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a b s t r a c t

A collection of jobs (or customers, or patients) wait impatiently for service. Each has a random lifetime
during which it is available for service. Should this lifetime expire before its service starts then it leaves
unserved. Limited resources mean that it is only possible to serve one job at a time. We wish to schedule
the jobs for service to maximise the total number served. In support of this objective all jobs are subject
to an initial triage, namely an assessment of both their urgency and of their service requirement. This
assessment is subject to error. We take a Bayesian approach to the uncertainty generated by error prone
triage and discuss the design of heuristic policies for scheduling jobs for service to maximise the Bayes’
return (mean number of jobs served). We identify problem features for which a high price is paid in num-
ber of services lost for poor initial triage and for which improvements in initial job assessment yield sig-
nificant improvements in service outcomes. An analytical upper bound for the cost of imperfect
classification is developed for exponentially distributed lifetime cases.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

A finite collection of jobs (or customers, or patients) await ser-
vice. The wait is in all cases characterised by impatience, namely
each job has a random lifetime during which it remains available
for service. Should any job not receive service prior to the expiry
of its lifetime, it leaves the system unserved. Limited service re-
sources mean that it is only possible to serve one job at a time. A
key goal of analysis concerns the development of policies for
sequencing the jobs to maximise the number of jobs which receive
service.

In discussing such problems, Argon et al. (2008) emphasise
their relevance to a situation in which limited medical resources
must be deployed optimally following a mass casualty incident
(MCI). Immediately after such incidents, a significant number of
injuries are caused and these may overwhelm local medical re-
sources. To support efficient resource allocation, all patients are
subject to an initial triage, namely an assessment of the severity
of their condition, and are classified into distinct priority groups.
This process must necessarily be undertaken speedily. However,
it may well be the case that determination of the actual criticality
level in a short timeframe is challenging, and that the initial triage
is subject to significant levels of error. Indeed, in a review related to
terrorist bombing events, Frykberg and Tepas (1988) found that on
average 59% of those classified as critical were actually non-critical,
with a 0.05% error rate for the reverse. In medical terminology,
ll rights reserved.
these two triage errors are called overtriage and undertriage,
respectively. See also Turégano-Fuentes et al. (2008). It has been
shown by Frykberg and Tepas (1988) that the accuracy of triage
can have a significant impact on casualty survival in MCIs.

In this paper we propose a simple analytical model which en-
ables such issues to be explored. In our set up each job requiring
service is subject to an initial triage to assess how much service re-
source it needs and how urgent it is. Each job is one of J types. Jobs
of the same type have random lifetimes and service times which
are identically distributed. Both of these key random quantities
are independent for distinct jobs. A job will leave the system un-
served unless its service begins before its lifetime expires. Effective
sequencing of the jobs should prioritise those whose service times
and/or lifetimes are small. Because the triage is subject to error, the
decision-maker is uncertain regarding the true type of each job.
We adopt a Bayesian approach to this uncertainty. Hence each
job has a posterior distribution over job types which expresses the
decision maker’s beliefs about its true identity after triage but be-
fore service begins. As time passes, these beliefs are updated
dynamically and posteriors are recomputed at every decision epoch
using Bayes’ Theorem. It is almost always true that these posteriors
become increasingly informative about a job’s true identity as time
increases. The primary goal of analysis is the development of an
approach to scheduling the jobs which maximises the expected
number of jobs served or which comes close to doing so.

To our knowledge the above problem has been rarely studied in
the literature. There are two contributions which address classifi-
cation errors when controlling multiclass queueing systems. Van
der Zee and Theil (1961) consider a single server queue with two
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priority classes of jobs. Incoming jobs can be misclassified. The
other contribution is due to Argon and Ziya (2009) who consider
a set up in which each arriving job sends out a signal which gives
partial information about its true identity. Both contributions focus
on optimal priority assignment strategies only. Neither considers
the problem of the subsequent scheduling of the jobs. In neither
case does the model concerned incorporate impatience.

In Section 2 our service sequencing problem is formulated as a
Bayes sequential decision problem and in Section 3 an approach to its
solution via dynamic programming (DP) is described. Important
contributions to the general theory of Bayesian DP are due to Bell-
man (1961), Furukawa (1970), Rieder (1975) and Kumar (1985).

An exact DP approach is computationally intractable for prob-
lems of reasonable size, even for the case in which triage is without
error and job types are known with certainty. For this case, Glaze-
brook et al. (2004) and Argon et al. (2008) have proposed simple
heuristics for job sequencing, neither of which have uniformly
strong performance. The best solution approach to date for the per-
fect triage problem is due to Li and Glazebrook (2010) and utilises
a fluid model of the system to underpin an approximate DP meth-
odology. In Section 4 this approach is further developed so that it
can yield effective solutions to our Bayesian model for the problem
in which triage is subject to error. A numerical study in Section 5
testifies to the strong performance of the resulting heuristic service
policy in 18,000 randomly generated problems.

In Sections 6 and 7 we explore the question of whether it is pos-
sible to identify problem features for which poor triage is particu-
larly costly in terms of number of service completions lost. To this
end, we introduce the (relative) cost of imperfect classification, de-
noted (R)CIC, as a natural measure of this. The quantity CIC is di-
rectly analogous to a measure called the value of perfect
information developed by Berry and Kertz (1991) and applied in
the context of multi-armed bandit problems. We are able to devel-
op an analytical upper bound for (R)CIC for the case in which the
random lifetimes are exponentially distributed. This bound tells
us that in the exponential lifetime case, CIC is small whenever
the product of mean service time and mean lifetime varies little
across job types. In such cases the triage process is relatively unim-
portant for the scheduling problem. Numerical studies indicate
that these insights extend beyond the exponential case.

Many earlier contributions to scheduling problems which have
adopted a Bayesian approach to unknown system parameters have
deployed the theory of Gittins indices for multi-armed bandits; see
Gittins (1979, 1989). Application areas include job scheduling (Git-
tins and Glazebrook, 1977; Hamada and Glazebrook, 1993; Cai
et al., 2009), experimental design (Glazebrook, 1978) and optimal
exploration (Glazebrook and Boys, 1995). In a related theoretical
contribution, Glazebrook and Owen (1995) assess the value of
building adaptive policies for stochastic scheduling which are able
to learn about unknown parameters. Application domains im-
pacted by contributions unrelated to multi-armed bandits include
the design of sequential screens (Boys et al., 1996), inventory con-
trol (Azoury, 1985) and optimal search (Zhao et al., 2008).
2. A model for the triage problem with imperfect classification

A clearing system has a single server and a collection of N jobs
(or customers) awaiting service, which starts at time 0. Each job is
one of J types, each type being identified by an integer
i 2 {1,2, . . . , J}. Each type i job has associated with it two positive-
valued random variables (r.v.s). One of these is its lifetime, namely
the period during which the job is available for service, which is
deemed to have the distribution of some r.v. Xi with distribution
function Fi. A job will leave the system unserved if its lifetime ex-
pires before it is taken into service. The other is its service time,
which, for a type i job, is deemed to have the distribution of some
r.v. Yi with distribution function Gi. A job leaves the system when
its service is complete. The lifetimes and service times of all jobs
form a mutually independent collection. We assume that service
is nonpreemptive, namely that a service, once begun, must be
completed.

