

Edinburgh Research Explorer

An efficient computational method for a stochastic dynamic lot-
sizing problem under service-level constraints

Citation for published version:
Tarim, SA, Dogru, MK, Oezen, U & Rossi, R 2011, 'An efficient computational method for a stochastic
dynamic lot-sizing problem under service-level constraints', European Journal of Operational Research, vol.
215, no. 3, pp. 563-571. https://doi.org/10.1016/j.ejor.2011.06.034

Digital Object Identifier (DOI):
10.1016/j.ejor.2011.06.034

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Early version, also known as pre-print

Published In:
European Journal of Operational Research

Publisher Rights Statement:
© Tarim, S. A., Dogru, M. K., Oezen, U., & Rossi, R. (2011). An efficient computational method for a stochastic
dynamic lot-sizing problem under service-level constraints. European Journal of Operational Research, 215(3),
563-571. 10.1016/j.ejor.2011.06.034

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 24. Apr. 2024

https://doi.org/10.1016/j.ejor.2011.06.034
https://doi.org/10.1016/j.ejor.2011.06.034
https://www.research.ed.ac.uk/en/publications/926d8ad9-2251-4176-b611-3c446cf11fdd

An Efficient Computational Method for Non-Stationary
(R,S) Inventory Policy with Service Level Constraints

S. Armagan Tarima,∗,1, Mustafa K. Doğrub,2, Ulaş Özenb,2, Roberto Rossic

aDepartment of Management, Hacettepe University, 06800 Ankara, Turkey
bAlcatel-Lucent Bell Labs, Blanchardstown Industrial Park, Dublin 15, Ireland

cLogistics, Decision and Information Sciences Group, Wageningen UR, the Netherlands

Abstract

This paper provides an efficient computational approach to solve the mixed
integer programming (MIP) model developed by Tarim and Kingsman (2004)
for calculating the parameters of an (R,S) policy in a finite horizon with non-
stationary stochastic demand and service level constraints. Given the replenish-
ment periods, we characterize the optimal order-up-to levels for the MIP model
and use it to guide the development of a relaxed MIP model, which can be
solved in polynomial time. The effectiveness of the proposed method hinges
on three novelties: (i) the proposed relaxation is computationally efficient and
yields an optimal solution most of the time, (ii) if the relaxation produces an
infeasible solution, this solution can be used as a tight lower bound, and also
(iii) this infeasible solution can be modified easily to obtain a feasible solution,
which is an upper bound for the optimal solution. In case of infeasibility, the
relaxation approach is implemented at each node of the search tree in a sim-
ple branch-and-bound procedure to efficiently search for an optimal solution.
Extensive numerical tests show that our method dominates the MIP solution
approach and can handle real-life size problems in trivial time.

Key words: relaxation, lot sizing, stochastic non-stationary demand, mixed
integer programming, service level, replenishment cycle policy

1. Introduction

This paper considers a single stage inventory system facing non-stationary
stochastic demand of the customers under periodic review. There is a service

∗Corresponding author
Email addresses: armagan.tarim@hacettepe.edu.tr (S. Armagan Tarim),

dogru@alcatel-lucent.com (Mustafa K. Doğru), uozen@alcatel-lucent.com (Ulaş Özen),
roberto.rossi@wur.nl (Roberto Rossi)

1Supported by Hacettepe University (BAB) and the Scientific and Technological Research
Council of Turkey (TUBITAK) under Grant No. SOBAG-108K027.

2Supported by Industrial Development Agency (IDA) Ireland.

Preprint submitted to Elsevier March 26, 2009

level constraint that a certain probability of no-stock-out has to be achieved in
each period in a finite planning horizon of N periods. Costs consist of linear in-
ventory holding cost and fixed cost of placing an order. Any unfulfilled demand
is backlogged and satisfied as soon as possible. This system first appeared in
[2] and the authors analyzed it under the so-called static-dynamic uncertainty
strategy where the timing of the replenishment orders (referred to as replenish-
ment schedule) are fixed at the beginning of the planning horizon, but the exact
order sizes depend on the demand realizations. This strategy corresponds to
the class of (R,S) policy (known as the replenishment cycle policy), R denoting
the length of a replenishment cycle and S the order-up-to-level, see [1] for more
on the (R,S) policy. Due to the non-stationary nature of demand, the replen-
ishment cycles and order-up-to levels in the planning horizon vary, hence, we
denote them by Rt and St.

Bookbinder and Tan proposes a heuristic method for determining non-sta-
tionary Rt and St parameters in [2], where the replenishment schedule is de-
termined first and the order-up-to levels are set afterwards. Under the same
assumptions, in [3], Tarim and Kingsman provides a mixed-integer program-
ming (MIP) model to compute Rt and St optimally, without addressing the
computational performance issues. In [4], Tarim and Smith give an equivalent
constraint programming (CP) formulation of the same problem with a similar
performance.

This paper presents a new efficient method for solving the MIP model pro-
posed in [3] for computing Rt and St parameters of a non-stationary (R,S)
policy and does not require the use of any MIP or CP commercial solver. The
relaxation essentially overlooks the fact that two consecutive replenishment cy-
cles are dependent.

Our computational procedure works as follows. First, an optimal solution to
the relaxed model is found by solving an equivalent shortest path problem, which
is done in polynomial time with the “reaching algorithm” having a complexity
of O(N2), see [5]. The optimal cost of the relaxed model is a lower bound on
the optimal cost of the original model. Next, the feasibility of this solution
for the original model is checked in polynomial time. If the solution is feasible,
then it is also optimal for the original model, hence, the procedure is terminated.
Otherwise, the replenishment schedule of this solution is used to obtain a feasible
solution for the original model in polynomial time, the cost of which serves as
an upper bound. Next, a branch-and-bound procedure is initiated to search
efficiently for an optimal solution to the original model. The relaxation approach
described above is implemented at each node of the search tree until all the
nodes have been explored or pruned. The numerical tests over a wide range of
randomly selected system parameters reveal that our procedure terminates after
solving the shortest path problem in the majority of the cases. For the rest, the
branch-and-bound procedure enhanced with the upper and lower bounds works
efficiently. Overall, the results show that the computational performance has
been increased by many orders of magnitude, now rendering it possible to solve
any practically relevant instance in trivial time.

