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Abstract

In this work a genetic algorithm is presented for the unrelated parallel machine
scheduling problem in which machine and job sequence dependent setup times are
considered. The proposed genetic algorithm includes a fast local search and a local
search enhanced crossover operator. Two versions of the algorithm are obtained after
extensive calibrations using the Design of Experiments (DOE) approach. We review,
evaluate and compare the proposed algorithm against the best methods known from
the literature. We also develop a benchmark of small and large instances to carry out
the computational experiments. After an exhaustive computational and statistical
analysis we can conclude that the proposed method shows an excellent performance
overcoming the rest of the evaluated methods in a comprehensive benchmark set of

instances.

Keywords: Parallel machine, scheduling, makespan, setup times.

1 Introduction

In the unrelated parallel machine scheduling problem, there is a set N = {1,...,n} of n
jobs that have to be processed on exactly one machine out of a set M = {1,...,m} of

m parallel machines. Therefore, each job is made up of one single task that requires a
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given processing time. Machines are considered unrelated when the processing times of
the jobs depend on the machine to which they are assigned to. This is the most realistic
case which is also a generalisation of the uniform and identical machines cases. Moreover,
the consideration of setup times between jobs is very common in the industry. The setup
times considered in this paper are both sequence and machine dependent, that is, setup
time on machine ¢ between jobs 7 and k is different than setup time on the same machine
between jobs k£ and j. In addition, setup time between jobs 7 and k on machine 7 is
different than setup time between jobs j and & on machine 7.

The most studied optimisation criterion is the minimisation of the maximum comple-
tion time of the schedule, a criteria that is known as makespan or C,,. Summing up, in
this paper we deal with the unrelated parallel machine scheduling problem with sequence
dependent setup times denoted as R/S;;r/Cmax (Pinedo, 2008). We propose and evaluate
a genetic algorithm that includes a fast local search and a local search enhanced crossover
operator among other innovative features that, as we will see, result in a state-of-the-art
performance for this problem.

The remainder of this paper is organised as follows: in Section 2 we review the litera-
ture on this problem. In Section 3 a Mixed Integer Programing (MIP) model formulation
is presented. In Section 4 we describe in detail the proposed genetic algorithm and pre-
liminary computational results. In Section 5, a design of experiments approach is applied
in order to calibrate the genetic algorithm. Results of a comprehensive computational and

statistical evaluation are reported in Section 6. Finally, conclusions are given in Section 7.

2 Literature review

Parallel machine scheduling problems have been widely studied in the past decades. How-
ever, the case when the parallel machines are unrelated has been much less studied. Addi-
tionally, the consideration of sequence dependent setup times between jobs has not been
considered until recently. In Allahverdi et al. (2008) a recent review of scheduling prob-
lems with setup times is presented, including the parallel machine case. In this section
we focus our attention on the available algorithms for the parallel machine scheduling
problems considering setup times.

In the literature, we can find several heuristic and metaheuristic algorithms for the
mentioned problem. However, most of them are focused on the identical parallel machine
case. In Guinet (1993), a heuristic is proposed for the identical parallel machines case
with sequence dependent setup times and the objective to minimise the makespan. A tabu

search algorithm is given in Franca et al. (1996) with the objective to minimise the total



completion time. A three phase heuristic is proposed by Lee and Pinedo (1997) for the
same problem with sequence dependent setup times (independent of the machine) and the
objective to minimise the sum of weighted tardiness of the jobs. In Kurz and Askin (2001),
the authors proposed several heuristics and a genetic algorithm to minimise makespan.
Other heuristics for the same problem are those proposed by Gendreau et al. (2001) and
Hurink and Knust (2001). In both cases the objective is to minimise the makespan and
in the latter case precedence constraints are also considered. In Eom et al. (2002) and
Dunstall and Wirth (2005) heuristics are proposed for the family setup times case. In
Tahar et al. (2006) a linear programming approach is proposed where job splitting is also
considered. Anghinolfi and Paolucci (2007) and Pfund et al. (2008) present heuristic and
metaheuristic methods for the same problem, respectively.

The unrelated parallel machines case with sequence dependent setup times has been
less studied and only a few papers can be found in the literature. A tabu search algorithm
is given in Logendran et al. (2007) for the weighted tardiness objective. Another heuris-
tic for the unrelated parallel machine case with the objective to minimise weighted mean
completion time is that proposed by Weng et al. (2001). Kim et al. (2002) proposed a sim-
ulated annealing method with the objective to minimise the total tardiness. In Kim et al.
(2003) and Kim and Shin (2003) a heuristic and tabu search algorithm were proposed with
the objective to minimise the total weighted tardiness and the maximum lateness, respec-
tively. The same problem is also studied in Chen (2005), Chen (2006) and Chen and Wu
(2006) where resource constraints are also considered, with the objective to minimise
makespan, maximum tardiness and total tardiness, respectively. In Rabadi et al. (2006) a
heuristic for the unrelated machine case with the objective to minimise makespan is also
presented. Rocha de Paula et al. (2007) proposed a method based on the VNS strategy for
both cases, identical and unrelated parallel machines for the makespan objective. In Low
(2005) and Armentano and Felizardo (2007) the authors proposed a simulated annealing
method and a GRASP algorithm, with the objective to minimise the total flowtime and
the total tardiness, respectively.

Regarding the exact methods, there are some papers available in the literature for the
parallel machine problem. However, most of them are able to solve instances with a few
number of jobs and machines (more details in Allahverdi et al., 2008).

In this paper, we deal with the unrelated parallel machine scheduling problem in which
machine and job sequence dependent setup times are considered, i.e., the setup times
depend on both, the job sequence and the assigned machine. We evaluate and compare
some of the above methods available in the literature. We also propose a genetic algorithm

that shows excellent performance for a large benchmark of instances.



3 MIP mathematical model

In this section, we provide a Mixed Integer Programming (MIP) mathematical model for
the unrelated parallel machine scheduling problem with sequence dependent setup times.
Note that this model is an adapted version of that proposed by Guinet (1993). We first

need some additional notation in order to simplify the exposition of the model.
® p;;: processing time of job j, 7 € N at machine 7, ¢ € M.
e S5;jx: machine based sequence dependent setup time on machine ¢, © € M, when

processing job k, k € N, after having processed job 7, j € N.

