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Abstract: In this paper, a semi-Markov decision model of a two-location inventory
system with holdout transshipment policy is reviewed under the assumption of
phase-type exponential replenishment lead time rather than exponential lead time.
The phase-type exponential lead time more closely approximates fixed lead time as
the number of phases increases. Unlike past research in this area which has concen-
trated on the simple transshipment policies of complete pooling or no pooling, the
research presented in this paper endeavors to develop an understanding of a more
general class of transshipment policy. In addition, we propose an effective method
to approximate the dynamic holdout transshipment policy.

Keywords: Inventory management, lateral transshipment policy, stochastic mod-
eling and dynamic programming.

1. Introduction

Most studies of transshipment policy consider the
system with the complete and no pooling poli-
cies only. Rather than that, we consider a system
with a more general pooling policy which allows
the system to make transshipments provided the
inventory level at one specific location exceeds a
given threshold. When the threshold value is equal
to zero, it represents complete pooling. When
the threshold is large enough, it represents no
pooling. It represents a partial pooling policy
when that threshold is between these two values.
The threshold is referred as the holdout for a
transshipment delivery.

In our previous study (Zhang, 2008, Section
6.3), we examined a semi-Markov decision pro-
cess (SMDP) model of a two-location inventory
system with exponential replenishment lead time.

Because of our assumption of exponential lead
time, the optimal transshipment decision does
not depend on the state of the replenishment
order process due to the memory-less property
of the exponential distribution. Intuitively one
might expect that a location would become more
willing to share inventory as its next replenish-
ment approaches. One might also expect that, due
to the form of the backorder cost (which increases
with the time required to fill a backorder), the
incentive for transshipment would decrease as the
next replenishment at the location with inventory
shortage approaches. These features cannot be
captured by the SMDP model with exponential
lead time. Hence, the results of the SMDP model
with exponential lead time might not be appli-
cable to, for example, the situation of fixed lead
time. It is necessary to consider another SMDP

model with phase-type lead time in which the
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optimal transshipment decision is not only depen-
dent on inventory level at the locations, but also
dependent on the state of the replenishment order
process.

Hence, we consider an advanced model with the
assumption that the replenishment lead time is
the sum of a fixed number of independent and
identically distributed (IID) exponential random
variables. The phase-type distribution is also con-
venient for a SMDP model because the time until
the end of a phase does not depend on the time
that has passed since the start of the phase. Hence,
to model the time until the delivery of an order,
it is only necessary to know how many phases have
been completed since the order was placed.

Few published research works consider a SMDP

approach assuming the phase-type distribution
exponential lead time. Ours might be the first
work to use this approach to investigate the trans-
shipment decision in inventory systems. However,
it is necessary to give a quick review of relevant
studies of transshipment policy, particularly those
using dynamic programming.

Much of the research on transshipment in multi-
location inventory systems considers models which
allow transshipment at a single point during a
period. This point may fall after demand for the
period is fully realised (see for example (Zou et al.,
2010; Hu et al., 2008; Krishnan and Rao, 1965))
or before demand for the period is fully realised
(see for example (Bertrand and Bookbinder,
1998; Karmarkar, 1987; Gross, 1963)). However,
these models are not suitable when customers
arrive sequentially and require immediate service.
This situation often arises in a retail setting for
example. One approach is to consider transship-
ment each time a stockout arises at a location.
Many models of this type assume one-for-one
replenishment and are intended for inventories of
spare parts or other slow-moving items. Often
such models assume complete pooling among loca-
tions in a neighbourhood, for example (Lee, 1987;
Axsäter, 1990; Kutanoglu, 2008; Kutanoglu and
Mahajan, 2009). Other approaches such as (Gra-
hovac and Chakravarty, 2001) have considered
partial pooling with a fixed holdout level. In
contrast, our research considers a different class
of replenishment policy and focuses on partial
pooling policies that allow the holdout level to
depend on remaining lead times of outstanding
replenishment orders and the inventory levels of
the locations.