At time 0 the type of each job is observed with error. Should a
type i job be assessed as type j, we shall say that it becomes a mem-
ber of class j. Hence throughout, we shall use the term class to de-
note the assessed type of a job. Only job class is observed. We shall
adopt the following simple probabilistic model of job (mis) classi-
fication. We write pi for the unconditional probability that a job is
of type i and �ij for the conditional probability that a type i job is
assessed as j. If �ii < 1 for any i then some misclassification is pos-
sible. By deployment of Bayes’ Theorem we infer the conditional
probability that, in advance of any service, a class j job is actually
of type i to be

pijð0Þ , Pðtype ijclass jÞ ¼ �ijpiPJ
k¼1�kjpk

: ð1Þ

As time passes, jobs leave the system as services are completed and
lifetimes expire. It is also true, that at some time t > 0 our beliefs
with regard to the (true) type of the remaining jobs need to be up-
dated in light of their survival beyond t. Again applying Bayes’ The-
orem, we have

pijðtÞ , Pðtype ijclass j; lifetime > tÞ ¼ �ijpi 1� FiðtÞf gPJ
k¼1�kjpk 1� FkðtÞf g

: ð2Þ

It is trivial to show that if all of the �.., p. are strictly positive and,
further, that there exists some type i⁄ which outlasts the others in
the sense that

lim
t!1

1� FiðtÞ
1� Fi� ðtÞ

¼ 0; i – i�; ð3Þ

then we must have

lim
t!1

pi� jðtÞ ¼ 1; 8j;

and consequently

lim
t!1

pijðtÞ ¼ 0; i – i�; 8j:

Hence such survival information can be very informative for (true)
type identity.

Example 1. Consider an example with J = 2 and with the following
parameters:

� p1 = 0.3, p2 = 0.7,
� �12 = 0.3, �21 = 0.4,
� X1 �Weibull(1.68,1.62), X2 �Weibull(1.16,13.43).

Note that here and elsewhere, we shall use Weibull (a,b) to
denote the distribution function

FðtÞ ¼ 1� exp � t
b

� �a� �
; t 2 Rþ:

At time zero, the probability that a class 1(2) job is indeed of type
1(2) is 0.43(0.82) from Eq. (1). As time passes these conditional
probabilities are updated according to Eq. (2). Their values at times
2 and 5 are given below:

p11ð2Þ ¼ 0:17; p22ð2Þ ¼ 0:95;

p11ð5Þ ¼ 0:00; p22ð5Þ ¼ 1:00:

Since type 2 jobs have much longer mean lifetimes (with mean
12.75) than type 1 (mean 1.45), it is unsurprising that we have
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i⁄ = 2 here and that type 2 jobs outlast type 1. As time passes, all
surviving jobs are increasingly likely to be of type 2.

The goal of analysis is the development of an approach to the
allocation of service to surviving jobs (i.e., those still in the system)
to maximise the expected number of jobs which leave the system
served. Equivalently, we seek to minimise the expected number of
jobs which leave the system on the occasion of the expiry of their
lifetimes. Decision epochs occur whenever a service completion
occurs. Suppose that t is such an epoch and that at time t, nj class
j jobs survive. We write (n, t) for the corresponding system state,
where n , (n1,n2, . . . ,nJ) is the vector summarising the class mem-
bership of surviving jobs. Write

DðnÞ , fj; nj > 0g
for the set of admissible actions in state (n, t). A service policy p maps
each system state (n, t) to the action set D(n). In applying any such
service policy p, specification of the class of job to be served next is
all that is required. In terms of the Bayes’ return achieved (see (6)
below), it is immaterial which job within the chosen class is se-
lected. For definiteness, we may assume that job selection is ef-
fected by the application of a uniform randomization over the
remaining members of the chosen class. We shall conventionally
use (L, 0) for the initial system state, where L = {Lj,1 6 j 6 J}. Hence
at time 0, Lj jobs are placed in class j, 1 6 j 6 J.

We give each job present at time 0 a numerical identifier
m 2 {1,2, . . . ,N}. We shall suppose that this numbering of the jobs
is such that the Lj members of class j which are initially present
have the identifiers Kj�1 + 1 6m 6 Kj, where Kj ¼

Pj
k¼1Lk;

1 6 j 6 J. We shall use I = {Im;1 6m 6 N} for the unobservable true
initial state, regarded as a random variable, where Im is the true
type of job m. Observation of initial system state (L,0) modifies
the unconditional distribution for I to the conditional posterior
distribution given by

P I ¼ ijðL;0Þ½ � ¼
YJ

j¼1

YKj

m¼Kj�1þ1

pimjð0Þ: ð4Þ

We shall use EIj(L, 0) as a notational shorthand for an expectation ta-
ken with respect to the distribution in (4). Denoting the lifetime of
job m by XImvFIm , we use Tm(p) to denote the time at which service
policy p begins to process job m. Conditional upon the true initial
state I we write N(pjI) for the number of jobs to be served to com-
pletion under service policy p. We have

NðpjIÞ ¼
XN

m¼1

I TmðpÞ 6 XImf g; ð5Þ

where I is an indicator. For any initial system state (L, 0), the goal of
analysis is the determination of a service policy p to maximise the
quantity

Ve
pðL; 0Þ ¼ EIjðL;0ÞE NðpjIÞf g: ð6Þ

In (6) the inner expectation is taken over realisations of the system,
evolving under service policy p from true initial state I. The outer
expectation is taken with respect to the posterior distribution in
(4). We call the quantity in (6) the Bayes’ return generated by service
policy p from initial state (L,0). Please note that in (6) and hereafter
we shall use a superscript e to denote the fact that we are dealing
with an object associated with a classification which is prone to er-
ror (and hence uncertainty).