The paper is organized as follows. In §2, we set the notation and introduce

2

the MIP formulation by Tarim and Kingsman. §3 is dedicated to the develop-
ment of the relaxed model and the theory behind the computational method
we propose for calculating Rt and St. The computational procedure is pre-
sented in §4. Numerical tests and results are reported in §5. Finally, in §6 some
concluding remarks are given.

2. Notation and the MIP Model

Consider the following MIP model developed in [3] for calculating the policy
parameters of a non-stationary (R,S) policy.

min E[TC] =

NX
t=1

�
aδt + hĨt

�
(1)

s.t.

Ĩt = S̃t − d̃t t = 1, . . . , N (2)

S̃t ≥ Ĩt−1 t = 1, . . . , N (3)

S̃t − Ĩt−1 ≤ Mδt t = 1, . . . , N (4)

S̃t − Ĩt−1 ≥ −Mδt t = 1, . . . , N (5)

Ĩt ≥
tX

j=1

0
@G−1

dt−j+1+dt−j+2+...+dt
(α)−

tX
k=t−j+1

d̃k

1
APtj t = 1, . . . , N (6)

tX
j=1

Ptj = 1 t = 1, . . . , N (7)

Ĩt ≥ 0 t = 1, . . . , N (8)

Ptj ≥ δt−j+1 −
tX

k=t−j+2

δk j = 1, . . . , t t = 1, . . . , N (9)

δt, Ptj ∈ {0, 1} j = 1, . . . , t t = 1, . . . , N, (10)

where

3

TC : total holding and ordering/set-up cost of the system over N periods;
a : fixed ordering/set-up cost;
h : proportional inventory holding cost per period;
α : probability that the closing inventory in a period is non-negative

(type I service level);
dt : demand in period t, a non-negative random variable with probability

density function, gt(dt);
δt : a binary variable that takes the value of 1 if a replenishment occurs

in period t and 0 otherwise;
Ĩt : expected inventory level at the end of period t;
Ĩ0 : the inventory level at the beginning of the planning horizon;
S̃t : the order-up-to-level for period t if there is any replenishment,

otherwise expected opening inventory level;

and “∼” denotes the expectation operator, ie., Ỹ = E[Y] for any random variable
Y . M is some large positive number and Gdi+di+1+...+dj

(·) is the cumulative
probability distribution function of di + di+1 + . . . + dj . It is assumed that G is
strictly increasing, therefore G−1 is uniquely defined, and

dt ≥ 0 t = 1, . . . , N. (11)

Without loss of generality, we make the following mild assumption for the sake
of simplicity: the beginning inventory (Ĩ0), the demand distribution in period
1 (d1) and the service level (α) ensure a replenishment order being placed in
period 1, ie., δ1 = 1.

The objective is to minimize the expected inventory holding and ordering
costs in a horizon of N periods, see (1). The expected closing inventory for a
period is simply the expected opening inventory minus the expected demand
for the period, which is given in (2). The order-up-to level in period t (or the
expected opening inventory level if no replenishment is scheduled), S̃t, is greater
than (equal to) the expected closing inventory level of the previous period, Ĩt−1;
see (3). If S̃t− Ĩt−1 > 0 then a replenishment is scheduled in period t, so δt = 1.
Otherwise, S̃t − Ĩt−1 = 0, no replenishment is scheduled for period t, hence,
δt = 0. Constraint (5) is not part of the MIP model developed in [3], but added
by us as a redundant constraint. Note that whether δ1 is 0 or 1, constraint (3)
is tighter than (5). The need for this constraint is purely technical and will be
clear in the proof of Lemma 2.

The main idea behind this MIP formulation is the introduction of binary
variables Ptj for t = 1, . . . , N and j ≤ t, which takes the value 1 if an order
is placed in period t − j + 1 to cover the demand of periods t − j + 1, . . . , t.
If Ptj = 1, then through (6), the order size should ensure the service level of
α in period t. Due to the assumption of strictly increasing G, service level α
translates into a safety stock level

G−1
dt−j+1+dt−j+2+...+dt

(α)−
t∑

k=t−j+1

d̃k (12)

4

for period t, which is required to be achieved at the minimal. Hence, safety stock
levels are calculated off-line using (12) and substituted into the MIP formulation
to find the optimal ordering and inventory decisions. For a detailed discussion
of the MIP model, we refer to [3].

Next, we consider a variation of the MIP model, which takes the replen-
ishment periods as inputs. Define disjoint sets T and T such that T ∪ T =
{1, . . . , N}, δi = 1 for all i ∈ T and δi = 0 for all i ∈ T. In plain words, we
partition the set of periods into two subsets where T is the set of periods with
replenishment orders and T is the set with no orders. Recall that δ1 = 1, so
1 ∈ T.

Lemma 1. Given any T and T, the optimal solution for the MIP model has

S̃t =

max

{
S̃t−1 − d̃t−1, G

−1
dt+dt+1+...+dt−1

(α),
∑t−1

k=t d̃k

}
for t ∈ T

S̃t−1 − d̃t−1 for t ∈ T,

(13)

where S̃0 = Ĩ0, d̃0 = 0 and

t =

 N + 1 if t = N
N + 1 if δk = 0 for all k ≥ t + 1
min{k|δk = 1, k > t} o/w.

(14)

Proof. The main line of thinking behind the proof is that we introduce new
tighter feasible cuts, which allow us to eliminate some of the constraints in the
original formulation and simplify further.

Given T and T, for any t ∈ T ∪ T = {1, . . . , N}, let t be the first period at
or before t with a replenishment order scheduled:

t = max{k|δk = 1, k ≤ t}. (15)

Given a replenishment schedule, T and T, the MIP model reduces to the
following linear program (LP):

min
N∑

t=1

h(S̃t − d̃t) (16)

s.t.

S̃t ≥ S̃t−1 − d̃t−1 t ∈ T ∪ T (17)

S̃t ≤ S̃t−1 − d̃t−1 t ∈ T (18)

S̃t ≥ S̃t−1 − d̃t−1 t ∈ T (19)

S̃t − d̃t ≥ G−1
dt+dt+1+...+dt

(α)−
t∑

k=t

d̃k t ∈ T ∪ T (20)

S̃t ≥ d̃t t ∈ T ∪ T (21)

S̃0 = Ĩ0, d̃0 = 0, (22)

5

which follows from substituting S̃t − d̃t into Ĩt in (3)-(6) and (8), and rewriting
the righthand side of constraint (6) using the notation introduced in (15). The
fixed cost of ordering,

∑N
i=1 aδi, is constant, so it is dropped from the objective

function. Since all δ variables are fixed, (3) is redundant for all t with δt = 1.
Thus, (4) reduces to (18). Similarly, (5) is redundant for all t with δt = 1,
leading to (19).