Archibald et al. (1997) is one of the first papers
to consider transshipment in response to stock-
outs for other types of replenishment policy. They
develop a SMDP model of a periodic review
inventory system with two-locations, a base-stock

replenishment policy and zero replenishment lead
time. The optimal transshipment policy is shown
to consist of a set of thresholds which depend
on the inventory level at the location with stock
on hand and the time until the next replenish-
ment of the locations. The method adopted in
our research follows a similar approach and pro-
poses a heuristic transshipment policy with some
similar features. However, our research assumes
a continuous review system, non-zero replenish-
ment lead time and a cost function that depends
on the time taken to satisfy backorders. Conse-
quently, the optimal transshipment policy for the
model developed in this paper is a function of four
variables rather than two.

Archibald (2007) proposes three heuristic methods
for systems with more than two locations under
the same assumptions as (Archibald et al., 1997).
The heuristics exploit the structure of the optimal
transshipment policy for the two-location system
and differ in the willingness of the locations to
meet transshipment requests.

Zhao et al. (2008) develop a SMDP model of a
make-to-stock system with two locations in which
transshipment can be triggered by a demand or a
production completion at a location. In this way,
transshipment allows both inventory and produc-
tion capacity to be shared between the locations.
Under the assumptions of Poisson demand and
exponential production times, the structure of the
optimal policy is derived. In our model, inventory
is replenished by ordering from a supplier rather
than production and the replenishment lead time
has a phase-type distribution to approximate a
fixed lead time.

Models with unidirectional transshipment have
been proposed for situations with very different
shortage costs at locations in the system (Axsäter,
2003), both direct and indirect sales channels
(Seifert et al., 2006) or logistical barriers to bidi-
rectional transshipment (Olsson, 2010). Seifert et
al. (2006) assume that customers using the direct
sales channel demand immediate service while cus-
tomers using the indirect sales channel are willing
to wait for service. Hence, transshipment can
be used to satisfy customers using the indirect
channel once the total demand for a period has
been realised. As in our model, Olsson (2010) and
Axsäter (2003) allow transshipment whenever a
stockout arises. However, unlike our research, they
assume complete pooling.

In this paper, we develop two SMDP models for
a two-location inventory system: one is with a gen-
eral transshipment policy and the other is with
a holdout transshipment policy. In Section 2, we
first define our assumptions and notation before
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formulating SMDP models for the general and
holdout transshipment policies. In Section 3, we
present the results of a numerical analysis of the
two SMDP models. Additionally, benefiting from
SMDP technique, we propose a quick and reliable
method to approximate the dynamic transship-
ment policy, which could be used as a powerful
tool for other similar research.

2. MODEL FORMULATION

2.1 Model assumptions and notations

We consider a two-location inventory system with
unidirectional transshipment from location 2 to
location 1. At location k, k=1, 2, a Poisson
demand process with rate λk is used to model the
customer demand. Unmet demand at a location
may be backordered. When a backorder is placed

at location k, there is one-off stockout cost b̂k and
a further backorder cost of bk per time unit until
the backorder is satisfied. Alternatively unmet
demands at location 1 may be met by transship-
ment from location 2. Transshipment is assumed
to be instantaneous and involves a cost of ω per
item. Further, at location k the fixed order cost
is ck and holding cost is hk per item per time unit.

We assume that the inventory level at location
k can not exceed the storage capacity Mk and
the maximum number of backorders that can be
placed is Nk. This assumption is necessary for a
finite state model. If a demand occurs at a loca-
tion after the maximum number of backorders has
been reached and, in the case of location 1, trans-
shipment is not possible, the demand results in
a lost sale at a cost of Bk per item.

We assume a continuous review replenishment
order policy with fixed order quantity Qk at loca-
tion k. We further assume that there can never
be more than one outstanding order at each loca-
tion. This is important for computational reasons
(as it limits the dimension of the state space) and
is reasonable when the order quantity is large rel-
ative to the lead time demand. We also assume
that it is not possible to place a replenishment
order at a location while the fixed order quantity
for the location exceeds the available storage at
the location. Otherwise it is possible (for example,
if there is no demand during the replenishment
lead time) that the storage capacity will be vio-
lated when the order is delivered. We note that
it is straightforward to modify the model to allow
for variable order quantities or (R, Q) replenish-
ment order policies.

We use a phase-type distribution (see (Tijms,
1995, p162)). The lead time at location k is
assumed to be the sum of Wk independent and
identically distributed (IID) exponential random

variables each with mean
1

Wkµk

. We call this phase-

type exponential lead time. Each random vari-
able represents a phase of the lead time and
Wk is referred to as the number of phases. As
the number of phases increases, the model more
closely approximates a fixed lead time.