The model involves the following decision variables:

X _J 1, if job j precedes job k on machine ¢
k 0, otherwise

C;; = Completion time of job 7 at machine ¢

Chax = Maximum completion time

The objective function is:
min C\ax (1)

And the constraints are:

> Y Xy=1  VkeEN (2)

€M je{0}U{N}
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Xin€{0,1}, Vje{0}U{N}VEEN,j£kVieM (10)

The objective is to minimise the maximum completion time or makespan. Constraint
set (2) ensures that every job is assigned to exactly one machine and has exactly one
predecessor. Notice the usage of dummy jobs 0 as Xox, ¢ € M,k € N. With constraint
set (3) we set the maximum number of successors of every job to one. Set (4) limits the
number of successors of the dummy jobs to a maximum of one on each machine. With Set
(5) we ensure that jobs are properly linked in machine: if a given job j is processed on a
given machine 7, a predecessor h must exist on the same machine. Constraint set (6) is to
control the completion times of the jobs at the machines. Basically, if a job £ is assigned
to machine ¢ after job j (i.e., X;j, = 1), its completion time Cj;, must be greater than the
completion time of j, C;, plus the setup time between j and k and the processing time
of k. If X;jx = 0, then the big constant V' renders the constraint redundant. Sets (7)
and (8) define completion times as 0 for dummy jobs and non-negative for regular jobs,
respectively. Set (9) defines the maximum completion time. Finally, set (10) defines the
binary variables. Therefore, in total, the model contains n?m binary variables, (n+1)m+1
continuous variables and 2n%m + nm + 2n + 2m constraints. This MIP model will be used

later in the computational experiments.

4 Proposed genetic algorithm

Genetic algorithms (GAs) are bio-inspired optimisation methods (Holland, 1975) that are
widely used to solve scheduling problems (Goldberg, 1989). Generally, the input of the
GA is a set of solutions called population of individuals that will be evaluated. Once the
evaluation of individuals is carried out, parents are selected and a crossover mechanism is
applied to obtain a new generation of individuals (offspring). Moreover, a mutation scheme
is also applied in order to introduce diversification into the population. The main features
of the proposed genetic algorithm are the application of a fast local search procedure and a
local search enhanced crossover operator. In the following subsections we report a detailed

description about the developed GA.

4.1 Representation of solutions, initialisation of the population
and selection operator
The most commonly used solution representation for the parallel machine scheduling prob-

lem is an array of jobs for each machine that represents the processing order of the jobs

assigned to that machine. This representation is complete in the sense that all feasible



solutions of the MIP model presented in Section 3 can be represented (recall that Ciax
is a regular criterion and therefore no machine should be left idle when capable of being
occupied by a job). The GA is formed by a population of Py, individuals, where each
individual consists of m arrays of jobs (one per machine).

It is also common to randomly generate the initial population in a genetic algorithm.
However, a recent trend consists in including in the population some good individuals
provided by some effective heuristics. One of the best heuristics for the parallel machine
scheduling problem is the Multiple Insertion (MI) heuristic proposed by Kurz and Askin
(2001). The MI heuristic starts by ordering the jobs according to a matrix with the pro-
cessing and setup times. After the initial solution, each job is inserted in every position of
every machine and places the job in the position that results in the lowest makespan. One
individual of the population is obtained by means of the MI heuristic and the remaining
ones are randomly generated. However, in order to obtain a good initial population, the
MI heuristic is applied to the random individuals, that is, for each random individual
each job is inserted in every position of every machine and finally the job is placed in the
position that results in the best makespan.

Regarding the selection mechanism, in the classical genetic algorithms, tournament
and ranking-like selection operators are common. Such operators either require fitness and
mapping calculations or the population to be continuously sorted. In this work, a much
simpler and faster selection scheme, called n-tournament, is used (Ruiz and Allahverdi,
2007). In this case, according to a parameter called “pressure”, a given percentage of the
population is randomly selected. The individual with the lowest makespan value among
the randomly selected percentage of individuals wins the tournament and is finally selected.
This results in a very fast selection operator, since for each individual the C,,, value can

be directly used as a fitness value.

4.2 Local search enhanced crossover and mutation operators

Once the selection is carried out and the parents have been selected, the crossover operator
is applied according to a probability F.. There are several crossover operators proposed
in the literature for scheduling problems. In general, the goal of the crossover operator is
to generate two good individuals, called offspring, from the two selected progenitors. One
of the most used crossover operators is the One Point Order Crossover adapted to the
parallel machine case. Therefore, for each machine one point p is randomly selected from
parent 1 and jobs from the first position to the p position are copied to the first offspring.
Jobs from the point p + 1 position to the end are copied to the second offspring. In

Figure 1, an example for 12 jobs and two machines is given (setup times between jobs are
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not shown for clarity). Two parents are shown and for each machine a point p is selected
(Figure 1(a)). Specifically, point p; (machine 1) is set to 3 and point p, (machine 2) is set
to 4. Therefore, the first offspring is formed with the jobs of parent 1 from position 1 to
position 3 in machine 1 and jobs from position 1 to 4 in machine 2. The second offspring
will contain jobs of parent 1 from position 4 to the last one in machine 1 and from position
5 to the last one in machine 2 (Figure 1(b)). Then, jobs from the parent 2 which are not
already in the offspring are inserted in the same order. At this point, it is easy to introduce
a limited local search procedure in the crossover operator. When missing jobs are inserted
from the parent 2, they are inserted in every position of the offspring at the same machine
and finally the job is placed in the position that results in the minimum completion time
for that machine. In this way we obtain a crossover operator with a limited local search.
In Figure 1(b), jobs from parent 2 which are not already in the offspring will be inserted,
that is, jobs 7, 3, 2, 1 of machine 1 from parent 1 are already inserted in offspring 1, so
they are not considered. Job 5 will be inserted in every position of machine 1 and finally
will be placed in the best position (lowest completion time of the machine). In machine 2,
jobs 10, 9, 12 and 11 will be inserted in every position of the machine 2 and will be placed
in the best position. In a similar way, in offspring 2 jobs 7, 3, 2 and 1 will be inserted
in every position of machine 1 and jobs 4, 6 and 8 will be inserted in every position of
machine 2. In Figure 1(c) we can see the offspring obtained after the application of the
local search enhanced crossover operator (remember that setup times are not represented).
In Section 6, results after testing this local search enhanced crossover operator (LSEC)

will be given.



p1 =3

Machine 1| 1 3 4 5 10 | 11 Machine 1| 7 3 2 1 5

Machine 2 | 2 7 6 8 9 12 Machine 2| 10 4 6 9 8 12 | 11

Parent 1 Parent 2
p2=4

(a) Selected parents and crossover points.