3. Formulation of the Bayes sequential decision problem as a
dynamic programme (DP)

We now formulate the Bayes sequential decision problem

VeðL;0Þ � sup
p

Ve
pðL;0Þ ð7Þ
as a dynamic programme (DP). Any service policy achieving the
supremum in (7) is a Bayes’ policy. In order to formulate the associ-
ated DP we require additional notation. We shall use Xe

j to denote
the random lifetime of a job classified as j at time 0. Using (1) above,
the associated distribution function is given by

Fe
j ðsÞ ¼

XJ

i¼1

pijð0ÞFiðsÞ; s 2 Rþ; 1 6 j 6 J: ð8Þ

Please note that in Eq. (8) and in what follows we shall use s and t as
time variables. Our practice will be to use t for decision epochs
when required. We shall assume that each Fi has an associated
absolutely continuous density fi. Hence Xe

j has the density

f e
j ðsÞ ¼

XJ

i¼1

pijð0ÞfiðsÞ; s 2 Rþ; 1 6 j 6 J:

The expression in (8) is a predictive description of the distribution
of the random lifetime concerned at time 0. Suppose now that a
job classified as j at time 0 is still alive at time t. The appropriate
conditional distribution for the job’s lifetime is then given by

P Xe
j 6 t þ sjXe

j > t
� �

¼
Fe

j ðt þ sÞ � Fe
j ðtÞ

1� Fe
j ðtÞ

¼
XJ

i¼1

pijðtÞ
Fi t þ sð Þ � FiðtÞ

1� FiðtÞ

� �

from which we can deduce the continuous hazard

he
j ðsÞ ¼ f e

j ðsÞ 1� Fe
j ðsÞ

n o�1
¼
XJ

i¼1

pijðsÞhiðsÞ; s 2 Rþ;

1 6 j 6 J; ð9Þ

where in (9), hi = fi{1 � Fi}�1 denotes the continuous hazard associ-
ated with the type i lifetime Xi. Should type i⁄ outlast the others in
the sense of (3) above then we will have

lim
s!1

he
j ðsÞ � hi� ðsÞ

n o
¼ 0; 1 6 j 6 J:

Concerning job service times, consider a situation in which a job,
originally classified as j, is still in the system and is scheduled for
service at time t. We shall use Ye

j;t for the corresponding service
time, whose distribution function is given by

Ge
j;tðsÞ ¼

XJ

i¼1

pijðtÞGiðsÞ; s 2 Rþ; 1 6 j 6 J:

In the important special case that the true service times Yi are deter-
ministic and distinct (in which case we use Si for the type i service
time), we have

P Ye
j;t ¼ Si

n o
¼ pijðtÞ; t 2 Rþ; 1 6 i; j 6 J: ð10Þ

Now let t be a decision epoch for the problem and let (n, t) be the
system state then. If action j 2 D(n) is taken and results in a service
time (realised value of Ye

j;t) equal to s then the system state at the
next decision epoch will be (n0, t + s) with probability pe(n0jn, t, j,s)
given by

pe n0jn; t; j; sð Þ ¼
YJ

m¼1

nm � dmj

n0m

� �
P Xe

m P t þ sjXe
m > t

� 	
 �n0m

P Xe
m < t þ sjXe

m > t
� 	
 �nm�dmj�n0m

¼
YJ

m¼1

nm � dmj

n0m

� �
1� Fe

mðt þ sÞ
1� Fe

mðtÞ

� �n0m

Fe
mðt þ sÞ � Fe

mðtÞ
1� Fe

mðtÞ

� �nm�dmj�n0m

;

0 6 n0m 6 nm � dmj;1 6 m 6 J: ð11Þ
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In (11), dmj is the Kronecker delta which is equal to one when m = j
and is zero otherwise. We can re-express the transition probability
in (11) using the hazard in (9). We have

peðn0jn; t; j; sÞ ¼
YJ

m¼1

nm � dmj

n0m

� �
exp �

Z tþs

t
he

mðsÞds
� �� �n0m

1� exp �
Z tþs

t
he

mðsÞds
� �� �nm�dmj�n0m

;

0 6 n0m 6 nm � dmj; 1 6 m 6 J: ð12Þ

In order to formulate the optimality equations for our Bayes
sequential decision problem, we require the value function Ve:
X ? [0,N], where X is the system’s state space, given by

X ¼ ðn; tÞ; 0 6 nj 6 Lj; t 2 Rþ

 �

:

The quantity Ve(n, t) is the maximal expected number of service com-
pletions which can be delivered from system state (n, t). Note that the
quantity Ve

pðL;0Þ is developed in (4)–(6) above. To obtain Ve
pðn; tÞ, we

modify that development as follows: Write NðtÞ ¼
PJ

j¼1nj for the
number of jobs remaining at t and represented in the system state
(n, t) and assume that these are reallocated numerical identifiers in
the set {1,2, . . . ,N(t)} in ascending order of class identifier such that
the class j jobs present at t are numbered Kj�1(t) + 1 6m 6 Kj(t),
where KjðtÞ ¼

Pj
k¼1nk;1 6 j 6 J. To obtain the appropriate posterior

for the true unobservable state we now replace (4) by

P I ¼ i ¼ fim; 1 6 m 6 NðtÞgjðn; tÞ½ � ¼
YJ

j¼1

YKjðtÞ

m¼Kj�1ðtÞþ1

pimjðtÞ; ð13Þ

where by slight abuse of notation we now use I for the true but
unobservable state at time t. We now obtain Ve

pðn; tÞ by replacing
the (6) by one with respect to the posterior (13)). We then have

Veðn; tÞ ¼ sup
p

Ve
pðn; tÞ:

With the above in place we may write the DP optimality equations
as

Veðn; tÞ ¼ 1þmax
j2DðnÞ

Z 1

0

X
n0

peðn0jn; t; j; sÞVeðn0; t þ sÞdGe
j;tðsÞ

( )
;

n – 0 ð14Þ

and

Veð0; tÞ ¼ 0:

In the special case of deterministic service times considered in (10),
we can specialise (14) to

Veðn; tÞ ¼ 1þmax
j2DðnÞ

XJ

i¼1

X
n0

pijðtÞpe n0jn; t; j; Sið ÞVe n0; t þ Sið Þ
( )

;

n – 0: ð15Þ

We further note that DP value iteration is available to us to compute
the Bayes’ returns associated with any specified service policy p. In
this event we use the recursion

Ve
pðn;tÞ¼1þ

Z 1

0

X
n0

pe n0jn;t;pðn;tÞ;sð ÞVe
p n0;tþ sð ÞdGe

pðn;tÞ;tðsÞ
( )

