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A global optimization procedure is proposed to find a line in the Euclidean three-dimensional space
which minimizes the sum of distances to a given finite set of three-dimensional data points.

Although we are using similar techniques as for location problems in two dimensions, it is shown that
the problem becomes much harder to solve. However, a problem parameterization as well as lower
bounds are suggested whereby we succeeded in solving medium-size instances in a reasonable amount
of computing time.
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1. Introduction (2002), the authors discussed the problem of locating a vertical line
In this work, we consider the median line problem in the Euclid-
ean three-dimensional space, i.e. we seek a line which minimizes
the sum of Euclidean distances to some given data or demand
points in R3.

The median line problem in two dimensions and in the context
of location theory was first analyzed by Wesolowsky (1975).
Therein, it was shown that there exists an optimal line intersecting
two data points which leads to a polynomial-time solution algo-
rithm. Many generalizations such as general distance measures,
line segments, and restrictions were studied e.g. in Morris and Nor-
back (1983, 1980), Norback and Morris (1980), and Korneenko and
Martini (1993) as well as in Schöbel (1999) and references therein.

An overview about locating lines as well as more general
dimensional facilities on the plane can be found in Díaz-Báñez
et al. (2004). Moreover, also the recent work (Blanquero et al.,
2009) addresses the optimal location of structures in the plane
by means of d.c. optimization tools. This paper uses a similar ap-
proach to the median line location problem in the Euclidean
three-dimensional space.

Although the Euclidean two-dimensional median line problem
is well-studied and exact polynomial time algorithms are available,
the three-dimensional problem becomes much harder and only a
few references can be found in the literature. In Brimberg et al.
ll rights reserved.
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as well as vertical line segments for any ‘p norm. It was shown that
these problems can be essentially reduced to classical planar
Weber problems. The work was extended in Brimberg et al.
(2003). Therein, the three-dimensional median line problem was
studied with some restrictions, e.g. that all data points and/or the
line to be located are contained in a given hyperplane. Further-
more, some heuristics for the general problem were presented,
but without any numerical results. Summarizing, to the best of
our knowledge no algorithm for the general three-dimensional
median line problem has been reported in the literature.

The remainder of this paper is structured as follows. In Section
2, we discuss the problem formulation and some theoretical results
are given. Furthermore, we present a problem parameterization
which is of fundamental importance for the following sections.
Next, geometric branch-and-bound solution methods are briefly
summarized in Section 3. To apply this technique to the median
line problem, lower bounds are derived in Section 4. Some numer-
ical results can be found in Section 5 where it is shown that the
geometric branch-and-bound leads to solutions for the median line
problem with data sets of moderate size in a reasonable amount of
computing time. Finally, a discussion as well as some further re-
search ideas are given in Section 6.
2. Problem formulation

A line r in R3 has the form

r ¼ rðx;dÞ ¼ fxþ td : t 2 Rg;

where d 2 R3 n f0g is the direction of r and x 2 R3. Moreover, we
will use the following notation.
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Notation 1. For any a 2 R3 and x; d 2 R3 with d – 0 denote by

daðx;dÞ :¼ min
t2R
kxþ td� ak2

the Euclidean distance from a to the line r(x,d).
This notation leads to the following analytical expression for the

distance from a point to a line.

Lemma 1. Let a 2 R3 and x; d 2 R3 with d – 0. Then

daðx;dÞ ¼ xþ dTða� xÞ
dT d

 !
� d� a

�����
�����

2

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kx� ak2

2 �
dTða� xÞ
� �2

dT d

vuut
: ð1Þ
Proof. Define the scalar function

gðtÞ :¼ kxþ td� ak2
2:

Note that g is differentiable, strictly convex, and that g0(t⁄) = 0 for

t� ¼ dTða� xÞ
dT d

:

Hence, t⁄minimizes g and we obtain daðx;dÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
gðt�Þ

p
. Furthermore,

easy calculations lead to

ððx� aÞ þ t�dÞTððx� aÞ þ t�dÞ ¼ kx� ak2
2 �

dTða� xÞ
� �2

dT d
;

which proves the claim. h

In the remainder of this paper our goal is to locate a line
r = r(x,d) in the three-dimensional Euclidean space which mini-
mizes the sum of distances between r and a given set of data
points.