Machine 1 5 Machine 1 7 3 2 1
Machine 2 | 10 9 12 |11 Machine 2 416 8
Parent 2 Parent 2
Machine 1 1 3 4 Machine 1| 5 10 | 11
Machine 2 2 7 6 8 Machine 2 | 9 12
Offspring 1 Offspring 2

(b) Copying of the jobs from parent 1 and insertion of the jobs from parent 2

Machine 1 113]5] 4 Machine1| 5 | 3 [10] 7 |11 ] 1] 2
Machine2 | 2 (10| 7 | 6 | 11| 8 [12] 9 Machine2| 9 | 4 [ 12| 6 | 8
Offspring 1 Offspring 2

(¢) Resulting offspring

Figure 1: Example of the local search enhanced crossover operator (LSEC).

Once we obtain the offspring, a mutation operator can be applied according to a
probability (P,,). After short experiments testing different mutation operators, the best
performance was obtained by the most usual in scheduling problems, that is, the shift
mutation. A machine is randomly selected and then a job is also randomly selected and

re-inserted to a different position randomly chosen in the same machine.

4.3 Local search and generational scheme

Local search procedures are widely used in genetic algorithms as well as in other meta-
heuristic methods to improve solutions. For the parallel machine scheduling problem with
the objective to minimise the makespan, it is possible to apply a really fast local search
procedure based on the insertion neighborhood, the most used in scheduling problems. We
test the inter-machine insertion neighborhood (IMI), which consists of, for all machines,

insertion of all the jobs in every position of all the machines. In order to reduce the



computational effort needed by the local search, it is possible to introduce a simple and
very efficient speed up procedure: when a job is inserted, it is not necessary to evaluate
the complete sequence for obtaining the new completion time value of the machine. Let
us give an example, we have 7 jobs and 2 machines (Figure 2), grey blocks represent the
setup times between the jobs. Remember that these setup times are both machine and
job sequence dependent. Moreover, these setup times differ between machines 2 and 1.
The makespan value for the current shown solution is 21 and a step of IMI local search is
applied. For example, we have that job 1 is going to be inserted on the second position of
machine 2. To obtain the new completion time of the machines, we only have to remove
the processing time of job 1 and the setup time between job 1 and 3 on machine 1. Then,
if we want to insert job 1 on machine 2, we have to remove the setup time between jobs 2
and 4. Finally, we have to add the setup time between job 2 and job 1 on machine 2, the
processing time of job 1 on machine 2, that could be different than the processing time
of job 1 on machine 1, and the setup time between jobs 1 and 4 on machine 2. So we
can obtain the new completion time of the machines (Figure 2(b)), with only 3 subtrac-
tions and 3 additions and therefore, we can obtain the new makespan value (20) which is
better than the previous one. In general, for each insertion, the number of subtractions
and additions will be four and four, respectively, if the job is not inserted in the first or
last position. For insertions in the first or last position, the number of subtractions and
additions will be three and three, respectively (there is not setup time at the beginning or
the end of the machine sequence).

In total, the proposed local search will contain the following number of steps (inter-

machine insertions):

Zan(nl +1)

ieM leM
I#i

where n; and n; are the number of jobs assigned to machine ¢ and [, respectively, that
is, each job on machine ¢ can be inserted in n; 4+ 1 positions on machine [.

During the local search procedure, we have to decide which movements are accepted
applying an acceptance criterion. In our algorithm, local search is based on the previous
IMI neighborhood, so two machines are involved in the local search procedure. That is,
the neighborhood is examined in the following way: for all the machines, all the jobs
assigned to this machine are inserted in all positions of all other machines. However,
the examination of the neighborhood is carried out between pairs of machines, that is,
jobs assigned to machine 1 are inserted in all positions of machine 2 and the acceptance

criterion is applied. Then, jobs from machine 1 are inserted in all positions of machine



0 5 10 15 20

(a) Example with 7 jobs and 2 machines.

10 15 20

Machine 2

(b) Resulting sequence after the insertion of a job from machine
1 to machine 2.

Figure 2: Example with 7 jobs and 2 machines for the IMI local search.

3 and so on. For every pair of machines, the following acceptance criterion based on the

new completion times of the machines after an insertion is analyzed:

e Completion time of both machines is reduced: this is the ideal situation since if
the movement is applied both machines reduce the completion time. Obviously, the

movement is accepted in this case.

e Completion time of one machine is reduced and completion time of the other machine
is increased: in this case we have to decide the acceptance of the movement. If the
amount of time reduced on one machine is greater than the amount of time increased
on the other machine and the makespan value is not increased, then the movement

is accepted. Specifically :
— C;, C!: completion time of machine ¢ before and after the insertion movement,
respectively, ¢ € M.

— (), C]: completion time of machine [ before and after the insertion movement,
respectively, [ € M, # 1.

— Chax, Ol makespan of the sequence before and after the insertion movement,

respectively.

Therefore, in this case the movement will be accepted when:
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and
Cl/ > (], leM (12)

and
C;—Cl>C -, i,le M,i#1 (13)

and
Cllmax S Cmax (14)

With expression (11), the new completion time of machine i is reduced. Expression
(12) shows that new completion time of machine [ is increased. Expression (13)
compares the amount reduced vs. the amount increased and finally, expression (14)

tests the new makespan value.

e Completion time of both machines is increased: in this case the movement is not

accepted.

Moreover, the IMI local search is applied until local optima, that is, if after a step of
the local search one or more movements are accepted, which means an improvement, the
IMI local search is applied again from the beginning. As we can see, applying IMI until
local optima results in a very intensive and fine tuned local search. This is only possible
with the speed-ups and accelerations proposed. The local search procedure is applied
according to a probability (P;) to the best individual of the initial population and to the
offspring. The way to accept movements in the local search is an important feature of the
algorithm. We will see in Section 6 the effect of the local search, that improves the results
significantly. Moreover, different ways to accept movements were tested obtaining much
worse results, so the idea to accept movements analyzing the machines by pairs and when
one machine reduces the completion time and the other one increases the completion time,
is an innovative feature of the algorithm.

Another aspect to consider is the way the generated offspring after selection, crossover

and mutation are inserted into the population. This is usually known as generational
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scheme. It is usual that offspring directly replace the parents. In other GAs, this procedure
is carried out only after having preserved the best individuals from the last generation in
order to avoid loosing the best solutions (elitist GAs). Another approach is the so called
steady state GAs where the offspring do not replace the parents but different individuals
from the population. In the genetic algorithms proposed in this work, the offspring are
accepted into the population only if they are better than the worst individuals of the
population and if at the same time are unique, i.e., there are no other identical individuals
already in the population. Otherwise they are rejected. As a result, population steadily
evolves to better average makespan values while at the same time it contains different
solutions, which help in maintaining diversity and in avoiding premature convergence to
a dominant, sub-optimal individual. This kind of generational scheme was firstly applied

in Ruiz et al. (2006) providing very good results.