;

n – 0; ð16Þ

which in the case of deterministic service times becomes

Ve
pðn; tÞ ¼ 1þ

XJ

i¼1

X
n0

pipðn;tÞðtÞpe n0jn; t;pðn; tÞ; Sið ÞVe
p n0; t þ Sið Þ

( )
;

n – 0: ð17Þ
In the special case of classification without error (in which job class
and type are identified), the simple static service policy which
serves jobs in increasing order of the product E(Xi)E(Yi) is known
to work well when loss rates are low. See Glazebrook et al.
(2004). We adapt this policy to the current case in which classifica-
tion is error prone as follows: list the job classes in increasing order
of the quantity EðXe

j ÞEðY
e
j;0Þ, i.e. such that

EðXe
1ÞEðY

e
1;0Þ 6 EðXe

2ÞEðY
e
2;0Þ 6 � � � EðX

e
J ÞEðY

e
J;0Þ: ð18Þ

In any state (n, t), the proposed policy pS chooses action pS(n, t)
where

pSðn; tÞ ¼ minfj; nj P 1g:

In what follows, the policy pS will be both assessed as a policy in its
own right and also used as a building block in the construction of
strongly performing heuristic policies for our Bayes sequential deci-
sion problems. How we do this is described in the next section.

4. On the development of effective heuristic service policies

For problems of realistic size, the utilisation of full DP to devel-
op optimal service policies via suitable deployment of optimality
Eq. (14) is computationally intractable. One possible route to the
development of effective policies would be to apply a single DP
policy improvement step to the simple static proposal pS. The re-
sult would be a new dynamic policy pSPI determined as follows:

pSPIðn; tÞ ¼ argmax
j2DðnÞ

Z 1

0

X
n0

peðn0jn; t; j; sÞVe
pS ðn0; t þ sÞdGe

j;tðsÞ
( )

;

n – 0: ð19Þ

Policy pSPI is constructed with the objective of choosing an optimal
action in the current state, given that all future actions will be
determined according to the simple static proposal pS. Equivalently,
the inaccessible value function Ve, required for the implementation
of full DP in (14), is replaced by the approximation Ve

pS . Sadly, the
computation of this latter approximation is in many cases also
intractable. Hence, we propose the deployment of a fluid approxi-
mation to the stochastic service system in order to develop Vapp

pS ,
an approximation to Ve

pS . This approach, which extends that of the
authors for the simpler perfect classification case, is now described.

In our fluid approximation, we fix j 2 {1,2, . . . , J} and represent
the class j situation when its processing begins under static policy
pS by the pair (mj, tj). In this representation, tj is the time at which
class j service begins under pS and mj is an amount of fluid repre-
senting the number of class j jobs surviving then. The nature of pol-
icy pS means that class j will be served continually from (mj, tj) until
all of the class j jobs are completed, namely until all of the corre-
sponding fluid is drained in the approximating model. The process
of draining class j fluid is as follows: if mj P 1 a single unit of fluid
is removed instantaneously at time tj0 = tj and signifies the guaran-
teed completion of a single job’s service. Loss of fluid is thereafter
experienced at rate he

j ðsÞ, the hazard rate associated with class j
jobs as given in (9), during the period of this initial class j service,
which in the fluid model occupies the time interval [tj0, tj1), where
tj1 ¼ tj0 þ EðYe

j;tj0
Þ. Should the amount of class j fluid remaining at tj1

exceed one then a further single unit of fluid is removed instanta-
neously then and signifies the guaranteed completion of a second
class j service, and so on. In what follows, tjk denotes the time of
the kth class j service completion while Flj(s) denotes the amount
of class j fluid remaining at time s. Class j fluid draining as service
is offered to class j continuously from (mj, tj) is modelled as follows:

tj0 ¼ tj;tjkþ1 ¼ tjkþE Ye
j;tjk

� �
; k2N; ð20Þ

Fljðtj0Þ¼mj; Fl0jðsÞ ¼�he
j ðsÞFljðsÞ; s R ftjk;k2Ng; FljðtþjkÞ¼ FljðtjkÞ�1


 �þ
; k2N:
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We now introduce the quantities

Kjðmj; tjÞ ¼min k; FljðtþjkÞ ¼ 0
n o

ð21Þ

and

Njðmj; tjÞ ¼ Kjðmj; tjÞ þ Flj tjKjðmj ;tjÞ

� �
: ð22Þ

From (21), Kj(mj, tj) is the (integer) number of fully completed class j

jobs under the fluid model while Flj tjKjðmj ;tjÞ

� �
is the fractional

amount of class j fluid remaining at the conclusion of the class j
processing and which is deemed to yield a further fractional com-
pletion within the approximating fluid model. In the fluid model,
we take the total processing time of class j to be

Tjðmj; tjÞ ¼
XKjðmj ;tjÞ�1

k¼0

E Ye
j;tjk

� �
þ Flj tjKjðmj ;tjÞ

� �
E Ye

j;tjKj ðmj ;tj Þ

� �
: ð23Þ

We now fix system state (n, t) and use the quantities developed in
(20)–(23) to develop Vapp

pS ðn; tÞ, the estimate of the expected number
of job completions secured under static policy pS from state (n, t)
obtained from our approximating fluid model. We define the quan-
tities fj(n, t), wj(n, t), 1 6 j 6 J, inductively as follows:
f1ðn; tÞ ¼ N1ðn1; tÞ; w1ðn; tÞ ¼ T1ðn1; tÞ

and

fjðn;tÞ ¼Nj nj exp �
Z Pj�1

k¼1

wkðn;tÞ

0
he

j ðtþvÞdv

8><
>:

9>=
>;;tþ

Xj�1

k¼1

wkðn;tÞ

0
B@

1
CA; 16 j6 J;

ð24Þ

wjðn;tÞ¼ Tj nj exp �
Z Pj�1

k¼1

wkðn;tÞ

0
he

j ðtþvÞdv

8><
>:

9>=
>;;tþ

Xj�1

k¼1

wkðn;tÞ

0
B@

1
CA; 16 j6 J:

ð25Þ
We now obtain the approximating value function as

Vapp
pS ðn; tÞ ¼

XJ

j¼1

fjðn; tÞ: ð26Þ

Our proposed sequential decision rule pSF is obtained by deploying
the approximate value function from (26) within (19). We write,

pSFðn; tÞ ¼ arg max
j2Dðn

Z 1

0

X
n0

peðn0jn; t; j; sÞVapp
pS ðn0; t þ sÞdGe

j;tðsÞ
( )