To this end, let A ¼ fa1; . . . ; ang � R3 be a set of data points.
Then we consider the median line problem

min
x;d2R3

d–0

Xn

k¼1

dak
ðx;dÞ ¼ min

x;d2R3

d–0

Xn

k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kx� akk2

2 �
dTðak � xÞ
� �2

dT d

vuut
: ð2Þ
2.1. Properties

Obviously, the line r(x,d) is not uniquely defined by the pair
(x,d). Indeed, r(x,d) = r(x + md,d) for any m 2 R. Hence, we can as-
sume without loss of generality that x is the intersection of r with
the hyperplane

Hd ¼ fy 2 R3 : dT y ¼ 0g: ð3Þ

Lemma 1 directly leads to the following corollary.

Corollary 2. For any a 2 R3 and x; d 2 R3 with d – 0 and dTx = 0 we
have

daðx;dÞ ¼ xþ dT a

dT d

 !
� d� a

�����
�����

2

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kx� ak2

2 �
dT a
� �2

dT d

vuut
: ð4Þ

Next, let us consider the median line problem with fixed direc-
tion d 2 R3 n f0g and the hyperplane Hd as defined in (3). We want
to show that the median line problem with fixed d is equivalent to
a planar Weber problem. This problem is to locate a point in the
plane minimizing the sum of distances to a given set of demand
points, see Drezner et al. (2001) for an overview. To this end, define
the mapping
pd : R3 ! Hd with pdðxÞ ¼ x� dT x

dT d
� d

and note that pd(x) is the projection of x onto Hd.

Lemma 3. Consider a fixed direction d 2 R3 n f0g. Then
daðx; dÞ ¼ kpdðxÞ � pdðaÞk2

for all x; a 2 R3.
Proof. One has

kpdðxÞ � pdðaÞk2 ¼ x� dT x

dT d
� d

 !
� a� dT a

dT d
� d

 !�����
�����

2

¼ xþ dTða� xÞ
dT d

 !
� d� a

�����
�����

2

¼ daðx; dÞ;

due to Lemma 1, see Eq. (1). h

We remark that the same result for the special case of a vertical
line, i.e. for d = (0,0,1), can also be found in Brimberg et al. (2002).
Moreover, Lemma 3 directly leads to the following corollary which
is a special case of the results in Martini (1994).

Corollary 4. The (three-dimensional) median line problem with fixed
direction d 2 R3 n f0g is equivalent to a (two-dimensional) Weber
problem.

To be more precise, for any d 2 R3 n f0g one has

min
x2R3

Xn

k¼1

dak
ðx;dÞ ¼min

x2R3

Xn

k¼1

kpdðxÞ � pdðakÞk2

¼min
x2Hd

Xn

k¼1

kx� pdðakÞk2: ð5Þ

The following basic property will be important in order to restrict
our search to a compact set.

Corollary 5. There exists an optimal solution ðx�; d�Þ 2 R6 to the
median line problem such that the line r = r(x⁄, d⁄) intersects the
convex hull of A.
Proof. Recall that for any fixed d 2 R3 n f0g the median line prob-
lem is equivalent to a planar Weber problem, see Corollary 4.

Moreover, it is well-known that there exists an optimal solution
x⁄ to the Weber problem which intersects the convex hull of the
(projected) demand points

Ad ¼ fpdða1Þ; . . . ; pdðanÞg;

see e.g. Drezner et al. (2001), i.e. x⁄ is the median of
pd(a1), . . . ,pd(an) 2 Hd.