The phase-type distribution is convenient for a
SMDP model because the time until the end of
a phase does not depend on the time that has
passed since the start of the phase. Hence, to
model the time until the delivery of an order, it
is only necessary to know how many phases have
been completed since the order was placed.

To help us to define relevant terms, we denote the

indicator function δ(x) = {1 if x>0
0 if x60 and its com-

plement function δ̂ (x) = 1 − δ(x) = {0 if x>0
1 if x60.

Throughout this paper the terms decision and
action are interchangeable.

2.2 General transshipment policy formulationState space
The state of the process is defined to be the inven-
tory levels and the status of replenishment orders
at the locations. Let ik denote the inventory level
at location k, k = 1, 2, where negative values
indicate outstanding backorders. Let wk = 0 rep-
resent the situation where there is no outstanding
replenishment order at location k. Let wk >0 rep-
resent the situation where there is one outstanding
replenishment order for Qk items at location k and
that this order will arrive after wk phases (i.e. after
a time equal to the sum of wk IID exponential

random variables each with mean
1

Wkµk

).

Definition 1. Under our assumptions, the state
space is given by

I={(i1,i2, w1, w2): −Nk 6 ik 6Mk,

06 wk 6 Wk for k = 1, 2}Action space
Decisions have to be made concerning the replen-
ishment of the locations and how to meet demand
at location 1 when there is no local inventory.
Let Xk(i) denote the set of the possible replen-
ishment order decisions at location k, k = 1, 2
when the system is in state i = (i1, i2, w1, w2).
When there is no outstanding order at location k

Model formulation 3



(i.e. wk=0) and there is sufficient storage capacity
for a delivery of Qk items (i.e. Qk 6 Mk − ik,
we can choose to place a replenishment order. The
decision to place an order is modeled by setting
the replenishment order decision equal to Wk and
the decision not to place an order is modeled by
setting the replenishment order decision equal to
0. Hence, if wk = 0 and ik 6 Mk − Qk, Xk(i) =
{0, Wk}. Under our assumption it is not possible
to place a replenishment order at location k in
any other states because either there already is
an outstanding order at location k (i.e. wk > 0) or
the storage capacity is not sufficient for a delivery
of Qk items (i.e. ik >Mk−Qk). In such cases, it is
convenient for the formulation to set the replenish-
ment order decision equal to the number of phases
remaining in the lead time (i.e. wk). It follows
that

if wk > 0 or ik > Mk − Qk, Xk(i) = {wk}

Let wk

′

represent the replenishment order decision
at location k, k =1,2. For any given state i∈ I, wk

′

can take any value in the set Xk(i).

We next consider the decision of how to satisfy
a demand at location 1, which we refer to as the
transshipment decision. Let D(i) denote the set of
possible transshipment decisions when the system
is in state i. Let 0 represent the decision to meet
the demand at location 1 by transshipment and 1
represent the decision not to use transshipment.
When the inventory level at location 1 is greater
than zero, it is assumed that meeting the demand
from inventory at location 1 is optimal. Further,
when the inventory level at location 2 is less than
or equal to zero, meeting the demand via trans-
shipment from location 2 is not feasible. Hence, if
i1 > 0 or i2 6 0 D(i)= {1}. In other situations, we
can choose whether to use transshipment to meet
the demand or not. Therefore, if i1 60 and i2 > 0,
D(i)= {0, 1}.

Let d represent the decision with regard to trans-
shipment from location 2 to location 1. For any
given state i∈ I, d can take any value in the set of
D(i).

Definition 2. Under our assumptions, the action
space in state i is given by

A(i)={(w1

′

,w2

′

,d): w k

′

∈Xk(i)fork=1,2,d∈D(i)}

From the assumptions above, we conclude that the
state space I and action space A(i) are finite.Decision epoch
Decisions need to be taken when a demand occurs
at either location or when the system reaches the
end of a phase of the lead time at either loca-

tion. We define an event to be any occurrence of a
demand or the end of any phase of a replenishment
order lead time in the system. With this defini-
tion, the time of the next event depends on the
state of the system. When there is no outstanding
order at location k, we introduce a fictitious event
after a time that has an exponential distribution
with mean