Combining (18) and (19) yields

S̃t = S̃t−1 − d̃t−1 t ∈ T. (23)

Further, (17) implies

S̃t ≥ S̃t−1 − d̃t−1 t ∈ T. (24)

We can add (23) and (24) as feasible cuts to the LP above. Note that constraints
(17)-(19) become redundant in the presence of (23) and (24), hence, they can
be left out from the LP formulation.

Consider any t ∈ T ∪ T and m ∈ {t + 1, . . . , t − 1}. The equations below
follow from (23):

S̃t+1 = S̃t − d̃t

S̃t+2 = S̃t+1 − d̃t+1

...
...

S̃m = S̃m−1 − d̃m−1.

They imply

S̃m = S̃t −
m−1∑
k=t

d̃k, (25)

which follows from adding both sides of the equations and canceling equal terms.
Using (20) and the equality above

S̃m − d̃m =

S̃t −
m−1∑
k=t

d̃k

− d̃m ≥ G−1
dt+...+dm

(α)−
m∑

k=t

d̃k,

which simplifies to

S̃t ≥ G−1
dt+...+dm

(α). (26)

For t, the constraint (20) is

S̃t − d̃t ≥ G−1
dt

(α)− d̃t

S̃t ≥ G−1
dt

(α). (27)

6

The inequalities in (26) and (27) can be rewritten as

S̃t ≥ max
{

G−1
dt

(α), G−1
dt+dt+1

(α), . . . , G−1
dt+...+dt−1

(α)
}

= G−1
dt+...+dt−1

(α), (28)

because of non-negative period demands and strictly increasing G. Hence, (28)
for all t ∈ T can be added to the LP formulation as a feasible cut. In the presence
of (23) and (28), constraint (20) becomes redundant, thus, can be excluded.

Replacing the first four constraints in the LP with (23), (24) and (28) yields

min
N∑

t=1

h(S̃t − d̃t)

s.t.

S̃t ≥ S̃t−1 − d̃t−1 t ∈ T

S̃t = S̃t−1 − d̃t−1 t ∈ T (29)

S̃t ≥ G−1
dt+...+dt−1

(α) t ∈ T

S̃t ≥ d̃t t ∈ T ∪ T, (30)

where S̃0 = 0, d̃0 = 0, and t is defined in (14). Consider any t ∈ T ∪ T. From
(30)

S̃t ≥ d̃t. (31)

Take any m ∈ {t + 1, . . . , t− 1}. Substituting (25) into (30) leads to

S̃m = S̃t −
m−1∑
k=t

d̃k ≥ d̃m,

which is equivalent to

S̃t ≥
m∑

k=t

d̃k.

The inequality above and (31) can be rewritten as

S̃t ≥ max

d̃t, d̃t + d̃t+1, . . . ,
t−1∑
k=t

d̃k

 =
t−1∑
k=t

d̃k.

Hence, for any t, (30) implies the inequality above. The following constraint
can be added as a feasible cut to the LP

S̃t ≥
t−1∑
k=t

d̃k t ∈ T.

7

In the presence of (29) and the inequality above, (30) becomes redundant, so
can be omitted. Since

∑N
t=1 d̃t is constant, the objective function of the LP

simplifies to minimizing
∑N

t=1 S̃t. Thus, the LP reduces to

min
N∑

t=1

S̃t

s.t.

S̃t ≥ S̃t−1 − d̃t−1 t ∈ T

S̃t = S̃t−1 − d̃t−1 t ∈ T

S̃t ≥ G−1
dt+...+dt−1

(α) t ∈ T

S̃t ≥
t−1∑
k=t

d̃k t ∈ T,

the optimal solution of which is

S̃t =

max

{
S̃t−1 − d̃t−1, G

−1
dt+...+dt−1

(α),
∑t−1

k=t d̃k

}
for t ∈ T

S̃t−1 − d̃t−1 for t ∈ T.

This completes the proof.

Lemma 1 gives the form of the replenishment quantities for a given replenish-
ment schedule. The implication of this is that the ordering quantities can easily
be computed once the optimal replenishment periods are known: Start with S̃1

first, next S̃2, . . ., and last S̃N . Hence, the optimization problem formulated by
the MIP model can equivalently be expressed as

min
δ1,...,δN

E[TC] =
N∑

t=1

(
aδt + h(S̃t − d̃t)

)
, (32)

where S̃t for t = 1, . . . , N are given in (13), S̃0 = Ĩ0 and d̃0 = 0. Even though∑N
t=1 hd̃t is constant and does not effect the optimization problem, we include

it to reflect the equivalence of the objective functions of the MIP model and
(32).

3. Relaxation of the MIP Model

Consider the relaxation of constraints (3) and (8) in the MIP model discussed
in §2. We refer to this new mixed integer program as the relaxed MIP model here
after. In order to differentiate the relaxed MIP model from the original given
in (1)-(10), we replace S̃t with S̃r

t in the relaxed model. Similar to Lemma 1,
ordering quantities for a given replenishment schedule in the relaxed MIP model
can be explicitly determined, which is given next.

8

Lemma 2. Given any T and T, the optimal solution for the relaxed MIP model
has

S̃r
t =

G−1

dt+dt+1+...+dt−1
(α) for t ∈ T

S̃r
t−1 − d̃t−1 for t ∈ T,

(33)

where t is given in (14).

Proof. The proof mainly follows from the proof of Lemma 1. Given T and T,
the relaxed MIP model reduces to the LP given by (16)-(22) without (17), (21)
and (22):

min
N∑

t=1

h(S̃r
t − d̃t) (34)

s.t.

S̃r
t ≤ S̃r

t−1 − d̃t−1 t ∈ T (35)

S̃r
t ≥ S̃r

t−1 − d̃t−1 t ∈ T (36)

S̃r
t − d̃t ≥ G−1

dt+dt+1+...+dt
(α)−

t∑
k=t

d̃k t ∈ T ∪ T (37)

where t and t are defined by (15) and (14), respectively for any t ∈ T∪T. Note
that (22) becomes redundant because δ1 = 1.