Hence, for any fixed d 2 R3 n f0g there exists a x⁄ 2 Hd such that

min
x2Hd

Xn

k¼1

kx� pdðakÞk2 ¼
Xn

k¼1

kx� � pdðakÞk2 ¼
Xn

k¼1

kpðx�Þ � pdðakÞk2

¼
Xn

k¼1

dak
ðx�;dÞ ¼min

x2R3

Xn

k¼1

dak
ðx;dÞ;

see Eq. (5). To sum up, it exists an optimal line r = (x⁄,d) with fixed
direction d which intersects the convex hull of A. Since this is true
for any d 2 R3 n f0g, the statement is shown. h
2.2. Problem parameterization

The six-dimensional problem, i.e. finding x 2 R3 and
d 2 R3 n f0g, can be reduced to a four-dimensional problem in
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many ways. In the following we present the parameterization
which turns out to be the most efficient one for the solution algo-
rithm proposed in the following sections.

First, we have that r(x,d) = r(x,sd) for any s – 0. Thus, we can
also assume without loss of generality that kdk1 = 1. Hence, we
can parameterize any line r = r(x,d) by its associated pair (x,d) with
kdk1 = 1 and dTx = 0. Moreover, since r(x,d) = r(x,�d), we can as-
sume that

max
i¼1;2;3

jdij ¼ max
i¼1;2;3

di ¼ 1: ð6Þ

Let d ¼ ðd1;d2; d3Þ 2 R3 satisfying (6) and let us first assume that
d3 = 1 is fixed. We only need to consider x ¼ ðx1; x2; x3Þ 2 R3 such
that dTx = 0 as discussed at the beginning of this section. If we do
so, we easily obtain

x3 ¼ �ðx1d1 þ x2d2Þ:

With ak = (ak,bk,ck) for k = 1, . . . ,n and making use of Corollary 2, we
obtain the objective function (in the case that d3 = 1)

f3ðx1; x2;d1;d2Þ :¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

1 þ d2
2 þ 1

q �
Xn

k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gk

3ðx1; x2;d1;d2Þ
q

;

where

gk
3ðx1; x2; d1; d2Þ : ¼ ðx1 � akÞ2 þ ðx2 � bkÞ

2 þ ðx1d1 þ x2d2 þ ckÞ
2

� �
� ðd2

1 þ d2
2 þ 1Þ � ðd1ak þ d2bk þ ckÞ

2
:

In the same way we can also fix d1 = 1 and d2 = 1 which yields
(renaming the four remaining variables always as x1, x2, d1, and d2)

f1ðx1; x2; d1; d2Þ :¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

1 þ d2
2 þ 1

q �
Xn

k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gk

1ðx1; x2;d1; d2Þ
q

;

f2ðx1; x2; d1; d2Þ :¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

1 þ d2
2 þ 1

q �
Xn

k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gk

2ðx1; x2;d1; d2Þ
q

;

where

gk
1ðx1; x2; d1; d2Þ : ¼ ðx1d1 þ x2d2 þ akÞ2 þ ðx1 � bkÞ

2 þ ðx2 � ckÞ
2

� �
� ðd2

1 þ d2
2 þ 1Þ � ðak þ d1bk þ d2ckÞ

2
;

gk
2ðx1; x2; d1; d2Þ : ¼ ðx1 � akÞ2 þ ðx1d1 þ x2d2 þ bkÞ

2 þ ðx2 � ckÞ
2

� �
� ðd2

1 þ d2
2 þ 1Þ � ðd1ak þ bk þ d2ckÞ

2
:

To sum up, the six-dimensional problem (2) is equivalent to the
four-dimension problem

min
x1 ;x2 ;d1 ;d22R

f ðx1; x2;d1;d2Þ ð7Þ

with

f ðx1; x2;d1;d2Þ : ¼min f1ðx1; x2; d1; d2Þ; f2ðx1; x2;d1;d2Þ;f
f3ðx1; x2;d1;d2Þg:
3. Geometric branch-and-bound algorithm