1

Wkµk

. This can be thought of as the

end of the final phase of the lead time of a zero
replenishment order at location k and will leave
the state unchanged. Hence, whatever the state
and action, the next event can always be a demand
at location 1, a demand at location 2, the end of
a phase of the lead time of a (possibly fictitious)
replenishment order at location 1 or location 2.
The time until each of the possible events is expo-
nential with scale parameter independent of the
state and action. Hence, the expected time until
next decision epoch no longer depends on state
or decision. We can now define τ as the expected
time until the next decision epoch where

τ =
1

λ1 + λ2 + W1µ1 + W2µ2
(1)Transition probabilities

We define the transition probabilities for the
model implicitly by considering which one of the
four possible events occurs at the next decision
epoch. Though the probability of the events do
not always correspond to transition probabilities,
the transition probabilities can be deduced from
the probabilities of the events occurring.

Consider a decision epoch in which the system is

in state i=(i1, i2,w1,w2) and action a=(w1

′

,w2

′

, d)
is chosen. The probability that the next event is a
demand at location 1 is λ1τ . If d=0, this demand
is met by transshipment from location 2 and the
state of the process at the next decision epoch is

(i1, i2−1,w1

′

,w2

′

). Otherwise, if d=1, this demand
is satisfied from location 1 (either from inventory
or by backorder) and the state of the process at
the next decision epoch is (max (−N1, i1− 1), i2,
w1

′

, w2

′

). Similarly, the probability that the next
event is a demand at location 2 is λ2τ and the
state of the process at the next decision epoch is

(i1,max(−N2,i2− 1),w1

′

,w2

′

).

The probability that the next event is the end of a
phase of a replenishment order lead time at loca-

tion 1 is W1µ1τ . If w1

′

=0, ths is a fictitious event
and the state of the process at the next decision

epoch is (i1, i2, w1

′

, w2

′

). If w1

′

= 1, this is the
delivery of a replenishment order at location 1 and
the state of the process at the next decision epoch

is (i1 + Q1, i2, 0, w2

′

). Otherwise, if w1

′

> 1, this is
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the end of a phase of the replenishment lead time
and the state of the process at the next decision

epoch is (i1, i2, w1

′

− 1, w2

′

). The probability that
the next event is the end of a phase of a replen-
ishment order lead time at location 2 is W2µ2τ

and, following a similar argument to the above,
the state of the process at the next decision epoch

is (i1,i2+Q2,w1
′,0) if w2

′

=1 and (i1, i2, w1

′

, min (0,

w2

′

− 1)) otherwise.Immediate cost
We now define ci(a) the expected cost incurred
until the next decision epoch when action a is
chosen in state i at the current decision epoch.
To reiterate, this cost consists of the fixed order
cost, holding cost, backorder cost, stockout cost,
lost sale penalty cost and transshipment cost.

Under our assumptions, a replenishment order is
only placed at location k at a decision epoch when
wk

′ >wk. Hence, the fixed order cost incurred until
the next decision epoch is equal to ckδ(wk

′ − wk)
at location k, k = 1, 2. Inventory levels do not
change between decision epochs, so the expected
inventory cost at location k until the next decision
epoch is hkikτ if ik > 0 and − bkikτ if ik < 0.
When the next event is a demand at location 1,
there is a cost of ω if it is met by transshipment
(d = 0), b̂1 if it is met by backorder (d = 1 and
− N1 < i1 6 0), and B1 if it results in a lost sale
(d = 1 and i1 = − N1). When the next event is
a demand at location 2, there is a cost of b̂2 if
it is met by backorder ( − N2 < i2 6 0) and B2

if it results in a lost sale (i2 = − N2). Hence,
we conclude that the expected cost until the next
decision epoch when action a is chosen in state i

at the current decision epoch is as follows.

ci(a)={
∑2

k=1

{ckδ(wk

′

−wk)+ [hkδ(ik)− bkδ̂ (ik)]ikτ }

+ λ1τd{δ̂ (i1)b̂1 + δ̂ (N1 + i1)(B1− b̂1)}

+ λ2τ {δ̂ (i2)b̂2 + δ̂ (N2 + i2)(B2− b̂2)}

+ λ1τ(1− d)ω (2)Value-iteration algorithm
Following standard techniques for SMDP models
(see for example (Tijms, 2003), the optimal long-
run average cost per time unit can be calculated
using the value iteration algorithm. This approach
applies a data transformation to the SMDP

model to create a discrete-time Markov decision
process (DMDP) model. Under mild assump-
tions, which we will assume hold for the model
being examined, the DMDP model has the same
class of stationary policies and the same long-run
average expected cost per time unit as the orig-
inal SMDP model.