;

n – 0: ð27Þ

Example 2. For the problem with the pi, �ij and lifetime distribu-
tions given in Example 1, and the following additional problem
parameters

� L1 = L2 = 5,
� S1 = 1.41, S2 = 4.76,

we computed both the exact value functions VpS and their fluid
approximations Vapp

pS . In Fig. 1 we plot both values at a set of states
at four time points which are chosen to be representative of likely
decision epochs. It is shown that the performance of the approx-
imation is outstanding, with consistently small errors across all the
states examined. We have also calculated the percentage approx-
imation errors, DðVpS ;Vapp

pS Þ ¼ 100j1� Vapp
pS =VpS j%, over the effec-

tive state space. Such a space excludes all the states which will
never be visited given the initial conditions. Of 2267 points in the
effective state space, the median error is only 1.48% and the worst
case is just 4.55%. The computational time to calculate the fluid
approximation for each of these states does not vary much. The
average is about 0.012 seconds. In sharp contrast, the time to
calculate the exact value functions varies significantly with states,
of which the maximum is 26 seconds. Please note that the
computation of VpS grows exponentially in J, the number of job
classes, while the growth of the computation of Vapp

pS is linear in J.
Hence for larger problems we would expect the differences in
computation time to be much greater.

5. Performance quality of the heuristic service policy pSF

In what follows we compare the performance of the heuristic
pSF developed in the preceding section with that of the static pro-
posal pS described around (18). We shall also consider pM, an adap-
tation of a myopic policy proposed by Argon et al. (2008) for the
perfect classification case. In state (n, t), pM chooses the action from
D(n) to be the non-empty class j with the smallest associated value
of

EðYe
j;tÞ

XJ

k¼1

ðnk � dkjÞ E Xe
k � tjXe

k > t
� 

 ��1

" #
:

The Bayes’ returns for all of pSF, pS and pM are compared to the opti-
mum for 18,000 randomly generated problems in each of which job
lifetimes are Weibull and service times are deterministic. Recall
that we use Si for the (deterministic) service time of a type i job
while for type i lifetimes we assume the following form of the Wei-
bull hazard, namely

hiðsÞ ¼ aib
�ai
i sai�1; s 2 Rþ:

All problems are chosen such that optimal policies can be developed
via (15), notwithstanding the fact that exact value iteration is very
expensive of computing time. The problems are generated at ran-
dom under four different sets of assumptions (represented by cate-
gories A,B,C and D) regarding the relative lengths of service times
and lifetimes of individual jobs and under three different sets of
assumptions (poor, medium and good) regarding the quality of
the initial job classification. Some problems involve just two job
types (J = 2) while for others there are four (J = 4). The key problem
features Si, ai, bi and N are sampled/chosen as follows:

SivU½1;10� ðJ ¼ 2 casesÞ; ð28aÞ

SivU½1;5� ðJ ¼ 4 casesÞ; ð28bÞ

aivU½1;2�; ð28cÞ

biC 1þ a�1
i

� 

S�1

i jSi;aivU½0:1;0:5� ðvery short lifetimes; AÞ; ð28dÞ

biC 1þ a�1
i

� 

S�1

i jSi;aivU½0:5;2� ðshort lifetimes; BÞ; ð28eÞ

biC 1þ a�1
i

� 

S�1

i jSi;aivU½2;10� ðmoderate lifetimes; CÞ; ð28fÞ

biC 1þ a�1
i

� 

S�1

i jSi;aivU½10;100� ðlong lifetimes; DÞ; ð28gÞ

N ¼ 20 ðJ ¼ 2 casesÞ; ð28hÞ

N ¼ 10 ðJ ¼ 4 casesÞ: ð28iÞ

Further, for each problem the pi are obtained by first sampling inde-
pendently from U[0.1,0.9] and then normalising. The (mis) classifi-
cation probabilities �ij are obtained as follows: first obtain the
probabilities of correct classification �ii by sampling as follows:

�iivU½0:5;0:65� ðpoor classificationÞ; ð28jÞ
�iivU½0:65;0:85� ðmedium classificationÞ; ð28kÞ
�iivU½0:85;1� ðgood classificationÞ: ð28lÞ
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Fig. 1. Plots of the exact value function VpS and of its fluid approximation Vapp
pS for states (n1,n2, t) where 0 6 n1, n2 6 5 and t = 0, 2.82, 5.64, 8.99.
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Then obtain the �ij, i – j, by sampling independently from U[0,1]
and normalising suitably.

Each sampled instance from the above is called a profile. For
each profile, we generate a range of problems with different initial
states (L,0). This is done in two steps as follows: first, the number
Ki of jobs of type i is obtained by sampling from the multinomial
distribution

K1;K2; . . . ;KJ

 �

v Multinomial ðN; p1;p2; . . . pJÞ: ð29Þ

Second, for each fixed i, the Lij, 1 6 j 6 J, namely the number of type i
jobs classified initially as j is then obtained by sampling from the
multinomial distribution

fLi1; Li2; . . . ; LiJgv Multinomial ðKi; �i1; �i2; . . . ; �iJÞ: ð30Þ

These samples are drawn independently for distinct i. We obtain the
components of initial state L by setting Lj, the total number of jobs
initially classified as j, equal to

PJ
i¼1Lij. Please note that our sam-

pling scheme is such that the Lj will tend to be smaller for the
J = 4 cases studied than for the J = 2 ones. The job service times
are also sampled from a smaller range. These choices are dictated
by the computational requirements of the value iteration scheme
needed for the determination of the maximal Bayes’ return and
the associated optimal policies. Please note that our heuristic poli-
cies can themselves be computed easily for much larger problems.

For J = 2, 200 profiles were generated according to the above
sampling scheme in (28a)–(28l) for each of the 12 combinations
of problem category (A,B,C,D) and classification quality (poor,
medium, good). For each profile, 5 problems (i.e., initial states)
were generated according to (29) and (30). Thus the total number
of problems generated for each problem category/classification
quality combination quality was 1,000, making 12,000 problems
overall. For each problem, the quantities Ve

pSF ðL;0Þ;Ve
pS ðL;0Þ and

Ve
pM ðL;0Þ, the Bayes’ returns respectively for the three heuristics

pSF, pS and pM were computed along with the maximal return
Ve(L,0). All computations used an appropriate form of DP value
iteration from (15) and (17). For each heuristic p = pSF, pS, pM

and each problem (L,0) generated, the percentage suboptimality

DpðL;0Þ � 100 VeðL;0Þ � Ve
pðL;0Þ


 �
VeðL;0Þ

 ��1

was computed. Further, for each subcollection of 1,000 problems
corresponding to a problem category/classification quality combi-
nation, the minimum, mean and maximum values of Dp(L,0) were
computed for each heuristic. These values may be found in Table 1.