To solve the median line problem, we suggest a geometric
branch-and-bound algorithm summarized below which is a popu-
lar solution technique for non-convex location problems. One of
the first geometric branch-and-bound approaches in the area of
facility location problems was suggested by Hansen et al. (1985),
the big square small square technique for some facility location
problems on the plane. Plastria (1992) generalized this method
to the generalized big square small square technique. Using triangles
instead of squares, Drezner and Suzuki (2004) proposed the big tri-
angle small triangle method. Since all these techniques are branch-
and-bound solution methods for problems with two variables,
Schöbel and Scholz (2010a) suggested the big cube small cube tech-
nique for facility location problems with multiple variables.

In general, assume an objective function

f : X ! R;

where X is a box with sides parallel to the axes, i.e. a Cartesian prod-
uct of intervals. Moreover, denote by c(Y) the center of any subbox
Y � X and let LB(Y) be a lower bound for Y, i.e.

LBðYÞ 6 f ðzÞ for all z 2 Y:

Then, under certain assumptions on f and the bounding procedure,
the following algorithm finds a global minimum of f up to any abso-
lute accuracy of e > 0, see e.g. Tuy (1998) or Schöbel and Scholz
(2010a).

(1) Calculate a lower bound LB(X) and set UB = f(c(X)) and
X ¼ fXg.

(2) Choose a box with the lowest lower bound in X , split it
into s congruent smaller boxes Y1, . . . ,Ys, delete the

selected box from X , and add Y1, . . . ,Ys to X . Calculate
lower bounds LB(Y1), . . . ,LB(Ys) and update
UB ¼ minfUB; f ðcðY1ÞÞ; . . . ; f ðcðYsÞÞg:
Delete all boxes Y from X with LB(Y) + e P UB.
(3) When there are no boxes left, i.e. X ¼ ;, the algorithm

terminates and UB is within the absolute accuracy of e
from the global minimum. If there are boxes left, return to

step (2).

Before we can apply this geometric branch-and-bound tech-
nique to the median line problem, we have to discuss some more
details. Note that we consider the four-dimensional parameteriza-
tion as defined in Eq. (7).

Some lower bounds can be found in the following section.
Moreover, we have to ensure that the initial box X contains at least
one optimal solution.

Theorem 6. Without loss of generality assume that A � [�1,1]3. Then
the initial box

X ¼ ½�
ffiffiffi
3
p

;
ffiffiffi
3
p
� � ½�

ffiffiffi
3
p

;
ffiffiffi
3
p
� � ½�1;1� � ½�1;1�

contains at least one optimal solution to the median line problem using
the four-dimensional parameterization given in (7).
Proof. Let r(x,d) be an optimal solution to the median line problem
with x = (x1,x2,x3) and d = (d1,d2,d3) such that dTx = 0. According to
Corollary 5 we can further assume that r(x,d) intersects the convex
hull of the demand points.

(1) Choose s 2 {1,2,3} such that ds = max{jd1j, jd2j, jd3j} and
define
~d ¼ ð~d1;
~d2;

~d3Þ ¼
1
ds
� d1;d2;d3ð Þ:

We obtain ~ds ¼ 1 and j~dij 6 1 for i = 1, 2, 3. Since r(x,d) and
rðx; ~dÞ represent the same line, we have shown that there is
an optimal solution (x1,x2,d1,d2) to the median line problem
using the parameterization (7) such that d1, d2 2 [�1,1].