2.3 Holdout transshipment policy formulation

For the SMDP model with the holdout transship-
ment policy, most definitions including the state,
decision epoch, transition probabilities, immediate
cost and value-iteration algorithm are the same as
those in the Section 2.2. Therefore, we just rede-
fine the action space for this model as follows.Action space
Let wk

′

represent the decision taken regarding the
replenishment order at location k. As before, for
any given state i∈ I, wk

′

can take any value in the
set Xk(i).

We introduce a holdout threshold such that, when
location 1 has no inventory, demand at location
1 will be met by transshipment from location 2 if
and only if the inventory level at location 2 exceeds
this threshold. Let I2 denote the holdout threshold
at location 2. Using the same notation as before,
we define D(i) as follows.

If i1 > 0 or i2 6 I2, D(i)= {1}

If i1 6 0 and i2 > I2, D(i)= {0}

Let d represent the decision with regard to the
transshipment decision from location 2 to location
1. For any given state i ∈ I, d takes the value in
the set D(i).

Definition 3. Under our assumptions, the action
space in state i is given by

A(i)={(w1

′

,w2

′

,d); w k

′

∈Wk(i) fork=1,2,d∈D(i)}

From the assumptions, we conclude that the
action space A(i) is finite.

3. NUMERICAL ANALYSIS & DISCUSSION

3.1 Numerical experiments

For the SMDP model with phase-type expo-
nential lead time, the computational overheads
increase quadratically with an increase in the
number of phases in the lead time distributions.
We define Nk = − 80, and Mk = 70 for k = 1,

2, as the limit on backorders and storage capacity
in our numerical experiments. In Table 1, we com-
pare the estimated computing time1, the number
of iterations and average total cost rate for dif-
ferent numbers of phases.

Unless otherwise stated we use the following
parameters in our numerical experiments: λk =

10, Qk = 30, µk = 1, ck = 20, hk = 0.5, b̂k =

Numerical Analysis & discussion 5
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10, bk = 5, Bk = 500, ω = 1 for k = 1, 2. These
results show significant increases in the computing
time when the number of phases increases from
1 to 8. For reasons of practical implementation, we
choose to do our numerical experiments with the
number of phases equal to 4 to assess the impact
of the phase-type lead time.

Iter. No. Wk Av. Cost Est. Time

4016 1 46.47 2 mins

2472 2 39.17 6 mins

1964 3 36.78 10 mins

1734 4 35.58 17 mins

1652 5 34.84 26 mins

1656 6 34.34 42 mins

1706 7 33.97 65 mins

1790 8 33.69 97 mins

Table 1. Average total cost rate for

optimal transshipment policy

with different numbers of phases

We do sensitivity tests on the parameters b1 and

b1̂. In these experiments we vary b1 and b1̂ sepa-
rately and observe the optimal average total cost
rate under a general and a holdout transshipment
policy. The optimal average total cost rate and
the number of iterations for each value of b1 or b1̂

when the number of phases is equal to 4 are shown
in Table 2.

b1 b1̂ Iter. No. Av. Total Cost

1 10 1732 35.24

3 10 1730 35.44

5 10 1734 35.58

7 10 1738 35.68

5 2 1734 35.34

5 4 1734 35.41

5 6 1734 35.48

5 8 1734 35.53

Table 2. Average total cost rate

for optimal transshipment policy

with different values of b1 and b1ˆ

when number of phases = 4

b1̂=10

I2 b1=1 b1=3 b1=5 b1=7

0 35.43 35.52 35.61* 35.69*

1 35.40 35.51 35.61 35.71

2 35.37 35.51* 35.63 35.74

3 35.36 35.51 35.66 35.78

4 35.36* 35.54 35.70 35.84

5 35.37 35.57 35.76 35.92

6 35.39 35.62 35.83 36.01

7 35.42 35.69 35.91 36.11

8 35.47 35.76 36.01 36.22

9 35.53 35.85 36.12 36.35

10 35.60 35.94 36.23 36.48

11 35.67 36.05 36.36 36.62

12 35.76 36.16 36.49 36.76

13 35.85 36.28 36.62 36.91

14 35.95 36.39 36.75 37.06

15 36.04 36.51 36.89 37.20

16 36.14 36.63 37.03 37.35

17 36.24 36.75 37.16 37.49

18 36.33 36.87 37.28 37.62

19 36.42 36.98 37.41 37.75

20 36.51 37.08 37.52 37.88

Table 3. Average total cost rate under

the holdout transshipment policy

with different holdout thresholds and

values of b1 when number of phases = 4

The results in Table 3 show that, when b1 =1 and
3, the optimal holdout transshipment policy is the
partial pooling policy with holdout threshold I2