The objective function reduces to minimizing
∑N

t=1 S̃r
t since h

∑N
t=1 d̃t is

constant. Following the same line of thought as in the proof of Lemma 1,
constraints (35) and (36) can be replaced with

S̃r
t = S̃r

t−1 − d̃t−1 t ∈ T.

The LP formulation reduces to

min
N∑

t=1

S̃r
t

s.t.

S̃r
t = S̃r

t−1 − d̃t−1 t ∈ T

S̃r
t − d̃t ≥ G−1

dt+dt+1+...+dt
(α)−

t∑
k=t

d̃k t ∈ T ∪ T.

Recall from the proof of Lemma 1 how the second constraint is replaced with

S̃r
t ≥ G−1

dt+...+dt−1
(α) t ∈ T

9

using the first constraint. Hence, the LP model further simplifies to

min
N∑

t=1

S̃r
t

s.t.

S̃r
t = S̃r

t−1 − d̃t−1 t ∈ T

S̃r
t ≥ G−1

dt+...+dt−1
(α) t ∈ T,

having the following optimal solution

S̃r
t =

G−1

dt+...+dt−1
(α) for t ∈ T

S̃r
t−1 − d̃t−1 for t ∈ T,

which completes the proof.

We can develop an equivalent optimization problem for the relaxed MIP
model in a similar way as we do at the end of §2. Lemma 2 simply gives the
form of the ordering quantity decisions for the relaxed MIP model, given the
replenishment schedule. First S̃r

1 is computed, then S̃r
2 , and so on. Hence, the

relaxed MIP model is equivalent to the following optimization problem:

min
δ1,...,δN

zr =
N∑

t=1

(
aδt + h(S̃r

t − d̃t)
)
, (38)

where S̃r
t for t = 1, . . . , N are given in (33). The objective is to find the replen-

ishment schedule with the minimum cost such that the inventory levels at the
beginning of each period (S̃r

t for period t) satisfies the property given in (33).

3.1. Equivalent Shortest Path Formulation
The optimization problem given in (38) can be transformed into a shortest

path problem, which is well-studied in the field of network optimization. Con-
sider an acyclic network G = (N ,A) with the set of nodes N = {1, 2, . . . , N +1}
denoting periods and arcs (i, j) connecting all pairs of nodes with i < j,
(i, j) ∈ A. Node N + 1 is a dummy period representing the end of the planning
horizon. Each arc (i, j) has a cost ci,j that is equal to the cost of ordering in
period i to cover demand requirements through period j − 1 and satisfy the
service level α at the end of period j − 1 by holding the minimum safety stock
level. Hence, in period i, the inventory level is G−1

di+di+1+...+dj−1
(α); as a result

cij = a + h

j−1∑
k=i

(
G−1

di+di+1+...+dj−1
(α)−

k∑
m=i

d̃m

)
. (39)

Consider a solution for the relaxed model: δ1, . . . , δN . Recall that we assume
δ1 = 1 without loss of generality. Let i and j be two consecutive periods with

10

scheduled orders, ie., i, j ∈ {1, . . . , N}, δi = δj = 1 and δi+1 = δi+2 = . . . =
δj−1 = 0. The contribution of the order placed in period i to the objective
function (in other words, the cost of periods i, . . . , j − 1) is

a + h

j−1∑
k=i

(
G−1

di+di+1+...+dj−1
(α)−

k∑
m=i

d̃m

)
,

which follows from (38). Note that this cost is equivalent to cij . Thus, ordering
in period i with an order-up-to level G−1

di+di+1+...+dj−1
(α) and placing no replen-

ishment orders until period j in the optimization problem (38) corresponds to
picking arc (i, j) in G. Finding the shortest path between nodes 1 and N + 1 in
network G is equivalent to solving the optimization problem in (38), which in
return is equivalent to the relaxed MIP model.

Recall that G is an acyclic network, so the reaching algorithm solves the
shortest path problem from node 1 to N + 1 in O(|A|) time, see [5]. Since
|A| = N(N+1)

2 , we have a very efficient algorithm for solving (38)3. Next, we
present our main theoretical result that connects the solution for (38) to the
MIP model in (1)-(10).

Theorem 3. Let δ∗ = (δ∗1 , . . . , δ∗N) and S∗ = (S̃r∗
1 , . . . , S̃r∗

N) be an optimal
solution to the optimization problem given in (38), and z∗r be the corresponding
optimal objective value. Define z∗ as the optimal objective value for the MIP
model. If S∗ is feasible for (32), ie., {S̃t|δ∗1 , . . . , δ∗N} = S̃r∗

t for all t = 1, . . . , N ,
then δ∗ and S∗ is also optimal for the MIP model. Otherwise, z∗r ≤ z∗.

Proof. The optimization problem in (38) is equivalent to the relaxed MIP model,
so an optimal solution for (38), δ∗ and S∗, is also optimal for the relaxed MIP
model. Similarly, we have shown the equivalence between the MIP model and
(32), thus, if (δ∗,S∗) is feasible for (32), then it is also feasible for the MIP
model given in (1)-(10), see [6]. Moreover, the optimal objective value for the
relaxed MIP model (z∗r) is a lower bound on the optimal objective function value
of the MIP model (z∗). Therefore, if (δ∗,S∗) is feasible for (32) then z∗ = z∗r ;
otherwise, the optimal solution for the MIP model differs from (δ∗,S∗), but
z∗r ≤ z∗ still holds.

3.2. Subproblem
Consider a version of the optimization problem in (32) where some of the

values of the decision variables δt are fixed. Define two disjoint sets L and L such
that L∪L ⊂ {1, . . . , N}, δi = 1 for all i ∈ L and δm = 0 for all m ∈ L. In other
words, L denotes the set of periods for which the decision variables (whether to
place an order) are set to 1, and similarly L is the set of periods with decision
variables fixed at 0. Using the result of Lemma 1, the MIP formulation with

3Tarim and Smith propose a procedure that increases the speed of the solution algorithm
for this specific problem setting in [4]. We employ their procedure in our numerical study.