We observe that the policy pSF developed by utilising an
approximating fluid model within a one-step DP policy improve-
ment performs robustly well throughout. Its mean percentage sub-
optimality never exceeds 0.03% with a worst case, among all
12,000 problems of just 1.21% suboptimal. It comfortably outper-
forms pS and pM excepting only the category B/poor classification
case where it is marginally outperformed by pM. Serious subopti-
malities are observed for the policies pS and pM, especially for
problem configurations for which they were not designed.

Note that, within problem categories, percentage suboptimali-
ties tend to increase with classification quality. To understand this,
consider the worst case for classification in which �ij = J�1 "i, j in



Table 1
Percentage deviation from optimal performance for Weibull lifetimes and deterministic service times when J = 2.

Category Classification Poor Medium Good

pSF pS pM pSF pS pM pSF pS pM

A Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Mean 0.00 0.32 0.01 0.00 1.15 0.02 0.00 1.95 0.05
Max 0.00 4.39 0.43 0.00 20.65 2.32 0.00 26.08 5.35

B Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Mean 0.03 0.12 0.01 0.02 0.89 0.05 0.01 1.53 0.12
Max 0.76 4.15 0.27 0.91 11.36 2.06 0.69 20.93 7.31

C Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Mean 0.02 0.11 0.17 0.02 0.21 0.53 0.02 0.54 0.89
Max 0.58 1.64 3.46 0.85 4.59 8.82 1.21 11.35 15.74

D Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Mean 0.00 0.04 0.18 0.00 0.12 0.62 0.01 0.25 1.24
Max 0.07 0.73 3.77 0.12 1.64 7.88 0.99 3.24 13.24
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which the classification process randomly allocates jobs to classes.
In this case, the assessment process fails to offer useful information
on job type and posterior probabilities (of true type) are indepen-
dent of class. All jobs are effectively members of a single undiffer-
entiated class and service policies which make use of class
information are indistinguishable. As the classification improves
from this worst case, the classes become more distinct, information
on class membership more informative, policies more distinct and
hence the choice of policy more important. It is thus unsurprising
that the differences between the heuristic service policies is most
pronounced when classification is reasonable or good. A cautionary
note is that the small suboptimalities when classification is poor do
not necessarily indicate satisfactory service outcomes. It may well
be that even the optimal policy cannot achieve a high Bayes’ return
when the classification errors are significant.

The study for problems with J = 4 was conducted in the same
way, except that its computational demands were such that only
100 profiles were generated for each of the problem category/clas-
sification quality combinations. Hence in this part of the study a
further 6,000 problems were studied. The results are qualitatively
very similar to those for the J = 2 cases and may be found in Table
2.

6. The cost of imperfect classification – analytical insight

In the previous sections, we have described tools to develop pSF,
an effective and easily computed policy for the triage problem with
imperfect classification which has been seen to achieve a Bayes’ re-
turn close to the optimum in a large number of problems. We now
explore the complementary question of the price paid in reduced
Table 2
Percentage deviation from optimal performance for Weibull lifetimes and deterministic se

Category Classification Poor

pSF pS pM

A Min 0.00 0.00 0.00
Mean 0.00 0.92 0.28
Max 0.00 11.83 5.97

B Min 0.00 0.00 0.00
Mean 0.06 1.00 0.08
Max 2.01 9.82 1.87

C Min 0.00 0.00 0.00
Mean 0.05 0.30 0.44
Max 1.13 5.11 3.67

D Min 0.00 0.00 0.00
Mean 0.03 0.23 0.42
Max 0.96 2.74 3.19
service completions for our inability to classify perfectly. We shall
describe how we develop a measure of this, called the cost of imper-
fect classification (CIC). It will assist the forthcoming discussion if
(7) by pB.

Consider initial system state (L,0). Conditional upon (L,0), the
true state of the system (4)). Condition upon the event {I = i},
namely that the true state of the jobs in the system is actually gi-
ven by the vector i of job types. Consider a decision-maker with ac-
cess to the true state i. We write m for a scheduling policy which is
able to exploit that access and N(mji) for the number of jobs served
to completion under m. This decision-maker is able to achieve an
expected number of job completions given by

max
m

E NðmjiÞf g;

where the expectation is taken with respect to realisations of the
system evolving from i under policy m and the maximum is over
all policies which have access to the true state of the system
throughout. A decision-maker who does not have access to the true
state i can do no better than use the Bayes’ policy pB which, condi-
tional upon i, yields an expected return

E NðpBjiÞ

 �

:

Hence, conditional upon i, the reduction in the expected number of
jobs completed because of our failure to classify perfectly is given
by

max
m

E NðmjiÞf g � E NðpBjiÞ

 �

: ð31Þ

When the initial system state is (L,0), the measure of job comple-
tions lost we seek is obtained by taking an expectation of the (31)
rvice times when J = 4.

Medium Good

pSF pS pM pSF pS pM

0.00 0.00 0.00 0.00 0.00 0.00
0.00 1.17 0.23 0.00 1.25 0.18
0.33 15.45 6.91 0.00 19.34 9.64

0.00 0.00 0.00 0.00 0.00 0.00
0.07 1.49 0.10 0.06 1.63 0.14
3.14 10.83 3.66 2.02 17.06 6.26

0.00 0.00 0.00 0.00 0.00 0.00
0.03 0.27 0.60 0.04 0.24 0.60
0.69 3.82 5.89 0.84 2.88 6.05

0.00 0.00 0.00 0.00 0.00 0.00
0.01 0.29 0.40 0.02 0.36 0.69
0.41 2.87 3.26 0.60 2.63 4.87
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with respect to the posterior distribution (4)). We thus obtain the
quantity

EIjðL;0Þ max
m

E NðmjIÞf g � E NðpBjIÞ

 �h i

¼ EIjðL;0Þ max
m

EfNðmjIÞg
h i

� VeðL;0Þ;

where the latter equation follows from (6) and (7). We now give a
formal definition.