equal to 4 and 2 respectively. However, when b1 =
5 and 7, the optimal holdout transshipment policy
is complete pooling. The predicted improvements
in the average total cost from the optimal holdout
transshipment policy are 0.21%, 0.05%, 0.00% and
0.00% with respect to complete pooling (I2 = 0)
and 3.27%, 4.44%, 5.37% and 6.13% with respect
to no pooling (I2 = M2) respectively. Further,
the difference between the average total cost rates
under the optimal holdout transshipment policy
and the optimal general transshipment policy is
0.32%, 0.18%, 0.10% and 0.03% respectively.
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b1=5

I2 b1̂=2 b1̂=4 b1̂=6 b1̂=8

0 35.46 35.50 35.54 35.57

1 35.43 35.48 35.52 35.57*

2 35.41 35.47* 35.52* 35.58

3 35.40* 35.47 35.54 35.60

4 35.41 35.49 35.56 35.63

5 35.42 35.51 35.60 35.68

6 35.45 35.56 35.65 35.74

7 35.49 35.61 35.72 35.82

8 35.55 35.68 35.80 35.91

9 35.62 35.76 35.89 36.01

10 35.70 35.85 35.99 36.12

11 35.79 35.95 36.10 36.23

12 35.88 36.06 36.22 36.36

13 35.99 36.17 36.34 36.49

14 36.10 36.29 36.46 36.62

15 36.21 36.41 36.59 36.74

16 36.32 36.53 36.71 36.87

17 36.43 36.65 36.83 37.01

18 36.54 36.76 36.96 37.13

19 36.64 36.87 37.07 37.24

20 36.74 36.97 37.18 37.36

Table 4. Average total cost rate under

the holdout transshipment policy

with different holdout thresholds and

values of b1ˆ when number of phases = 4

Similarly, when b1̂ = 2, 4, 6, and 8, in Table 4
the optimal holdout transshipment policy is the
partial pooling policy with holdout threshold I2

equal to 3, 2, 2 and 1 respectively. The predicted
improvements in the average total cost from the
optimal holdout transshipment policy are 0.16%,
0.09%, 0.04% and 0.02% with respect to com-
plete pooling (I2 = 0) and 3.77%, 4.24%, 4.65%
and 5.02% with respect to no pooling (I2 = M2)
respectively. Further, the difference between the
average total cost rates under the optimal holdout
transshipment policy and the optimal general
transshipment policy is 0.18%, 0.15%, 0.14% and
0.11% respectively.

The results in Tables 3 and 4 illustrate properties
one would expect of an optimal holdout policy.
That is, when the expected stockout or backorder
cost increases at location 1, the optimal holdout
threshold I2 at location 2 is lowered to give more
transshipment support. The evidence is clear from
the movement of the optimal holdout threshold in
the tables.

3.2 Optimal transshipment decisions

In this section, we investigate how optimal trans-
shipment decisions depend on the state of the

replenishment order process. Due to the memory-
less property of the exponential distribution, the
same transshipment decisions are taken when
there is no outstanding order at location k as when
there are Wk phases remaining in the lead time
of an outstanding order at location k. Hence, when
considering the state of the replenishment order
process, it is only necessary to consider situations
where there are outstanding orders at both loca-
tions (i.e. 1 6 wk 6 Wk for k = 1 and 2). We are
also keen to know how the optimal holdout trans-
shipment policy compares to the optimal general
transshipment policy.