R. Blanquero et al. / European Journal of Operational Research 215 (2011) 14–20 17
(2) Next, assume that x1 R ½�
ffiffiffi
3
p

;
ffiffiffi
3
p
� or x2 R ½�

ffiffiffi
3
p

;
ffiffiffi
3
p
�. We know

that dTx = 0. Hence, by Corollary 2, the Euclidean distance
from 0 2 R3 to the line r(x,d) is given by
d0ðx; dÞ ¼ kxk2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ x2
2 þ ðx1d1 þ x2d2Þ2

q
>

ffiffiffi
3
p

:

ffiffiffip

However, since kak2 6 3 for all a 2 [�1,1]3, the line r(x,d)
does not intersect the convex hull of the demand points, a
contradiction. h
4. Calculating lower bounds

Before we present lower bounds for the median line problem,
we recall some general concepts for the calculation of lower
bounds.

4.1. Natural interval extension

We assume that the reader is familiar with interval analysis, see
Hansen (1992) or Ratschek and Rokne (1988), which leads to sim-
ple but in general not very sharp lower bounds. Applications of this
bounding procedure to location problems can be found for exam-
ple in Fernández et al. (2007), Fernández et al. (2006), and Tóth
et al. (2009) where some competition location models were solved.

Let g : Rm ! R be a function such that the natural interval
extension exists. For any box Y ¼ X1 � � � � � Xm � Rm we then ob-
tain the lower bound

LBðYÞ ¼ GðYÞL;

where G(Y) = G(X1, . . . ,Xm) is the natural interval extension of g(x)
and the superindex L denotes the left endpoint of the interval G(Y).

For a second, more sophisticated lower bound, we will use the
general bounding operation of order two as introduced in Schöbel
and Scholz (2010b) which is summarized in the following
subsection.

4.2. General bounding operation

Assume a differentiable function g : Rm ! R and calculate some
lower bounds on the partial derivatives using the natural interval
extension, i.e. calculate the vector

LðYÞ :¼ ðG1ðYÞL; . . . ;GmðYÞLÞ;

where Gk(Y) is the natural interval extension of

gkðxÞ :¼ @g
@xk
ðxÞ for k ¼ 1; . . . ;m:

Furthermore, let ‘ ¼ ‘ðYÞ ¼ ðXL
1; . . . ;XL

mÞ be the left point of
Y ¼ X1 � � � � � Xm � Rm and define the linear function

mðxÞ :¼ gð‘Þ þ LðYÞT � ðx� ‘Þ:

As shown in Schöbel and Scholz (2010b), we obtain m(x) 6 g(x) for
all x 2 Y. Hence, we get the lower bound

LBðYÞ ¼ min
v2VðYÞ

mðvÞ;

where V(Y) it the set of the 2m vertices of Y.

4.3. Lower bounds for the median line problem

Recall that for any subbox

Y ¼ X1 � X2 � D1 � D2 � R4;

we want to find a lower bound on the median line objective
function
f ðx1; x2; d1; d2Þ ¼ min f1ðx1; x2; d1; d2Þ; f2ðx1; x2; d1; d2Þ; f3ðx1; x2; d1; d2Þf g;

where

fiðx1; x2;d1;d2Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2
1 þ d2

2 þ 1
q �

Xn

k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gk

i ðx1; x2;d1;d2Þ
q

for i = 1, 2, 3 as defined before.
One obtains a first lower bound for this problem using the nat-

ural interval extension, i.e.

LB1ðYÞ :¼ FðYÞL; ð8Þ

where F(Y) = F(X1,X2,D1,D2) is the natural interval extension of
f(x1,x2,d1,d2).

For a second lower bound, we make use of the general bounding
operation as follows. Note that for i = 1, 2, 3 and k = 1, . . . ,n the
functions gk

i are differentiable, define the linear function

mk
i ðx1; x2; d1; d2Þ :¼ gk

i ð‘Þ þ Lk
i ðYÞ

T � ðx1; x2;d1;d2Þ � ‘ð Þ

derived from the general bounding operation, and define

Mk
i ðYÞ :¼ min

v2VðYÞ
mk

i ðvÞ:

Using these definitions, we obtain the following result.