Definition 1. The cost of imperfect classification for initial state
(L,0) is given by
CICðL;0Þ � EIjðL;0Þ max
m

E NðmjIÞf g
h i

� VeðL;0Þ: ð32Þ

The relative cost of imperfect classification is given by,

RCICðL;0Þ � CICðL;0Þ
VeðL;0Þ

: ð33Þ
Remark 1. Berry and Kertz (1991) developed a directly equivalent
measure to CIC (which they called ‘the value of perfect information’)
in the context of multi-armed bandit problems. For such problems
they compute the value of perfect information by first considering
the difference between the expected reward achieved by a player
with perfect information regarding the success probabilities of
each arm of the bandit (and who thus pulls the arm with the high-
est success probability on every occasion) and a player who has
imperfect information of the success probabilities mediated
through a prior distribution and who can do no better than use a
Bayes’ policy for the problem. This difference is then averaged with
respect to the prior concerned. This is exactly the approach taken
here and which yields CIC(L,0).
Example 3. For the problem with the pi, Lj and lifetime and service
time distributions given in Examples 1 and 2, we computed the rel-
ative cost RCIC with respect to different misclassification probabil-
ities in the range 0.0–0.5. Note that �ij = 0.5, i, j = 1, 2 is the worst
case when there are only two types of jobs. Fig. 2 below plots RCIC.
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Fig. 2. The relative costs RCIC for a problem with J = 2,
In Fig. 2 we see that the relative cost RCIC is continuous, increas-
ing and concave componentwise in the misclassification probabil-
ities �12 and �21 and is much more sensitive to the latter. A major
factor here is the fact that type 1 jobs have much shorter lifetimes
(with mean 1.45) than type 2 (mean 12.75), and are thus lost from
the system much more quickly in any event. Should type 2 jobs be
classified correctly and scheduled for processing appropriately,
they are much more likely to be served to completion and contrib-
ute to the system’s return. Mathematically, the quantity EIj(L,0)

[maxmE{N(mjI)}] in the expression for CIC(L,0) increases with �21

but decreases with �12. For any initial state (L,0), the higher the va-
lue of �21, the more jobs are likely to actually be of type 2, and the
higher are likely to be the number of successful completions. The
quantity Ve(L,0) decreases with both misclassification
probabilities.

In the special case of exponentially distributed lifetimes studied
by Glazebrook et al. (2004), it is possible to gain analytical insight
into system characteristics which impact the cost of imperfect
classification CIC and which will inform our upcoming numerical
study. We first state a simple result which will be of use in the
analysis.

Lemma 1

EIjðL;0Þ max
m

E NðmjIÞf g
h i

P VeðL;0ÞP EIjðL;0Þ min
m

E NðmjIÞf g
h i

: ð34Þ

In order to state our main result, we need some additional notation.
In the exponential lifetime case we shall write the distribution of
type i lifetimes as Xi v exp (qhi), 1 6 i 6 J, where the hi are taken
to be fixed, and we shall be interested in the ’no loss’ limit q ? 0.
Recall that, for true but unobservable state I, we write Lij for the
number of type i jobs classified as j. Hence for initial system state
(L, 0) we must have

P
iLij ¼ Lj;1 6 j 6 J. We then use the triple ijk

for the kth type i job to be classified as j and Yijk for its service time.
The random variable Yijk has the distribution function Gi. Hence we
have

YðIÞ ¼
XJ

i¼1

XJ

j¼1

XLij

k¼1

Yijk

for the total service requirement associated with true state I.
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Weibull lifetimes and deterministic service times.
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Finally, we need the system parameter d, defined by

d � max
i

hi

EðYiÞ
�min

i

hi

EðYiÞ

¼ q�1 max
i

EðXiÞEðYiÞf g�1 �min
i

EðXiÞEðYiÞf g�1
� �

:

Theorem 1. For the case of exponential lifetimes, we have

CICðL;0Þ 6 1
2

dqEIjðL;0Þ E YðIÞf g2
h i

þ Oðq2Þ

and

RCICðL;0Þ 6 1
2N

dqEIjðL;0Þ E YðIÞf g2
h i

þ Oðq2Þ
Proof. It follows from the above Lemma and from the definition of
CIC that

CICðL;0Þ 6 EIjðL;0Þ max
m

E NðmjIÞf g �min
m

E NðmjIÞf g
h i

: ð35Þ

It further follows from the analysis of Glazebrook et al. (2004), that
when the true state is observable and has initial realised value I = i
then the static service policy mSI which serves the jobs in increasing
order of the quantity E(Xi) E(Yi) secures a return which is within an
O(q2) quantity of the maximum, namely

max
m

E NðmjiÞf g � E NðmSIjiÞ

 �

6 Oðq2Þ: ð36Þ

Similarly, it can easily be established that the static policy mSD which
serves the jobs in decreasing order of the quantity E(Xi)E(Yi) secures
a return which is within an O(q2) quantity of the minimum, namely

E NðmSDjiÞ

 �

�min
m

E NðmjiÞf g 6 Oðq2Þ: ð37Þ

To simplify the argument at this point, we relabel the jobs 1 to N
such that, conditional upon I = i, the static policy mSI is identified
with the permutation (1,2, . . . ,N) and the static policy mSD with
(N,N � 1, . . . ,1). Now, the permutation (1,2, . . . ,N) can be obtained

from (N,N � 1, . . . ,1) by a series of N
2

� �
pairwise interchanges. At

each stage, a permutation of the form (. . ., l,m, . . .), l > m, is trans-
formed via a single interchange to (. . .,m, l, . . .). From Glazebrook
et al. (2004), the static service policies corresponding to these per-
mutations have associated returns such that

E N ð. . . ;m; l; . . .Þjið Þf g � E N ð. . . ; l;m; . . .Þjið Þf g

¼ qhm

EðYmÞ
� qhl

EðYlÞ

� �
EðYlÞEðYmÞ þ Oðq2Þ

6 dqEðYlÞEðYmÞ þ Oðq2Þ: ð38Þ

Note that, in (38), by slight abuse of our notation, we have used sub-
scripts l, m to identify quantities (hazard rates, service times) iden-
tified with particular jobs. If we now aggregate the impact on

returns from all N
2

� �
pairwise interchanges, we infer from (38) that

E NðmSIjiÞ

 �

� E NðmSDjiÞ

 �

6 dq
X
l>m

EðYlÞEðYmÞ þ Oðq2Þ

6
1
2

dq E YðiÞf g2
h i

þ Oðq2Þ: ð39Þ

We now infer from (36), (37) and (39) that

max
m

E NðmjIÞf g �min
m

E NðmjIÞf g 6 1
2

dq E YðIÞf g2
h i

þ Oðq2Þ ð40Þ
and the bound for CIC (L,0) now follows from (35) by applying the
expectation EIj(L,0) to both sides of (40)). The bound for RCIC(L,0)
uses that for CIC(L,0) together with the fact that