11

δi = 1 for all i ∈ L and δm = 0 for all m ∈ L can equivalently be represented
by the following optimization problem:

min
δ1,...,δN

w =

{
N∑

t=1

(
aδt + h(S̃t − d̃t)

)∣∣∣δi = 1 ∀i ∈ L, δm = 0 ∀m ∈ L

}
, (40)

where S̃t for t = 1, . . . , N are given in (13). We refer to the problem in (40) as a
subproblem. In a similar fashion, using Lemma 2, the relaxed MIP formulation
of §3 with δi = 1 for all i ∈ L and δm = 0 for all m ∈ L can be represented by

min
δ1,...,δN

wr =

{
N∑

t=1

(
aδt + h(S̃r

t − d̃t)
)∣∣∣δi = 1 ∀i ∈ L, δm = 0 ∀m ∈ L

}
, (41)

where S̃r
t for t = 1, . . . , N are given in (33).4 Note that (41) is a relaxation

of (40), so we refer to it as the relaxed subproblem. An equivalent shortest
path formulation for (41) can be developed as discussed in §3.1, but with some
modifications in the arc costs. For any i ∈ L, set cji = cik = ∞ for all j < i and
for all k > i. This way no arc entering or leaving node i is selected. Similarly,
for any i ∈ L, set cjk = ∞ for all j < i and for all k > i, which assures that
node i is visited in the shortest path. The reaching algorithm can still be used
to solve the resulting shortest path problem.

Next, similar to Theorem 3, we give a new theorem that links the solution of
(41) to the MIP formulation with δi = 1 for all i ∈ L and δm = 0 for all m ∈ L.

Theorem 4. Given any L and L, let δ∗s = (δ∗1 , . . . , δ∗N) and S∗s = (S̃r∗
1 , . . . , S̃r∗

N)
be an optimal solution to the optimization problem given in (41), and w∗

r be the
corresponding optimal objective value. Define w∗ as the optimal objective value
for the MIP model with δi = 1 for all i ∈ L and δm = 0 for all m ∈ L. If S∗s is
feasible for (40), ie., {S̃t|δ∗1 , . . . , δ∗N} = S̃r∗

t for all t = 1, . . . , N , then δ∗s and S∗s
is also optimal for the MIP model with δi = 1 for all i ∈ L and δm = 0 for all
m ∈ L. Otherwise, w∗

r ≤ w∗.

Proof. The proof follows the same line of thought as in the proof of Theorem 3,
hence, omitted.

Theorem 4 extends the result of Theorem 3 to cases where some values of δt

in the original MIP formulation given in (1)-(10) are fixed. This case is relevant
for us because it arises in a branch-and-bound procedure where the branching
is done on binary variables δt.

At this point, we have all the theoretical results to design a method for the
computation of the solution of the original MIP model in (1)-(10). The details
of the computational procedure are discussed next.

4Note that (32) and (38) are equivalent to (40) and (41) respectively when L = L = ∅.

12

4. Computational Procedure

The results of Theorems 3 and 4 have significant implications for solving the
original MIP model, and leads to the following computational procedure. An
optimal solution (δ∗ = (δ∗1 , . . . , δ∗N) and S∗ = (S̃r∗

1 , . . . , S̃r∗
N)) for the relaxed

MIP model is obtained by solving the shortest path problem in the equivalent
network. The feasibility of this solution can be checked by calculating S̃t for
all t by substituting δ∗1 , . . . , δ∗N in (13), and comparing these values against S∗.
If S̃t = S̃r

t for all t then we terminate: (δ∗,S∗) is an optimal solution for the
MIP model and z∗r (the optimal cost for the relaxed MIP model) is the optimal
cost. Otherwise, z∗r is a lower bound for the optimal cost of the MIP model
(z∗). It is worthwhile to mention that solving for the shortest path provides
all optimal solutions for the relaxed MIP model in case of multiple optima. All
such solutions are candidates for the MIP model, so they can be checked for
feasibility.

If the solution is infeasible, the replenishment schedule δ∗ can still be used
to obtain an upper bound. Substituting δ∗ in (13) gives S̃t for all t, and these
values are substituted in (1) to calculate the objective function value of the
MIP model. This cost is an upper bound on z∗ and a current best solution for
the branch-and-bound (B&B) algorithm. After finding a current best solution,
we continue our search by performing a depth-first B&B search. The variable
selection branches uniquely on replenishment decisions, δt proceeds by selecting
those periods t’s for which an infeasible (negative) expected order quantity is
scheduled. Once we decide on which decision variable δt we want to branch, we
continue with the value selection: first not to schedule a replenishment in such
a period (i.e. δt = 0) and then to schedule a replenishment (i.e. δt = 1). We
remark that every node in the search tree represents a subproblem with some
replenishment decisions fixed. Therefore, using the result of Theorem 4, for each
subproblem, we can easily obtain either a lower-bound or the exact solution. If
the solution of the relaxed subproblem is feasible, we stop exploring the current
node, and we store the solution found provided that it improves the current
best solution. Otherwise, we use the lower bound to exclude suboptimal part
of the search tree. We proceed with this strategy until all the nodes have been
explored or pruned.

We demonstrate the effectiveness of the computational procedure in the next
section through a numerical study. The procedure outlined above has been
implemented in Java, see [7].

5. Numerical Study

A computational experiment is designed to investigate the effectiveness of
the method proposed in this paper. The following issues are addressed in the
experiment:

• the percentage of the non-stationary instances solved to optimality using
solely the relaxed-MIP approach, without resorting to any search effort,

13

• the effectiveness of the bounds provided by the relaxed-MIP model if the
observed solution is infeasible for the original problem,

• the overall solution time performance of the proposed method,

• the scalability of the proposed method.

For this purpose we used four different planning horizon lengths, N =
30, 40, 50, 60, and five different mean demand patterns, namely, (i) stationary,
P1, (ii) seasonal, P2, (iii) decreasing, P3, (iv) increasing, P4, and (v) product
life-cycle, P5. The formal definitions of these mean demand patterns are as
follows:

P1 : µt = 50,

P2 : µt = 50 + 40 sin(2πt/N),
P3 : µt = 10 + 80t/N,

P4 : µt = 10 + 80(N + 1− t)/N,

P5 : µt =

 10 + 80t/(N/3) for t ≤ N/3
90 for N/3 < t < 2N/3
10 + 80(N − t)/(N/3) for 2N/3 ≤ t.

In all these patterns the average period demand is 50. The mean demand
patterns are used in the rtµt process, where rt is a [0.4, 1.6]-uniform random
variable, to generate instance specific demand patterns.