Figures 1 to 8 plot the optimal transshipment deci-
sion as a function of the inventory levels at the

two locations when b1 = 5 and b1̂ = 10 for dif-
ferent states of the replenishment order process.
Grey shading represents the decision to use trans-
shipment to meet demand at location 1 and black
shading represents the decision to meet demand at
location 1 from local stock or by backorders. So for
example from Figure 1, when w1 = 2, w2 = 4 and
the inventory level at location 1 is between 0 and
− 8, transshipment is only optimal if the inven-
tory level at location 2 is greater than 6. We only
draw the optimal decisions within a range where
− 30 6 i1 6 0 and 1 6 i2 6 10. For the examples
we consider, it is optimal to use transshipment
outside this range if and only if i1 6 0 and i2 > 0.

Figures 1 to 4 show the optimal transshipment
decisions when there are 2 phases remaining in
the lead time of the outstanding order at loca-
tion 1. Each plot represents a different number
of remaining phases in the lead time at location
2. We see that complete pooling is optimal when
there is only 1 phase remaining in the lead time
of the outstanding order at location 2. In other
cases (w2 > 2), there is some evidence of partial
pooling. We note that the optimal level of trans-
shipment support provided by location 2 increases:
as the inventory level at location 2 increases; as the
inventory level at location 1 decreases; and as the
number of phases remaining in the lead time of the
outstanding order at location 2 decreases. None
of these features are captured in a holdout trans-
shipment policy. For this example, the optimal
holdout policy is complete pooling (I2 = 0).

Similarly, Figures 5 to 8 plot the optimal
transshipment policy when there are 4 phases
remaining in the lead time of the outstanding
order at location 2. We see that, as the number
of phases remaining in the lead time at location
1 decreases, location 2 provides less transshipment
support. Again this feature is not captured in a
holdout transshipment policy.

The examples show that the optimal transship-
ment policy depends on the inventory levels at
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the two locations and on the times to the next
replenishments of the two locations. In the exam-
ples we have considered, we note that the optimal
transshipment policy changes gradually as the
inventory level at location 1 falls from 0. As most
inventory systems are managed to provide high
levels of customer service, we expect instances of
negative inventory levels to be relatively rare. This
suggests that the difference between the average
total cost rates for the optimal transshipment
policy and the optimal holdout transshipment
policy is most likely due to the fact that the
holdout threshold cannot vary with the times to
replenishment at the two locations.

We propose a dynamic holdout transshipment
policy in which the threshold depends on the state
of the replenishment order process. The policy
has W1W2 different threshold values each corre-
sponding to a different combination of (w1, w2)
where 1 6 wk 6 Wk. The case wk = 0 is like
wk = Wk due to the memory-less property of the
exponential distribution. The holdout threshold
for given (w1, w2) is defined to be the largest inven-
tory level for which it is optimal for location 2 to
refuse a transshipment request when the inventory
level at location 1 is zero (i1 = 0). Figure 9 plots
the estimated threshold values for different states
of the replenishment order process when b1 = 5

and b1̂=10. The size of the bubbles represents the
size of the holdout threshold which is also shown
by the numbers next to the bubbles. For example,
when w1 = 2 and w2 = 3, the threshold is 3 and
the policy would use transshipment when location
1 has no stock and the inventory level at loca-
tion 2 is greater than 3. The value of the threshold
is non-increasing in the time remaining in the lead
time at location 1 and non-decreasing in the time
remaining in the lead time at location 2.

b1 b1̂ Iter. No. Av. Total Cost

1 10 1720 35.24

3 10 1718 35.44

5 10 1728 35.58

7 10 1740 35.68

5 2 1666 35.34

5 4 1692 35.41

5 6 1708 35.48

5 8 1708 35.53

Table 5. Average total cost rate for

dynamic holdout transshipment policy

with different values of b1 and b̂1

when number of phases equals to 4

The results in Table 5 show that, in all the cases
we consider, the dynamic holdout transshipment
policy is as good as the optimal transshipment
policy in terms of the average total cost rate.
These results demonstrate the importance of
considering the times to replenishment of the loca-
tions and provide strong support for the dynamic
holdout transshipment policy proposed.
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Fig. 1. Optimal transshipment decision

when b1 = 5, b1ˆ = 10, w1 = 2, w2 = 4
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Fig. 2. Optimal transshipment decision

when b1 = 5, b1ˆ = 10, w1 = 2, w2 = 3
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Fig. 3. Optimal transshipment decision

when b1 =5, b1ˆ = 10, w1 = 2, w2 = 2
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Fig. 4. Optimal transshipment decision

when b1 =5, b1ˆ = 10, w1 = 2, w2 = 1
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Fig. 5. Optimal transshipment decision

when b1 = 5, b1ˆ = 10, w1 = 4, w2 = 4

−30 −25 −20 −15 −10 −5 0

1

2

3

4

5

6

7

8

9

10  

Inventory level 1

 