Lemma 7. For i = 1, 2, 3 and k = 1, . . . ,n, the functions

hk
i ðx1; x2; d1; d2Þ :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mk

i ðx1; x2;d1;d2Þ
q

if Mk
i ðYÞP 0

0 if Mk
i ðYÞ < 0

8<
:

are concave in Y and satisfy

hk
i ðx1; x2;d1;d2Þ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gk

i ðx1; x2;d1;d2Þ
q

for all (x1,x2,d1,d2) 2 Y.
Proof. Obviously, 0 is a concave function. Next, if Mk
i ðYÞP 0 then

mk
i ðx1; x2; d1; d2ÞP 0 for all ðx1; x2;d1;d2Þ 2 Y;

since mk
i is linear. Moreover, since the scalar function uðtÞ ¼

ffiffi
t
p

is
concave and monotone increasing for t P 0, we know that also

hk
i ðx1; x2;d1;d2Þ ¼ uðmk

i ðx1; x2;d1;d2ÞÞ

is concave. Finally, since

mk
i ðx1; x2; d1; d2Þ 6 gk

i ðx1; x2;d1;d2Þ for all ðx1; x2;d1;d2Þ 2 Y

and since u is monotone increasing, we know that

0 6 hk
i ðx1; x2;d1;d2Þ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gk

i ðx1; x2; d1; d2Þ
q

;

which proves the claim. h

With the help of Lemma 7 we obtain the following second lower
bound for the median line problem.

Theorem 8. Define the functions

hiðx1; x2;d1;d2Þ :¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

1 þ d2
2 þ 1

q �
Xn

k¼1

hk
i ðx1; x2;d1;d2Þ

for i = 1, 2, 3 and let

hðx1; x2; d1; d2Þ : ¼ min h1ðx1; x2; d1; d2Þ;h2ðx1; x2; d1; d2Þ;f
h3ðx1; x2;d1;d2Þg:

Then
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LB2ðYÞ :¼ min
v2VðYÞ

hðvÞ ð9Þ

is a lower bound where V(Y) is the set of the 16 vertices of Y.

Proof. First of all define qðx1; x2; d1; d2Þ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

1 þ d2
2 þ 1

q
and

siðx1; x2; d1;d2Þ :¼
Xn

k¼1

hk
i ðx1; x2; d1; d2Þ

for i = 1, 2, 3. Then, q is a strictly positive and convex function and
the functions si are positive and concave for i = 1, 2, 3 by Lemma
7. Hence, we conclude that

hiðx1; x2;d1;d2Þ ¼
si x1; x2;d1;d2ð Þ
q x1; x2; d1; d2ð Þ

are quasiconcave functions for i = 1, 2, 3, see e.g. Avriel et al. (1987).
Moreover, since the minimum of quasiconcave functions is quasi-
concave again, h is quasiconcave on Y and we therefore obtain

min
x2Y

hðxÞ ¼ min
v2VðYÞ

hðvÞ:

Lemma 7 furthermore states that

hðx1; x2; d1; d2Þ 6 f ðx1; x2; d1; d2Þ for all ðx1; x2;d1;d2Þ 2 Y

and the theorem is shown. h
Table 1
Numerical results for the median line problem with randomly generated input data
and e = 10�6.

n Run time (sec.) Iterations

Min Max Ave. Min Max Ave.