VeðL;0Þ ¼ N þ OðqÞ:

This concludes the proof. h
Remark 2. If we suppose that service time Yi has mean and vari-
ance li and r2

i respectively then it is straightforward to show that
the key quantity in the bounds given in Theorem 1 is given by

EIjðL;0Þ E YðIÞf g2
h i

¼
XJ

j¼1

XJ

i¼1

Ljpijð0Þ r2
i þ l2

i f1� pijð0Þg
� 	

�
XJ

j¼1

X
i–k

Ljpijð0Þpkjð0Þlilk:

It follows from the above theoretical results that when job lifetimes
are exponentially distributed and, moreover, long, the cost of
imperfect classification will be small for problems in which the
key quantity E(Xi)E(Yi) varies little across distinct job types. We
shall see in the upcoming numerical study that the insight afforded
by these cases has much broader application. Note, for example, the
following development of Example 3 above. We first introduce the
quantity

Ri1 i2 �
EðXi1 ÞEðYi1 Þ
EðXi2 ÞEðYi2 Þ

as the index ratio between job types i1 and i2.

Example 4. In Example 3, should the service time for types of job 2
be decreased to 0.16 then R12 = R21 = 1 and the relative cost of
imperfect classification is drastically reduced. See Fig. 3, where the
maximum of RCIC over the displayed range for the adjusted
problem is now just 2.32%.

We now consider further the insights afforded by the above
material in the next section.
7. The cost of imperfect classification in the worst case – a
numerical study

We shall now explore the role of the above index ratio by
numerically investigating the behaviour of the key quantities CIC
and RCIC in the worst case, namely when �ij = J�1"i, j. We shall thus
adopt a conservative viewpoint and ask questions about how much
damage is done by a failure of the classification process to achieve
anything better than random allocation of jobs to classes. The read-
er is referred back to the above definitions of CIC(L,0) and RCIC(L,0)
around (32). Observe that in this worst case, the quantity Ve(L,0)
which plays a key role in (32), can be obtained by computing the
Bayes’ return for anyservice policy. In the computations below,
we shall in fact use the static proposal pS for this purpose.

Remark 3. One approach to the computation of the key quantity
EIj(L,0)[maxmE{N(mjI)}] is to estimate it via repeated sampling

from the conditional distribution for Ij(L,0). We opted instead for
an exact approach which computed [maxmE{N(mjI)}] for each I in
the support of this distribution and then computed the exterior
expectation. The reader should note that even though the quantity
[maxmE{N(mjI)}] is available in the numerical study reported here, it
is challenging to obtain in general. Instead we can approximate it
by computing returns for our heuristic policy pSF, whose design is
described in Section 4, to cases with perfect classification and
whose initial state is summarised by I. We know from Li and



Fig. 3. The relative costs RCIC for a problem with J = 2, Weibull lifetimes and deterministic service times, and two different service rates of type 2 jobs.

178 D. Li, K.D. Glazebrook / European Journal of Operational Research 215 (2011) 169–180
Glazebrook (2010) that the performance of pSF is very close to
optimal in such cases and that any underestimate of the quantities
CIC(L,0) and RCIC(L,0) which results will be small.

Our numerical study will consider problems with Weibull life-
times and deterministic lifetimes and J = 2, 4. Problems will be cre-
ated as in (28a)–(28i) above except for the sampling of bj, which is
conducted as follows. Firstly we sample b1 for the type 1 from one of
Fig. 4. Boxplot of the worst case relative costs RCIC for Weib
(28d)–(28g), according to the specified category. The remaining b0is
are determined such that, conditioned on the sampled values of the
ai, Si, and b1 the index ratios Rii+1 are all equal to some R, say, where
without loss of generality we take R > 1. We then check the relative
length of service times and the lifetimes for every type other than
the first one. If all of them are in the same category as of type 1,
one problem instance is created. Otherwise the entire process is re-
peated. We take four cases for the setting of an R-value which are
ull lifetimes and deterministic service times when J = 2.



Fig. 5. Boxplot of the worst case relative costs RCIC for Weibull lifetimes and deterministic service times when J = 4.
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RvU½1;1:1� ðRange 1Þ;
RvU½1:1;1:5� ðRange 2Þ;
RvU½1:5;2� ðRange 3Þ;
RvU½2;4� ðRange 4Þ:

Please note that Range 1(respectively 4) allows the quantity
E(X4)E(Y4) to be between 1(respectively 8) and 1.331(respectively
64) times as large as E(X1)E(Y1). We thus investigate a wide range
of cases, including some in which the values of E(Xi)E(Yi) are nearly
equal "i to others in which there can be very large differences. As
above, the pi will be obtained by first sampling independently from
U[0.1,0.9] and then normalising. However, we replace (28j)–(28l)
by the choice �ij = J�1"i, j.

The computational effort needed here is very considerably
greater than for the studies reported in Section 5. Happily, for
the worst classification case we are considering the classification
outcomes L are immaterial. Nonetheless, for each imperfect classi-
fication problem we need to solve to obtain Ve(L,0), there are

N þ J � 1
N

� �
corresponding perfect classification problems whose

solutions contribute to the quantity EIj(L,0) [maxmE{N(mjI)}]. This
number increases very rapidly with Nin the J = 4 cases.

For J = 2, and each category (A,B,C,D)/range (1,2,3,4) combina-
tion, 500 profiles were generated according to the above scheme,
making 8,000 problems in total. Values of the relative costs RCIC
are presented in Fig. 4 in the form of a boxplot for each of the 16
category/range combinations.

Computational demands are such that for the J = 4 study, the
number of profiles for each category/range combination was re-
duced to 100. Hence 1,600 problems with J = 4 are investigated.
The results are given in Fig. 5.

It is very clear from both figures that the values of RCIC do in-
deed increase markedly with R, this increase being rather more
dramatic for the J = 4 cases. This is as to be expected since the latter
cases accommodate much greater variability in the type-specific
values E(Xi)E(Yi). Another clear feature is the tendency of RCIC to
decrease as lifetimes grow. To see why this might be expected,
observe that in the limit in which no jobs are lost (lifetimes are
infinite), all jobs will ultimately be served and no costs incurred
by any misclassification. The median values for RCIC are consider-
ably larger for the J = 4 cases reflecting the fact that misclassifi-
cation has more impact when the number of job types is greater.
That the maximum values are nevertheless reduced for J = 4 is al-
most certainly due to the fact that the initial number of jobs in
these problems is rather smaller (10 rather than 20), depressing
the variability of the outcomes.
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