + (jBj � 3)/2 = (jVj � 1)/2.
Case (b): jV1 \ (B � w)j = jV2 \ (B � w)j. Then, exactly (jBj � 1)/2
vertices in B � w are strongly co-satisfied. Furthermore, one
can observe that the vertices in G[V0] that are strongly co-satisfied
with respect to the partition V1 \ V0, V2 \ V0 are exactly the verti-



ces that are strongly co-satisfied with respect to the partition V1,
V2 in G. Thus, by induction, the total number of strongly co-satis-
fied vertices is at most (jBj � 1)/2 + (jV0j � 1)/2 = (jVj � 1)/2. h

Putting everything together, our 2-approximation for the MAX
STRONG CO-SATISFYING BISECTION PROBLEM works as follows. In
a first step we compute an Edmonds–Gallai decomposition
(X,Y,W) of the given graph G = (V,E). If Y – ;, we can apply
Theorem 3.6 to find a bisection strongly co-satisfying half of all
the vertices, which is obviously a 2-approximation.

Now assume Y = ;. Notice that in this case, the graph G consists of
factor-critical odd connected components G[X1], . . . ,G[Xp] with
X1 [ � � � [ Xp = X, and of even connected components that admit
a perfect matching and whose union is G[W]. Furthermore, since G
has an even number of vertices, we have that p is even. Let
G[X1], . . . ,G[Xk] be the factor-critical components satisfying the
matched-neighbors property, and G[Xk+1], . . . ,G[Xp] be those that
do not satisfy the matched neighbors property. For each i 2 {1, . . . ,k},
we apply Proposition 3.9 to find a partition Xi,1, Xi,2 of Xi with
jXi,1j = jXi,2j + 1 that strongly co-satisfies at least (jXij � 1)/2 vertices
of Xi. Furthermore, for i 2 {k + 1, . . . ,p} we use Proposition 3.8 to find
a partition Xi,1, Xi,2 of Xi with jXi,1j = jXi,2j + 1 that strongly co-satisfies
at least (jXij + 1)/2 vertices of Xi. Additionally, since G[W] admits a
perfect matching, we can apply Theorem 3.5 to find a bisection
W1, W2 of W that strongly co-satisfies at least jWj/2 vertices of W.
We finally return the bisection V1, V2 given by

V1 ¼W1 [
[p=2

i¼1

Xi;1 [
[p

i¼p=2þ1

Xi;2;

V2 ¼W2 [
[p=2

i¼1

Xi;2 [
[p

i¼p=2þ1

Xi;1:

First, it is easy to check that V1, V2 is indeed a bisection, i.e.,
jV1j = jV2j. That the partition can be found in polynomial time fol-
lows from the fact that all results used in the above discussion
are constructive and come with efficient algorithms. Furthermore,
by the above discussion the total number of vertices being strongly
co-satisfied by V1, V2 is at least

Xk

i¼1

ðjXij � 1Þ=2þ
Xp

i¼kþ1

ðjXij þ 1Þ=2þ jWj=2 P ðjV j � kÞ=2: ð2Þ
By Proposition 3.14, we have that any partition V 01; V 02 of V, satisfies
at most jXij � 1 vertices in G[Xi] for i 2 {1, . . . ,k}. Hence, no partition
– not even one that is not a bisection – can strongly co-satisfy more
than jVj � k vertices of G. Together with (2), this implies that the
proposed algorithm is indeed a 2-approximation for finding a bisec-
tion maximizing the number of strongly co-satisfied vertices. More
precisely, it shows that there is not even a partition of V that
strongly co-satisfies strictly more than twice the number of vertices
that are strongly co-satisfied by the proposed algorithm.
4. Conclusion

In this paper we considered the MAX SATISFYING BISECTION
PROBLEM and presented a polynomial-time 2-approximation algo-
rithm. This answers an open question from [3]. It remains open
whether one can do better, i.e., whether there exists a polyno-
mial-time c-approximation algorithm for c < 2.
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