5 0.39 14.91 2.21 96,784 3,274,910 486,212.6
10 1.54 56.05 20.75 185,437 6,649,657 2,498,832.4
15 2.25 32.35 12.25 185,568 2,589,609 1,009,505.1
20 3.18 61.31 22.46 198,271 3,788,279 1,415,919.5
25 3.67 28.80 15.47 184,857 1,442,695 777,971.8
30 5.73 30.73 15.60 248,481 1,302,031 663,204.2
35 11.95 83.57 35.28 438,693 3,009,059 1,277,984.5
40 9.31 49.75 30.14 298,652 1,578,879 977,898.0
45 16.33 124.96 34.71 465,717 3,741,455 1,018,784.2
50 13.23 78.89 34.72 346,308 2,045,602 899,292.3
55 15.83 80.65 37.14 376,639 1,874,345 873,764.9
60 20.14 83.57 41.23 440,004 1,869,197 910,500.1
65 19.61 80.39 46.97 393,906 1,627,484 943,908.1
70 17.67 81.90 44.56 330,381 1,535,738 833,716.2
75 22.99 67.27 43.91 405,202 1,185,531 768,827.1
80 37.02 111.06 68.90 603,655 1,872,381 1,133,722.3
85 19.39 92.04 54.66 297,282 1,411,662 836,951.5
90 33.32 161.76 75.43 498,420 2,342,423 1,107,803.5
95 39.70 154.27 78.53 549,138 2,162,391 1,096,360.5
100 25.68 192.65 76.62 336,837 2,481,556 999,837.8
5. Numerical results

In this section we present some numerical experiences solving
the median line problem. To this end, we employed the geometric
branch-and-bound technique as well as the lower bounds pre-
sented in the previous sections.

We randomly generated some demand points ak 2 {�1.0,�0.9,
. . . ,0.9,1.0}3 and all selected boxes were split into s = 2 congruent
small subboxes, i.e. all selected boxes were bisect perpendicular
to the direction of the maximum width component, see Section 3.

Furthermore, in our algorithm we used three initial boxes as fol-
lows. We started with X ¼ fX1;X2;X3g where

Xi ¼ ½�1:74;1:74� � ½�1:74;1:74� � ½�1;1� � ½�1;1�;

see Theorem 6, and each box Xi for i = 1, 2, 3 was only assigned to
the function fi.

Our code was written in Fortran, compiled by Intel Visual For-
tran Compiler Professional 11.1.051, and ran on a 2.67 GHz com-
puter with 8 GB of memory under Windows 7. In the following,
we present three different studies.

5.1. Randomly input data

For various values of n, we solved 10 problem instances with
randomly generated input data as given above and e = 10�6. As
lower bound, we used the maximum of the lower bounds LB1(Y)
and LB2(Y) as suggested in Section 4, i.e. we calculated

LB3ðYÞ :¼ maxfLB1ðYÞ; LB2ðYÞg

for all subboxes Y � X.
Our results are illustrated in Table 1. Therein, the minimum,

maximum, and average run times as well as iterations throughout
the branch-and-bound algorithm are reported. Moreover, Fig. 1
shows the run times for all solved problem instances.

As can be seen, all problem instances with up to n = 100 de-
mand points could be solved in less than a few minutes of comput-
ing time. However, it should be mentioned that the standard
deviation in the run times is quite high. For example, although nine
out of ten problem instances with n = 5 demand points were solved
in less than 2 s, there was one instance with a run time of 14.91 s.
Similar observations can also be found for other values of n.

5.2. Comparison of lower bounds

In this subsection our aim is to compare the suggested lower
bounds. To this end, we consider problem instances with n = 5 de-
mand points which were solved twice. In the first run, we made
use of the lower bound LB1, i.e. of the natural interval extension.
In the second run, we employed the lower bound LB2. Table 2 pre-
sents the run times as well as the number of iterations throughout
the algorithm for 20 randomly generated problem instances and
e = 10�1.

Furthermore, we remark that we could not solve any instances
for some smaller values of e. Using e.g. e = 10�2, the lower bound
LB2 yields almost the same results as presented in Table 2. But
no instance could be solved with e = 10�2 and LB1 since the list of
boxes filled up with our limit of 24,000,000 boxes without
convergence.

To sum up, our results demonstrate unequivocally that the nat-
ural interval extension alone does not yield sharp lower bounds
such that LB1 should not to be used throughout the algorithm.
Hence, only the suggested second lower bound makes it possible
to solve the median line problem in an efficient way.