The demand in each period t (dt) is a normally distributed random variable
with a mean rtµt and a coefficient of variation 0.25 (i.e., the standard deviation
is 0.25rtµt) for t = 1, . . . , N . The inventory holding cost is fixed at 1 (h = 1)
and the ordering cost (a) is taken as a uniform random variable in the range
[75,2000].

In the first step of the experiment, random instances are generated and
solved using the “relaxed-MIP” model. For a given planning horizon length and
a mean demand pattern, the instance generation is repeated until 10 infeasible
instances are observed or the total instance number is 1,000,000. Table 1 gives
the total number of generated random instances with respect to mean demand
patterns. In the table, “–” denotes no infeasibility observed in the generated
1,000,000 random instances.

Table 1: Total number of generated random instances.

P1 P2 P3 P4 P5

N = 30 – 124,101 238,794 304,239 49,279
N = 40 – 104,686 134,702 172,369 54,918
N = 50 – 62,780 223,889 151,011 22,251
N = 60 – 53,086 246,614 128,831 31,400

14

From Table 1, we see that, for the given problem parameters, the relaxed
model always yields optimal solution under the “stationary” mean demand pat-
tern, even though the stationarity is distorted by a considerable add-on noise.
The relatively dynamic patterns, P2 and P5, are more inclined to produce infea-
sible instances compared to more stable ones, P3 and P4. It is expected that as
N gets bigger less instance is needed to observe an infeasibility. This is observed
in P2 and P4, whereas P3 and P5 present mixed cases. All the instance solution
times are at the centisecond level and can be taken as zero for any practical
purpose.

Excluding P1, for which “relaxed-MIP” yields no infeasible instance, a total
of 2,102,950 random instances are generated to produce 10 infeasible instances
for each of N and Pi pairs (N = 30, 40, 50, 60; i = 2, 3, 4, 5) giving a test set
of 160 instances. This statistic corresponds to obtaining the optimal solution
using solely the relaxed-MIP model with a probability of 99.99%.

In the second step of the experiment, these rare infeasible test instances
are solved to optimality using the state-of-the-art mathematical programming
solver CPLEX 11.2 with default settings, as well as a Java implementation of
our computational method presented in §4. Tests are performed on a 2.0GHz
CPU, 32-bit machine. The solution statistics, including the total number of
search nodes visited, the solution time, the percentage optimality gap if the
search has not been terminated in the allowed time (in our case the limit is 1
hour) and the tightness of the lower and upper bounds at the root node, are
listed in Table 2 (for N = 30, 40) and Table 3 (for N = 50, 60). The formal
definitions of the statistics are

%∆ = the percentage gap between the best-so-far (BSF) and
the corresponding lower bound (LB) for the MIP at the
epoch of termination, 100(BSF − LB)/LB provided that
the solver cannot find the optimal within the time limit of
1 hour;

%∆LB = initial percentage gap between the lower bound (LBrn =
z∗r) and the upper bound (UBrn) at the root node before
the search starts, 100(UBrn − LBrn)/LBrn;

%∆UB = the percentage gap between the upper bound at the root
node and the best-so-far at the epoch of termination for our
computational method, 100(UBrn −BSF)/BSF .

Using our method all instances are solved to optimality without any excep-
tion, longest taking 30 secs, most of the time taking less than a second.5 In
the given solution time limit of 1 hour, using MIP, the search procedure termi-
nated with a proven optimal solution in only 84 out of 160 test instances. For
N = 30 all the instances (between #1 − #40) are solved to optimality. The

5Since our method finds the optimal for all the instances considered, %∆UB corresponds
to the optimality gap of the upper bound at the root node in Tables 2 and 3.

15

average solution time is 12.5 secs. For N = 40, 39 out of 40 instances (between
#41−#80) are solved with an average solution time of 529.4 secs. For N = 50,
only 5 out of 40 (between #81 − #120) are solved, with an average solution
time 1631.0 secs. And finally for N = 60 (between #121 − #160) none of the
40 instances could be solved in the allowed solution time limit of one hour.
Mean demand pattern-wise, the solution time performance does not vary much,
although P5 (life-cycle) performs slightly better than the rest. P5 average for
N = 30 (N = 40) is 7.5 (178.5) secs; P2, 13.0 (529.7); P3, 16.8 (763.9); P4, 12.5
(669.0).

Regarding the search effort, comments similar to the solution time perfor-
mance can be made. Using MIP, the number of nodes visited during search
increases with the number of periods in the planning horizon. For N = 30
the average number of search nodes is 20,895, whereas this figure is 636,028
and 1,117,740 for N = 40 and N = 50, respectively. However, for the same
instances, our search procedure enhanced with tight lower and upper bounds
requires to visit only a small set of nodes giving an average of 241.

It is important to note that the MIP model does not scale-up well, as all
N = 30 instances are solved maximum taking 38 secs, but none of the N = 60
instances could be solved in 1 hour. Our computational method, however, for
these rare infeasible instances presents no shortcoming in scaling-up; average
solution times are 0.6, 2.2, 2.4 and 5.4 secs for N = 30, 40, 50, 60, respectively.

An investigation of the optimality gap for MIP (the column under %∆) shows
that for N = 60 even after the search is on for 1 hour the average optimality
gap is 6.94%. This figure tells us that the relaxation used in the search is not
strong enough to prune the search space effectively, hence, even more solution
time is dedicated, the optimality could not be proven.

The tightness of the bounds provided in our method can be gauged by ex-
amining the columns under the headings %∆LB and %∆UB . These figures are
calculated at the top of the search tree (i.e., at the root node). The average gaps
are ∆LB = 0.05% and ∆UB = 0.02%, with worst case performances of 0.28%
and 0.19%. The conventional LP-relaxation, on the other hand, provides an
alternative way of producing lower bounds in B&B. We conducted an ex-post
analysis and computed the gap when LP-relaxation provides the LB and the
optimal objective function value provides the UB. In this case, among all 160
scenarios considered, the average gap is 66.76%, with a maximum of 71.39%
and a minimum of 60.98%. These results clearly demonstrate the effectiveness
of the generated lower and upper bounds, which prune the search space aggres-
sively and yield a small search tree, using our method. It is also interesting to
check the number of instances in which ∆UB = 0.0. In 114 out of 160 instances
the infeasible solution rectified at the root node actually provides the global
optimum, but search could be required to prove its optimality (see #6 as an
example).