4.4 Variants of the proposed genetic algorithm

First, we test a standard genetic algorithm that will be improved by adding new features.
The different versions of the proposed algorithm share the features explained in the above
sections. Differences among them are mainly related to the crossover operator and the fast
local search procedure. Specifically, we start with a genetic algorithm where the initial
population is obtained as it was explained in Section 4.1 and new features are added in

the following way:

e GAStdl: standard algorithm where the crossover operator is applied without the

limited local search explained in Section 4.2 and there is no local search.

e GAStd2: in this case the crossover operator with the limited local search is applied

and there is no local search procedure.

e GAStd3: in the third version, crossover operator without the limited local search

and the fast local search procedure explained in Section 4.3 are applied.

o (GAStd4: the last version includes the crossover operator with the limited local search

as well as the fast local search procedure.

We can see in Table 1 a summary with the features of all the proposed versions. Notice
that the objective is to start from a very simple genetic algorithm and to add new features

in order to improve the effectiveness.
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Version Local search enhanced crossover Local Search

GAStd1 No No
GAStd2 Yes No
GAStd3 No Yes
GAStd4 Yes Yes

Table 1: Variants of the genetic algorithm proposed.

Regarding the parameters of the algorithms, all four versions have the same param-
eter values (standard) that are summarized in Table 2. These parameters will be later
calibrated.

Parameter Value
Population size (Ps;.c) 50
Selection pressure (Pressure) 30
Probability of crossover(FP,) 0.5
Probability of mutation (F,,) 0.2

Probability of local search (Fs) 0.4

Table 2: Standard parameter values for the four variants of the genetic algorithm.

4.5 Benchmark of instances

We tested all the variants of the proposed genetic algorithm under a proposed benchmark
of instances. The processing times are uniformly distributed between 1 and 99 as it is
common in the literature. Regarding the setup times, we generate 4 subsets where the
setup times are uniformly distributed between 1 to 9, 1 to 49, 1 to 99 and 1 to 124,
respectively. In order to test the behaviour and the sensitivity to the size of the instance
of the different algorithms, two sets of instances are generated. The first one, small
instances, with the following combinations of number of jobs and number of machines:
n = {6,8,10,12}, m = {2,3,4,5}. The second one, large instances, where the following
values are tested: n = {50, 100, 150, 200,250} and m = {10, 15, 20, 25,30}. We generate 10
replicates for each possible combination and in total we have 640 small instances and 1000
large instances to test the algorithms, all of them are available from http://soa.iti.es.

Moreover, a different set of instances is generated for the calibration experiments.
In this case, 200 instances are randomly generated in the same way explained before.

Only large instances are generated for calibration experiments, two replicates for each

13



combination set of n X m and setup times. These instances are also available from the
same website. This is an important aspect since calibrating over final test instances could
bias the results. By using a separated calibration set of instances we ensure that the final

results are not skewed by overfitting issues.

4.6 Computational results for the variants of the proposed genetic

algorithm

A first experiment was carried out in order to check the features of the proposed genetic
algorithm. In Section 4.4 the fourth versions of the algorithm were explained from the
most basic to the most advanced. We denote the different algorithms as GAStd1, GAStd2,
GAStd3, GAStd4 as in Table 1.

The GAs are coded in Delphi 2007 and run on computers with an Intel Core 2 Duo
processor running at 2.4 Ghz with 2 GB of main memory. In order to evaluate all the
variants, the benchmark of instances explained in subsection 4.5 is used. The stopping
criterion is set to a maximum elapsed CPU time of n - (m/2) - 30 milliseconds. Therefore,
the computational effort increases as the number of jobs and/or machines increases.

Regarding the response variable for the experiments, the Average Relative Percentage
Deviation (RPD) is computed for each instance according to the following expression:

Methody, — Bestgy

Relative Percentage Deviation(RPD) = Bost - 100, (15)
€Slsol

where Best,, is the best known solution, obtained after all the experiments carried out
throughout the paper, and Method,, is the solution obtained with a given version of the
algorithm. We run five replicates of each algorithm. The results for the large instances
are shown in Table 3 where the 40 instances of each n X m group have been averaged
(recall that the instance set contains also different values for the setup times). Worst
and best results for each n x m set are in italics and bold face, respectively. The first
interesting outcome is the great improvement of the algorithm as the new features are
added, especially when the fast local search procedure is included. The second version of
the algorithm (GAStd2) which incorporates the crossover operator with the limited local
search procedure improves the first version (GAStd1) by almost a 5%. Regarding the fast
local search, if the procedure is included in GAstdl obtaining the GAStd3 version, the
results are much better, specifically by a quite large 97%. Finally, the best results are
obtained by the GAStd4 version which includes the crossover operator with limited local

search as well as the local search procedure. This method improves the previous version
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by a 43%. Let us stress that each algorithm is run during the same CPU time, therefore,

the results are fully comparable.

Instance GAStdl  GAStd2 GAStd3  GAStd4
50 x 10 25.98 25.39 16.84 13.45
50 x 15 22.69 22.14 15.51 15.15
50 x 20 20.98 21.16 15.42 14.55
50 x 25 21.05 20.22 13.74 14.18
50 x 30 24.71 24.23 17.01 14.79
100 x 10 31.67 29.86 18.02 10.81
100 x 15 27.64 26.60 19.16 16.15
100 x 20 24.46 23.93 16.92 16.09
100 x 25 19.49 19.55 13.19 13.85
100 x 30 18.53 18.19 12.28 12.56
150 x 10 31.52 29.67 15.52 8.15
150 x 15 28.92 28.06 18.10 13.35
150 x 20 25.12 24.37 16.40 14.87
150 x 25 19.10 18.78 13.20 12.45
150 x 30 16.88 16.53 11.83 11.04
200 x 10 29.54 28.28 15.03 717
200 x 15 27.97 27.21 16.45 11.36
200 x 20 24.05 23.17 14.61 12.65
200 x 25 19.43 18.86 12.81 11.16
200 x 30 16.99 16.24 11.68 10.80
250 x 10 29.19 27.70 14.49 7.03
250 x 15 27.01 25.56 14.57 9.28
250 x 20 23.90 23.30 14.47 11.18
250 x 25 19.16 18.18 12.47 10.17
250 x 30 16.51 15.94 10.53 9.61
Average 23.69 22.93 14.81 12.07

Table 3: Average Relative Percentage Deviation (RPD) for variants of the proposed algo-
rithm (large instances).