5.3. Solving one particular problem instance

Finally, we present a particular problem instance with n = 50
demand points. Using the data given in Table 3 and e = 10�6 again,
we obtained after 1,223,403 iterations and a run time of 47.62 s the
optimal line

r ¼ rðx�;d�Þ ¼
1:087929
1:106126
1:129687

0
B@

1
CAþ t �

�0:980392
1:000000
�0:153610

0
B@

1
CA

with an objective value of 36.893231, see Fig. 2.

6. Discussion

In this paper, we studied the median line problem in three
dimensions. Some theoretical results as well as a specific



Fig. 1. Run times for all problem instances of the median line problem with randomly generated input data and e = 10�6. The line represents the median of these values.

Table 2
Numerical results for the comparison of the lower bounds.

Run time (sec.) Iterations

Min Max Ave. Min Max Ave.

LB1 2.79 64.37 17.19 1,025,080 20,538,265 5,827,158
LB2 0.17 0.55 0.39 45,145 110,137 84,100

Table 3
Input data A = {a1, . . . ,a50} for the particular problem instance discussed in Section 5.3.

(1.6,0.2,0.0) (0.5,0.4,1.0) (0.3,1.8,1.8) (0.7,1.4,1.5) (1.5,1.8,0.7)
(0.8,2.0,1.2) (2.0,1.8,0.0) (1.3,0.6,0.5) (1.7,0.1,1.6) (0.4,1.4,0.2)
(1.4,1.2,0.1) (1.7,0.3,1.2) (0.7,2.0,1.1) (0.8,1.2,0.8) (1.6,1.7,0.8)
(0.1,1.5,0.2) (1.9,0.6,1.6) (1.9,0.9,1.0) (2.0,0.2,0.1) (2.0,0.6,1.2)
(0.0,0.4,0.8) (1.6,1.0,0.8) (0.7,1.0,2.0) (1.7,0.1,1.9) (0.3,1.5,1.1)
(1.0,1.9,1.4) (0.5,1.5,0.9) (0.4,0.7,1.1) (0.8,0.9,2.0) (1.9,0.2,1.6)
(0.8,1.3,1.4) (1.8,1.8,0.6) (1.5,1.1,1.6) (0.3,0.9,2.0) (0.8,0.1,2.0)
(0.8,1.1,0.3) (2.0,1.8,1.6) (1.6,1.5,0.8) (0.2,2.0,1.2) (1.2,1.6,0.7)
(1.8,1.4,1.8) (0.1,1.2,1.1) (1.1,0.3,0.6) (1.9,1.4,0.3) (0.0,0.9,0.1)
(0.7,1.5,1.1) (1.5,1.2,1.6) (1.6,0.0,1.3) (1.3,1.7,1.3) (0.5,0.0,0.3)
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Fig. 2. Optimal line for the particular problem instance discussed in Section 5.3.
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four-dimensional problem parameterization were discussed and a
geometric branch-and-bound method as solution procedure was
suggested. To be more precise, we derived some lower bounds as
well as an initial box which contains at least one optimal solution.
In the numerical results reported, it was shown that we succeeded
in solving medium-size problem instances. Although we only
solved the unweighted median line problem, note that the problem
parameterization as well as the proposed lower bounds are still
valid for weighted demand points with non-negative weights.

Furthermore, we only considered the median line problem for
the Euclidean norm. It is further research to investigate some gen-
eral distance functions. The main task here is to derive a closed for-
mula for other distance functions similar to the formula (1) for the
Euclidean case.

We remark that other parameterizations of the median line
problem are possible, e.g. spherical coordinates as suggested in
Blanquero et al. (2009). We also implemented several other lower
bounds using e.g. techniques from d.c. programming, the centered
interval bounding operation, or making use of bound procedures
similar to those ones given in Blanquero and Carrizosa (2009)
and Schöbel and Scholz (2010b). However, all other parameteriza-
tions as well as all other lower bounds we tried were worse com-
pared to the parameterization as given in Section 2 and the lower
bounds presented in Section 4.
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