In
ve

nt
or

y 
le

ve
l 2

transshipment

Fig. 6. Optimal transshipment decision

when b1 = 5, b1ˆ = 10, w1 = 3, w2 = 4
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Fig. 7. Optimal transshipment decision

when b1 =5, b1ˆ = 10, w1 = 2, w2 = 4
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Fig. 8. Optimal transshipment decision

when b1 = 5, b1ˆ = 10, w1 = 1, w2 = 4

Fig. 9. Thresholds for a dynamic holdout policy when b1 = 5, b̂1 = 10
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4. CONCLUSIONS

In order to investigate the transshipment decision
in a two-location inventory system with constant
replenishment lead time, we have developed two
SMDP models with phase-type exponential lead
time. Numerical experiments with the models
demonstrate interesting properties of the optimal

transshipment decisions, although, compared to
complete pooling and no pooling, the total cost
savings from selective transshipment in the exam-
ples we considered were not very significant.

Interestingly the numerical experiments demon-
strate that the level of transshipment support pro-
vided by location 2 can vary significantly with
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the state of the replenishment order process. We
observed that it is optimal for location 2 to provide
more transshipment support as the number of
phases remaining in the lead time at location 2
decreases and as the number of phases remaining
in the lead time at location 1 increases. These are
intuitively appealing properties.

We argue that the difference between the optimal
cost rates of the general and holdout transship-
ment policies is due to the use of a fixed holdout
threshold which does not depend on the times
until replenishment of the locations. We pro-
pose a dynamic holdout transshipment policy in
which the threshold is a function of the state of
the replenishment order process. The policy is
specified by defining a threshold for each pair of
values (w1,w2) satisfying 1 6 wk 6 Wk. Deter-
mining an optimal set of thresholds for such a
policy would be computationally difficult due to
the large number of variables. However, we pro-
pose a method to estimate the set of threshold
values from the optimal general transshipment
policy.

Compared to general transshipment policies, the
proposed dynamic holdout transshipment policy is
easy to implement and to explain. These proper-
ties make it an attractive policy to use in practice.
Further, we have demonstrated that, for the exam-
ples we considered, the cost rate for the proposed
dynamic holdout transshipment policy is close to
the optimal cost rate for the general transshipment
policy. For situations in which the replenishment
lead times are constant, the phases of the lead
time can be interpreted as follows. Let Lk denote
the lead time at location k. Divide the lead time
into Wk intervals each of length

Lk

Wk

and associate

each interval with a phase of the lead time. Hence,
when time until replenishment at location k in the

fixed lead time model is between
(wk − 1)Lk

Wk

and
wkLk

Wk

(k = 1, 2), we would use the threshold cor-

responding to (w1,w2).

The modelling approach considered here offers
benefits over other approaches such as decom-
position approximation models. Firstly, rather
than modelling each location as an independent
location, we model the two-location system as a
whole system. Hence, it is possible to capture
all the interactions which occur between the two
locations. Such an approach provides us with
a powerful tool to improve our modelling of a
system with strong interactions. Secondly, using
numerical experiments, we can monitor how the
optimal decision depends on the state of the pro-
cess. Hence, we benefit from insights on optimal
transshipment decisions for the SMDP model.
For example, the use of the SMDP model to pre-

dict suitable holdout thresholds. These properties
of the SMDP models prove SMDP modelling to
be an effective approach for our problem domain.

However, the SMDP modelling approach has
its weaknesses. Firstly, we need a large number
of states and actions to model the problem. As
a consequence of this, the solution method is
computationally burdensome. It is unlikely that
the method could be extended to more than
two locations due to the exponential increase in
the number of states and actions. Secondly, the
SMDP approach does not provide explicit expres-
sions for the average total cost rate and other
performance measures such as direct fill rate and
backorder fill rate.

In summary, the SMDP modelling technique
provides a new angle of viewing general trans-
shipment policies for the two-location inventory
system with unidirectional transshipment. In turn
this has led to the development of a dynamic
holdout transshipment policy that is easy to
implement yet potentially very efficient in terms
of cost.
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