In order to validate the results, it is interesting to check wether the previous differ-
ences in the RPD values are statistically significant. We apply an analysis of variance
(ANOVA), (Montgomery, 2007), once the three hypotheses for this statistical test are
checked: normality, homocedasticity and independence of the residuals. We can see in
Figure 3 the means plot with HSD Tukey intervals (a«=0.05). We can clearly see that
there are statistically significant differences between the average RPD values among the
variants. We can observe that the fourth version (GAStd4) shows the best performance,
that is, the genetic algorithm proposed will include the crossover operator with limited

local search (LSEC) as well as the local search procedure.
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Relative Percentage Deviation (RPD)

GAStd4 GAStd3  GAStd2 GAStdl

Figure 3: Means Plot and Tukey HSD intervals at the 95% confidence level for the versions
of the standard genetic algorithm proposed (large instances).

5 Calibration of the GASTd4 algorithm

Calibration of algorithms is one of the most important steps in order to obtain good results.
In the previous Section, we proposed an standard genetic algorithm that was improved by
adding new features. After obtaining a good genetic algorithm (GAStd4), in this Section,
a first preliminary calibration experiment is carried out where several values are tested
for the different parameters. Finally, a second more finely-tuned calibration is applied
from the results obtained by the first one. Both calibration experiments are carried out
by means of a Design of Experiments (Montgomery, 2007)

We use the benchmark of instances explained in subsection 4.5 for both calibration
experiments. That is, 200 test instances for the calibration experiments. Regarding the
performance measure, we use again the Relative Percentage Deviation (RPD) following
expression (15) and the stopping criterion is set to a maximum elapsed CPU time of
n - (m/2) - 30 milliseconds as in Section 4.6. We run five replicates of each treatment and
the results are analysed by means of an analysis of variance (ANOVA).

The parameters considered in both calibration experiments are: population size (Py;ze),
crossover probability (P.), mutation probability (P,,), local search probability (Fjs) and
pressure of the selection operator (Pressure). We can see in Table 4, the values tested
for both calibration experiments (details about the statistical analysis are not shown due
to space restrictions). The best combination of values is in bold face. We can see that

the second calibration experiment is a refinement of the first one where more values are
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added. In this way, we can check the effect of the calibration step. It is also interesting to
notice that in the second calibration experiment the value of the local search probability
is 1, that is, the local search procedure is always applied, which is mainly due to the fact

of being an extremely fast local search.

Parameter First Calibration Second Calibration
Population size (Ps;.e) 20;40;60 60;80
Probability of crossover(FP,) 0;0.25;0.5 0.5;1
Probability of mutation (F,,) 0;0.25;0.5 0.5;1
Probability of local search (Pj) 0;0.25;0.5 0.5;1
Pressure (Pressure) 20:30;40 10;20

Table 4: Values tested for the parameters in both calibration experiments (best combina-
tion in bold face).

6 Computational results

After the calibration experiments, two genetic algorithms are obtained with the best com-
bination parameter values for each one, that we denote as GA1 (GAStd4 after the first
calibration experiment) and GA2 (GAStd4 after the second calibration experiment), re-
spectively. Along this section, the benchmark of instances used for all the experiments
is that proposed in subsection 4.5 (set of 640 small instances and 1000 large instances).
The performance measure used is again the Relative Percentage Deviation (RPD) follow-
ing expression (15) and the stopping criterion is set to a maximum elapsed CPU time of
n-(m/2) -t milliseconds as in previous sections. In this case we will test different stopping
times (values of ¢), in order to study the effect of CPU time over the results.

A first experiment is carried out just after the calibration in order to check its effect.
Specifically, the two calibrated algorithms (GA1 and GA2) are compared against the
fourth initial proposed variants (GAStd1l, GAStd2, GAStd3 and GAStd4) which were
not calibrated. The parameter ¢ of the stopping criterion is set to 30 as in previous
experiments. In Table 5 we can see the results. Worst and best results for each n x m
set are in italics and bold face, respectively. We can clearly observe that the calibration
experiments improve the initial algorithms. The results are up to 13% better if we compare
the best initial algorithm (GAStd4) with the algorithm obtained after the first calibration
(GA1). This difference increases up to 72% after the second calibration. If we focus our
attention in the two calibrated algorithms, GA2 is 57% better than GA1. We have to
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remark that GAStd4, GA1 and GA2 are exactly the same algorithm, only the parameter
values are different. Therefore, the calibration of the algorithms is a really important step

since we can improve the results significantly.

Instance GAStdl GAStd2 GAStd3 GAStd4 GAl GA2

50 x 10 25.98 25.39 16.84 13.45 12.29 6.91
50 x 15 22.69 22.14 15.51 15.15 13.95 8.92
50 x 20 20.98 21.16 15.42 14.55 12.58 8.04
50 x 25 21.05 20.22 13.74 14.18 12.39 8.49
50 x 30 24.71 24.23 17.01 14.79 14.42 10.19
100 x 10 31.67 29.86 18.02 10.81 10.46 6.76
100 x 15 27.64 26.60 19.16 16.15 13.95 8.36
100 x 20 24.46 23.93 16.92 16.09 13.65 9.79
100 x 25 19.49 19.55 13.19 13.85 11.30 7.86
100 x 30 18.53 18.19 12.28 12.56 11.31 8.69
150 x 10 81.32 29.67 15.52 8.15 8.19 5.75
150 x 15 28.92 28.06 18.10 13.35 11.93 8.09
150 x 20 25.12 24.37 16.40 14.87 12.66 9.53
150 x 25 19.10 18.78 13.20 12.45 10.98 7.89
150 x 30 16.88 16.53 11.83 11.04 10.06 8.03
200 x 10 29.54 28.28 15.03 7.17 7.56 6.01
200 x 15 27.97 27.21 16.45 11.36 10.66 7.20
200 x 20 24.05 23.17 14.61 12.65 10.77 8.36
200 x 25 19.43 18.86 12.81 11.16 9.86 7.47
200 x 30 16.99 16.24 11.68 10.80 9.49 7.09
250 x 10 29.19 27.70 14.49 7.03 7.13 5.99
250 x 15 27.01 25.56 14.57 9.28 8.97 6.70
250 x 20 23.90 23.30 14.47 11.18 10.04 7.72
250 x 25 19.16 18.18 12.47 10.17 9.05 7.49
250 x 30 16.51 15.94 10.53 9.61 8.10 6.80
Average 23.69 22.93 14.81 12.07 10.87 777

Table 5: Average Relative Percentage Deviation (RPD) for the proposed algorithms (large
instances).

In order to obtain a more exhaustive evaluation of the proposed method, we proceed
now to compare the two calibrated genetic algorithms (GA1 and GA2) against other
existing methods for the same problem and the same optimisation objective extracted
from the literature. Specifically, we compare the results against the multiple insertion
heuristic and the genetic algorithm proposed by Kurz and Askin (2001), denoted as MI
and GAK, respectively. The heuristic presented by Rabadi et al. (2006), denoted as Meta,
is also considered.

All the methods have been implemented following the guidelines and the explanations
of the original papers. Nevertheless, in order to obtain a better picture of the comparison,
the heuristic method presented by Rabadi et al. (2006) is also calibrated. The calibration

of this method was carried out in the same way that the calibration of the proposed
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algorithm, explained in Section 5 and using the same benchmark of test instances. After
14 CPU days running the Meta heuristic for calibration experiments, its three parameters
were found to be statistically significant. The calibrated heuristic was also included in
the computational evaluation and is denoted by MetaC. More details of the calibration
experiments are not shown due to space restrictions but are available upon request from
the authors.

The comparative evaluation was carried out under the same benchmark of instances
explained in Section 4.5 and used in the previous experiments, that is, the set of 640 small
instances and 1000 large instances. Regarding the stopping criterion for the metaheuristic
methods, is set to a maximum elapsed CPU time of n- (m/2) - t milliseconds. In this case,
all the metaheuristic methods are tested setting different values to ¢, specifically 10, 30
and 50. In this way, we can study the behaviour of the methods when the amount of time
is decreased or increased. For large instances, the maximum CPU time varies from 2.5
seconds for 50 jobs and 10 machines to 37.5 seconds for 250 jobs and 30 machines, when
the value of t is set to 10. When ¢ value is set to 50, maximum CPU time varies from 12.5
to 187.5 seconds. Moreover, all metaheuristic methods are run five independent times over

each instance to get an accurate picture of the results.

6.1 Comparative evaluation for small instances

First, we carry out a comparative evaluation of all the mentioned methods using the set of
640 small instances. The MIP model explained in Section 3 is also evaluated (denoted as
MIP). We construct a model in LP format for each instance in the small set. The resulting
640 models are solved with ILOG-IBM CPLEX 10 on an Intel Core 2 Duo running at 2.4
Ghz each one with 2 GB of main memory. The maximum CPU time for the MIP model is
set to one hour, that is, if after one hour no optimal solution is obtained, the best current
integer solution is returned.

In Table 6, results for small instances are shown for all the evaluated methods including
the MIP model explained in Section 3. Results for the three ¢ values are separated by a
slash (t=10/t=30/t=50), except for the MI heuristic method and the MIP model where
there is only one value, since heuristic methods do not depend on the CPU time. Obviously,
if CPLEX obtained the optimal solution, the RPD value is computed over the optimal
makespan value. Specifically, the MIP model is able to obtain the optimal solution for
all the instances with six and eight jobs. Regarding the 10 jobs instances, is able to
optimally solve all the instances with four and five machines and 11 over 40 and 33 over
40 instances with two and three machines, respectively. For 12 jobs case, the MIP model

only obtains the optimal solution for 14 instances with four machines and 34 instances for
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five machines. Therefore, the MIP model obtains the optimal solution for 492 over the
640 small instances.

Regarding the rest of the methods, we can see that the best results are provided by the
proposed genetic algorithms, specially the GA2 version. In order to validate the results, as
in previous experiments, an analysis of variance (ANOVA), is applied in order to check if
the observed differences are statistically significant. We can see in Figure 4 the means plot
for all ¢ values, on average, with HSD Tukey intervals (a«=0.05). We can see that despite
of the differences observed from the results in Table 6, GA1, GA2 and the MIP model
are not statistically different (confidence intervals are overlapped), that is, on average, the
behaviour of three methods is the same. This result is really important since it supports
the idea that conclusions can not be obtained from a table of averaged results. From
the table, we can state that GA2 is over 38% better than GA1, but when the statistical
analysis is applied, the conclusion is much different. Regarding the rest of the methods,
we can observe that they show an average and very similar behaviour, except for the
MI heuristic, which performance is clearly worse for small instances. Note that MetaC
deteriorated, for small instances, when compared to Meta. As we will see later on, the
situation reverses for large instances. It seems that the set of calibration parameters for
MetaC should be changed for small instances. However, we avoided over-calibration by

using the same set of test instances.

Instance MI MIP Meta MetaC GAK GA1l GA2

6 x 2 13.62  0.00  5.07/5.19/5.29 5.42/5.40/5.39 1.28/1.28/1.28 0.04/0.00/0.00  0.00/0.00/0.00
6 x3 19.24 0.00 5.91/6.29/5.92 6.50/6.69/6.33 0.19/0.19/0.19 0.26/0.06/0.15 0.07/0.08/0.08
6 x 4 18.84  0.00  10.52/9.74/10.33 12.75/12.55/11.24  0.02/0.00/0.00 0.30/0.57/0.40  0.16/0.37/0.27
6 x5 15.49  0.00  10.22/10.95/16.08  11.27/10.78/15.96  2.71/0.48/0.36 0.11/0.21/0.23  0.10/0.12/0.21
8 x 2 14.15  0.00  4.09/3.77/3.98 5.24/4.77/4.80 1.58/1.58/1.58 0.00/0.02/0.07  0.03/0.00/0.03
8x3 18.94 0.00  4.50/4.56/4.55 6.11/5.63/5.60 1.76/1.23/1.23 0.41/0.34/0.20  0.32/0.31/0.24
8 x 4 19.10  0.00  9.22/9.00/8.67 9.81/9.90/9.55 11.05/4.99/2.65 0.75/0.77/0.66  0.50/0.41/0.39
8 x5 22.58  0.00 12.14/12.60/11.28 13.31/13.25/13.38  20.01/11.79/8.78 0.58/0.65/0.49  0.23/0.11/0.20
10 x 2 16.56  0.40  2.78/2.76/2.72 3.64/3.60/3.34 2.61/2.61/2.61 0.24/0.13/0.19  0.19/0.07/0.17
10 x 3 19.89  0.09  4.07/3.96/3.86 5.32/5.42/4.82 7.15/3.21/2.71 0.30/0.40/0.26  0.15/0.18/0.20
10 x 4 21.17  0.00  5.93/5.85/5.59 7.09/7.05/6.97 16.79/10.57/8.77 0.46/0.53/0.45  0.26/0.30/0.32
10 X 5 24.38 0.00 9.84/10.15/9.63 1.53/11.69/11.19 30.31/23.00/19.45 1.38/1.51/1.16 1.15/1.03/1.15
12 x 2 17.26  1.63  2.16/2.01/1.97 3.22/3.35/3.25 3.56/2.94/2.94 0.18/0.16/0.21  0.15/0.10/0.09
12 x 3 23.35 3.19 2.64/2.43/2.33 4.25/3.72/4.01 14.28/9.56/7.77 0.54/0.20/0.22 0.15/0.12/0.08
12 x 4 25.99  2.57  5.87/5.82/5.82 7.51/7.16/7.36 27.73/22.26/19.61  1.44/1.73/1.29  1.00/0.89/0.75
12 x5 21.35 0.24 6.71/6.17/6.21 8.93/8.79/8.44 47.88/39.22/35.85 2.32/1.95/1.98 1.54/1.49/1.50
Average 19.49 0.51  6.35/6.33/6.51 7.62/7.49/7.60 11.81/8.43/7.24 0.58/0.58/0.50  0.37/0.35/0.36

Table 6: Average Relative Percentage Deviation (RPD) for the proposed algorithms: set-
ting of ¢ to 10/30/50 in the stopping criterion only for metaheuristic methods (small
instances).
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Figure 4: Means Plot and Tukey HSD intervals at the 95% confidence level for the evalu-
ated methods (small instances).

6.2 Comparative evaluation for large instances

In order to analyze the algorithms when the size of the instance is increased, experiments
are also carried out using the large set of instances. In this case MIP model is not tested.
In Tables 7 we can see the results for large instances obtained by all the methods where
the 40 instances of each n X m group have been averaged. Results for the three ¢ values
are separated by a slash (1=10/t=30/t=>50), as in the previous case. The first interesting
outcome is the great difference in the behaviour of most of the methods. If we focus
our attention on the genetic algorithm GAK proposed by Kurz and Askin (2001), we
can see that for small instances showed a good performance and for large instances is
really far from the best methods, more than 400%. This characteristic is also observed
in other methods of the evaluation. Therefore, all these methods are really sensitive
to the size of the instance. Regarding the proposed genetic algorithms, both versions,
GA1 and GA2 show a very good performance and provide the best results, that is, the
proposed algorithms are robust as regards the size of the instances. In order to validate
the results, we apply again an statistical analysis (ANOVA) as in previous experiments
(GAK algorithm is removed from the statistical analysis since is clearly worse than the
remaining ones). In Figure 5 we can see the means plot for all ¢ values, on average, with
HSD Tukey intervals («=0.05). In this case, we can observe that differences between GA1
and GA2 are statistically significant (confidence intervals are not overlapped). So we can
state that GA2 is better than GA1, on average. Specifically, after an statistical analysis
focused only on both methods and not shown in the paper due to space restrictions, we
can conclude that GA2 is the best method when t=30 and t=50, by a 39.8% and a 48.3%,
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respectively. However, when ¢t—10, the best method is GA1, specifically almost a 10%
better than GA2. This outcome could be expected since when =10 the total amount of
CPU time is really small and we have to remark that local search is always applied in
the GA2 algorithm. Therefore, when the amount of time is really small, GA1 is the best
method.

Regarding the remaining methods, if we focus our attention on the heuristic proposed
by Rabadi et al. (2006), we can see that the calibrated version (MetaC) improves the
original one (Meta). More specifically, MetaC version is up to 16% better than Meta
algorithm run with the original values for the different parameters. Moreover, we want
to remark that all the versions of the proposed algorithm, even those not calibrated,
obtain results much better than the remaining ones. In this point, one can think that
the good performance of the proposed algorithm is exclusively due to the fast local search
procedure. In order to test it, a new experiment was carried out where the fast local search
was applied to the MI heuristic by Kurz and Askin (2001) and after this, iterations of the
local search starting from a random solution were run until the stopping criterion was
met. Results showed that the local search starting from random solutions was not able to
improve the solution obtained by the MI with the local search. Moreover, results reported
by the MI with the local search were really close to those obtained just by the MI heuristic.
Therefore, the good performance of the proposed genetic algorithm is not only due to the
calibration phase or the fast local search, but due to the innovative features included,
specially the crossover operator, and of course the fast local search and the acceptance
criterion of the fast local search.

As regards the rest of the methods, we want to remark the good results obtained by
the MI heuristic by Kurz and Askin (2001), which overcomes the rest of the algorithms of
the comparison, including the GAK algorithm proposed by the authors in the same paper.
This outcome fits with the original paper where the performance of the GAK was shown
to be worse than the performance of the MI heuristic when the size of the instance was

slightly increased.
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Instance MI Meta MetaC GAK GA1 GA2

50 x 10 38.99 26.55/22.87/21.51 22.97/20.05/18.88 234.78/228.64/223,77 13.56/12.31/11.66 7.79/6.92/6.49
50 X 15 35.69 31.60/28.17/25.87 28.59/24.23/23.42 333.02/320.22/312.79 13.87/13.95/12.74 12.25/8.92/9.20
50 x 20 39.87 41.41/37.06/34.94 38.65/34.41/32.55 432.11/415.55/410.68 12.92/12.58/13.44 11.08/8.04/9.57
50 X 25 41.63 48.53/41.92/40.25 44.96/39.46/36.90 517.66/499.12/490.61 13.18/12.39/11.87 10.48/8.49/8.10
50 x 30  50.02 65.75/59.83/57.89 63.51/56.18/52.73 638.63/615.16/603.93 15.16/14.42/14.42 10.98/10.19/9.40
100 x 10 42.81 32.98/30.60/29.91 29.05/26.61/25.53 265.36/257.41/255.16 13.11/10.46/9.68 15.72/6.76/5.54
100 x 15  38.43 41.79/38.68/37.31 35.83/33.33/32.20 348.25/340.18/337.81 15.41/13.95/12.94 22.15/8.36/7.32
100 x 20 34.31 49.94/45.97/44.84 44.10/40.50/38.43 434.09/423.80/418.56 15.34/13.65/13.60 22.02/9.79/8.59
100 x 25 29.09 55.41/51.35/49.67 49.55/45.55/43.42 506.90/493.82/485.80 12.47/11.30/11.29 16.71/7.86/8.07
100 x 30 30.04 65.20/60.55/57.68 59.18/54.68/51.84 586.67/570.81/565.94 11.11/11.31/10.98 15.69/8.69/7.90
150 x 10  39.90 34.05/32.41/31.70 29.48/27.27/26.37 273.38/269.12/266.95 10.95/8.19/7.69 18.40/5.75/5.28
150 x 15 38.82 45.67/43.16/42.15 39.36/36.57/35.07 364.05/356.16/353.70 14.51/11.93/11.78 24.89/8.09/6.80
150 x 20 33.75 52.51/49.55/47.63 45.09/41.93/40.68 441.28/430.94/427.80 13.82/12.66/12.49 22.63/9.53/7.40
150 x 25 27.77 56.19/52.76/51.66 49.45/45.30/43.59 500.40/491.64/485.53 11.74/10.98/10.12 17.16/7.89/7.05
150 x 30 26.49 64.35/60.50/58.11 56.96/51.85/50.12 559.26/546.02/539.84 10.74/10.06/9.72 14.85/8.03/7.17
200 x 10 37.73 33.50/31.62/30.72 28.52/26.39/25.68 276.95/274.29/270.74 9.75/7.56/6.17 8.40/6.01/4.24
200 x 15 35.94 45.99/43.03/42.45 38.67/36.22/35.01 372.88/367.34/362.06 12.68/10.66/9.82 10.95/7.20/6.21
200 x 20 30.99 52.22/49.41/48.09 43.67/41.48/39.91 444.28/433.86/431.00 12.59/10.77/10.37 11.07/8.36/6.71
200 x 25 24.70 58.31/54.55/52.72 49.22/45.52/44.27 504.69/494.26/488.29 11.05/9.86/9.51 9.83/7.47/6.82
200 x 30 25.17 63.76/60.23/59.68 55.35/51.54/50.02 560.96/549.97/545.78 10.17/9.49/8.65 9.49/7.09/7.09
250 x 10  36.37 34.28/32.69/31.97 28.81/27.31/26.46 286.79/281.90/280.87 9.64/7.13/5.88 8.20/5.99/4.38
250 x 15 33.34 45.06/42.86/41.71 37.13/35.40/34.17 374.79/369.68/368.84 11.64/8.97/8.05 9.85/6.70/5.12
250 x 20 29.88 53.59/51.49/50.27 44.83/42.03/41.13 453.35/444.10/442.00 11.28/10.04/9.17 10.73/7.72/6.92
250 x 25 25.63 58.60/55.16/54.08 48.87/45.50/44.42 504.55/495.54/489.12 10.37/9.05/7.88 9.55/7.49/6.02
250 x 30 22.34 64.16/60.81/58.70 54.08/50.73/49.29 558.09/548.40/544.23 9.08/8.10/7.18 8.95/6.80/5.91
Average 33.99 48.86/45.49/44.06 42.64/39.20/37.68 430.93/420.72/416.07 12.25/10.87/10.28 13.59/7.77/6.93

Table 7: Average Relative Percentage Deviation (RPD) for the proposed algorithms: set-
ting of ¢ to 10/30/50 in the stopping criterion only for metaheuristic methods (large

instances).
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Figure 5: Means Plot and Tukey HSD intervals at the 95% confidence level for the evalu-
ated methods (large instances).
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Another interesting factor to study in the experiments is the parameter ¢ for the meta-
heuristic methods. Remember that all metaheuristic methods are run setting the ¢ value
parameter to 10, 30 and 50. In this way, the CPU time for the stopping criterion is in-
creased and the results can be analyzed from the ¢ parameter point of view. We apply an
analysis of variance (ANOVA) as in the previous experiments but in this case we focus
our attention on the interaction between ¢ and algorithm factors. We can see in Figure 6
the means plot with HSD Tukey intervals (a=0.05) for the interaction between ¢ and al-
gorithm factors for large instances (a very similar picture is obtained for small ones). In
this case, we observe that the RPD value is much better as the ¢ parameter increases.
However, these differences are much smaller between t=30 and ¢=50 than between t=10
and t=30, which indicates that some algorithms are converging and/or stalling. If we
focus our attention on the proposed algorithms, we can see in Figure 7 the corresponding
interaction plot for GA1 and GA2.

sl :K:Meta
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Figure 6: Means Plot and Tukey HSD intervals at the 95% confidence level for the inter-
action between time (¢) and algorithm factors (large instances).
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Figure 7: Means Plot and Tukey HSD intervals at the 95% confidence level for the inter-
action between time (¢) factor and algorithms GA1 and GA2 (large instances).

7 Conclusions and future research

In this work we have proposed a genetic algorithm for the parallel machine scheduling prob-
lem with sequence dependent setup times with the objective to minimise the makespan.
The algorithms include a new crossover operator which includes a limited local search pro-
cedure. The application of a very fast local search based on the insertion neighborhood
and the acceptance of movements during the local search are also innovative characteristics
of the proposed method. A MIP model is also formulated for the same problem.

We carried out two calibration experiments by means of a design of experiments (DOE)
approach that involves the evaluation of many different alternatives in two phases. After
this calibration we have obtained the best combination of parameters for each proposed
method, which resulted in two versions of the proposed algorithm.

We have carried out an extensive comparison of the two versions of the proposed al-
gorithm against some of the best existing methods for the same problem under a compre-
hensive benchmark of instances. For all the evaluated metaheuristic methods the stopping
criterion is set to a maximum elapsed CPU time, testing different values for the amount
of time. From the results, we can conclude that both versions of the proposed genetic
algorithm obtain the best results, specially the second calibrated version (a refinement of
the first one). After several statistical analysis, we can conclude that the proposed meth-

ods provide the best results for small instances and especially for large instances. From
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the rest of the evaluated methods, we can state that they are very sensitive to the size of
the instances since their behaviour changes significantly from results for small instances
to results for large instances. Therefore, according to the extensive computational and
statistical analysis, the proposed genetic algorithms clearly outperform, by a considerable
margin, the remaining methods. We can also conclude that the calibration step is really
important, since the second calibration step outperforms the first one, specially for large
instances, by a 48%. This is an important result since we have to remark that is the same
algorithm but with different parameter values. However, it is important to remark that
the good performance of an algorithm is not a result of a calibration. Another algorithm
from the literature was also calibrated and its performance was only slightly improved.
Future research directions involve the consideration of more complex neighbourhoods
based on a variable neighbourhood search. Application to more sophisticated objectives
like completion time variance or CTV as done in Chen et al. (2009) is also a worthy venue
of research. Another interesting topic regarding parallel machine scheduling problems is to
consider multiobjective optimisation. Other parallel machines problems like for example

with batching machines (Damodaran et al., 2009) seems also interesting.
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