The above results clearly demonstrate the effectiveness and the computa-
tional efficiency of the relaxation method proposed in this paper. On the ex-
tensive test instances we used this new method proved that it dominates the
MIP solution approach and can handle a real-life size non-stationary (R,S) pol-

16

icy parameter optimization problem in trivial time. The effectiveness of the
proposed method hinges on three novelties: (i) the proposed relaxation is com-
putationally efficient and yields an optimal solution most of the time (99.99%
of the time in our experiments), (ii) if the relaxation produces an infeasible
solution, this solution can be used as a tight lower bound during search (the
average gap is 0.05% in our case), and also (iii) this infeasible solution can be
modified easily to obtain a feasible solution, which is an upper bound for the
optimal solution (the average gap is 0.02% in our case). Due to the tightness of
the upper bound, one can even terminate without searching for optimality and
still has a close-to-optimal solution.

Note that the efficiency of our computational method heavily depends on
the tightness of the upper and lower bounds generated. If this condition is not
satisfied (i.e., the initial percentage gap between the lower and upper bound at
the root node, %∆LB , is high), then the performance of the method is expected
to degrade. As an illustration, consider a setting where a high demand period
is followed by low demand periods. Such a situation leads to an infeasibility
and a loose lower bound. Take the following instance: N = 3, a = 200, h =
1, α = 95%, the coefficient of variation for demand is 0.25, and the mean
period demands (d̃t) are 300, 2, 1 for periods 1, 2 and 3, respectively. This
instance produces an infeasible solution with two replenishment orders (the
first replenishment being in Period 1 covering the demand for Period 1 only,
and the second replenishment in Period 2 covering periods 2 and 3) using the
relaxed model. In this solution S2 = 4 is substantially below I1 = 123. The
root node relaxation yields LBrn = 526 and UBrn = 764, whereas the optimal
solution is 573. The root node optimality gap %∆LB = 31.15 is not strong
enough to prune the search space effectively and therefore, even though this is a
trivial instance to solve, the standard depth-first search explores 4 nodes before
termination, if no other enhancement during search is employed. On the other
hand, this relaxation is still better than the LP-relaxation which is the standard
relaxation method used during B&B in MIP solvers. For this example the lower
bound found using the LP-relaxation is 366.

6. Conclusion

This paper provides an efficient computational approach to solve the MIP
model developed by Tarim and Kingsman in [3] for calculating the parameters of
an (R,S) policy in a finite horizon of N periods with non-stationary stochastic
demand. Our approach is based on a relaxation of the original MIP model and
the equivalence of this relaxed model to a shortest path problem, which can be
solved with an algorithm having a complexity of O(N2). We have developed
an efficient way to check the feasibility of the resulting solution for the original
MIP model. Our extensive numerical experiments show that in 99.99% of more
than 2 million randomly generated instances the solution for the relaxed model
is found to be feasible, hence, the procedure is terminated by finding an optimal
solution at this stage. On the other hand, in case of infeasibility, this solution
is used to generate a feasible one, which provides an upper bound. A simple

17

branch-and-bound procedure that implements the relaxation approach at each
node of the search tree is used to search for an optimal solution. Numerical
evidence shows that the bounds are tight, leading to an efficient and fast search
procedure.

In summary, we have developed a computational procedure with a numer-
ically demonstrated better performance compared to a commercially available
MIP solver. Our method is scalable and makes it possible to solve practically
relevant instances in trivial time. There may still be instances where the bounds
generated are not tight enough. For such settings, it is recommended that more
sophisticated branch-and-bound methods (as those available in the state-of-the-
art MIP solvers) are employed, enhanced with the bounds proposed in this
paper. Active research is in progress by the authors to address such cases.

References

[1] E. A. Silver and D. F. Pyke and R. Peterson. Inventory Management and
Production Planning and Scheduling. John Wiley and Sons, New York,
1998.

[2] J. H. Bookbinder and J. Y. Tan. Strategies for the probabilistic lot-sizing
problem with service-level constraints. Management Science, 34:1096–1108,
1988.

[3] S. A. Tarim and B. G. Kingsman. The Stochastic Dynamic Produc-
tion/Inventory Lot–Sizing Problem with Service–Level Constraints. In-
ternational Journal of Production Economics, 88:105–119, 2004.

[4] S. A. Tarim and B. M. Smith. Constraint Programming for Computing
Non-Stationary (R,S) Inventory Policies. European Journal of Operational
Research, 189:1004-1021, 2008.

[5] R. Ahuja and J. Orlin and T. Magnanti. Network Flows: Theory, Algo-
rithms, and Applications. Prentice Hall, Upper Saddle River, NJ, 1993.

[6] A. M. Geoffrion. Elements of Large-Scale Mathematical Programming Part
I: Concepts. Management Science, 16:652-675, 1970.

[7] Java. http://java.sun.com/.

18

T
a
b
le

2
:

S
o
lu

ti
o
n

st
a
ti

st
ic

s
fo

r
N

=
3
0
,4

0

N
=

3
0

N
=

4
0

M
IP

O
u
r

M
e
th

o
d

M
IP

O
u
r

M
e
th

o
d

D
e
m

a
n
d

#
N

o
d
e
s

%
∆

se
c
s

N
o
d
e
s

%
∆

L
B

%
∆

U
B

se
c
s

#
N

o
d
e
s

%
∆

se
c
s

N
o
d
e
s

%
∆

L
B

%
∆

U
B

se
c
s

P
2

1
1
9
2
0
0

–
1
2
.4

1
0
.0

0
0
.0

0
0
.1

4
1

1
0
2
6
5
0
0

–
8
1
8
.1

7
9

0
.0

3
0
.0

6
1
.4

2
2
1
9
0
0

–
1
2
.2

5
9

0
.1

2
0
.1

6
0
.7

4
2

6
4
6
1
0
0

–
5
7
6
.6

1
0
.0

0
0
.0

0
0
.2

3
4
5
8
0
0

–
2
4
.5

1
0
.0

0
0
.0

0
0
.1

4
3

1
4
7
1
0
0

–
1
1
5
.5

7
9

0
.0

3
0
.0

3
1
.2

4
9
0
0
0

–
6
.7

1
0
.0

0
0
.0

0
0
.0

4
4

2
4
9
8
0
0

–
1
9
5
.0

7
9

0
.0

6
0
.0

0
1
.2

5
3
6
1
0
0

–
2
1
.8

1
0
.0

0
0
.0

0
0
.1

4
5

7
0
2
3
0
0

–
5
5
5
.1

1
0
3

0
.0

9
0
.0

0
1
.2

6
1
1
5
0
0

–
7
.6

1
5
1

0
.0

8
0
.0

0
1
.4

4
6

5
6
1
5
0
0

–
4
6
0
.8

4
5
9

0
.2

1
0
.0

3
4
.3

7
2
3
4
0
0

–
1
4
.4

1
0
.0

0
0
.0

0
0
.0

4
7

4
4
0
3
0
0

–
3
6
7
.2

1
9
9

0
.1

2
0
.0

0
2
.3

8
1
2
1
0
0

–
8
.6

8
7

0
.1

6
0
.0

0
0
.8

4
8

8
5
1
5
0
0

–
7
0
1
.9

1
0
.0

0
0
.0

0
0
.1

9
7
4
0
0

–
5
.3

1
0
.0

0
0
.0

0
0
.1

4
9

1
4
5
7
8
0
0

–
1
1
5
4
.6

4
6
9

0
.0

9
0
.0

0
5
.7

1
0

2
6
8
0
0

–
1
6
.3

4
6
5

0
.2

4
0
.0

4
3
.0

5
0

4
2
4
4
0
0

–
3
5
1
.9

7
9

0
.1

6
0
.0

0
1
.1

P
3

1
1

2
2
7
0
0

–
1
2
.1

5
9

0
.0

4
0
.0

4
0
.7

5
1

9
2
2
4
0
0

–
7
1
3
.5

7
9

0
.0

3
0
.0

0
1
.4

1
2

6
6
5
0
0

–
3
8
.4

9
1

0
.0

8
0
.0

8
0
.8

5
2

5
1
6
1
3
0
0

1
.0

4
–

2
3
5

0
.0

9
0
.0

0
2
.7

1
3

2
8
3
0
0

–
1
8
.6

1
0
7

0
.1

2
0
.0

8
1
.0

5
3

2
4
7
7
0
0

–
2
3
6
.1

7
9

0
.0

3
0
.0

0
1
.2

1
4

3
0
5
0
0

–
1
7
.6

5
9

0
.0

8
0
.0

0
0
.7

5
4

6
9
3
4
0
0

–
5
8
3
.1

2
4
7

0
.0

6
0
.0

0
3
.2

1
5

1
7
1
0
0

–
1
1
.1

5
9

0
.0

4
0
.0

0
0
.7

5
5

1
3
4
0
0
0

–
1
1
7
.6

1
3
5

0
.0

8
0
.0

0
1
.9

1
6

2
2
5
0
0

–
1
3
.2

1
0
.0

0
0
.0

0
0
.1

5
6

2
6
2
2
2
0
0

–
2
1
3
6
.8

7
9

0
.0

3
0
.1

1
1
.3

1
7

2
0
4
0
0

–
1
2
.4

5
9

0
.0

4
0
.1

1
0
.7

5
7

9
3
7
6
0
0

–
7
0
4
.7

1
4
7

0
.1

2
0
.0

0
1
.9

1
8

2
6
9
0
0

–
1
3
.0

5
9

0
.0

8
0
.0

8
0
.6

5
8

4
0
9
9
0
0

–
3
0
4
.9

7
9

0
.0

6
0
.0

0
1
.2

1
9

5
1
7
0
0

–
2
6
.7

5
9

0
.0

4
0
.0

0
0
.7

5
9

8
6
6
4
0
0

–
6
9
4
.2

1
0
.0

0
0
.0

0
0
.1

2
0

8
4
0
0

–
5
.4

5
9

0
.0

4
0
.0

0
0
.7

6
0

1
7
0
3
0
0
0

–
1
3
8
4
.0

7
9

0
.0

6
0
.0

0
1
.2

P
4

2
1

1
6
8
0
0

–
1
0
.7

1
0
.0

0
0
.0

0
0
.1

6
1

9
9
1
7
0
0

–
8
5
1
.0

1
5
3

0
.1

5
0
.0

3
2
.2

2
2

1
1
6
0
0

–
8
.4

5
9

0
.0

4
0
.0

0
0
.6

6
2

1
9
7
0
0
0

–
1
7
8
.3

7
9

0
.1

5
0
.0

3
1
.4

2
3

2
6
6
0
0

–
1
7
.0

9
5

0
.0

4
0
.0

0
0
.9

6
3

9
1
1
0
0
0

–
8
3
1
.8

9
9
5

0
.1

1
0
.0

9
9
.0

2
4

1
5
4
0
0

–
9
.6

8
3

0
.2

8
0
.0

0
1
.4

6
4

7
3
2
4
0
0

–
6
1
0
.0

1
0
9

0
.0

6
0
.0

9
1
.5

2
5

8
0
0
0

–
5
.6

1
0
.0

0
0
.0

0
0
.0

6
5

1
5
2
1
0
0

–
1
3
9
.0

7
9

0
.0

3
0
.0

0
2
.0

2
6

2
1
7
0
0

–
1
3
.2

5
9

0
.0

4
0
.0

0
0
.7

6
6

3
6
6
2
0
0

–
3
7
4
.3

9
7

0
.0

9
0
.0

0
1
.6

2
7

5
3
3
0
0

–
2
9
.6

5
9

0
.0

4
0
.1

8
0
.7

6
7

1
6
3
5
6
0
0

–
1
3
2
6
.3

4
5
5

0
.1

4
0
.0

6
5
.1

2
8

2
9
4
0
0

–
1
7
.2

1
0
.0

0
0
.0

0
0
.1

6
8

7
6
1
8
0
0

–
7
0
6
.3

1
3
9

0
.0

3
0
.0

0
1
.8

2
9

1
1
3
0
0

–
8
.3

5
9

0
.0

4
0
.0

7
0
.6

6
9

1
3
2
3
8
0
0

–
1
1
5
9
.7

2
0
3

0
.0

3
0
.0

3
2
.2

3
0

7
8
0
0

–
5
.6

8
7

0
.0

4
0
.0

0
0
.9

7
0

5
9
7
9
0
0

–
5
1
3
.1

1
0
.0

0
0
.0

0
0
.7

P
5

3
1

2
5
8
0
0

–
1
3
.0

5
9

0
.0

3
0
.0

7
0
.7

7
1

2
2
7
6
0
0

–
1
9
9
.8

2
3
5

0
.0

5
0
.1

3
2
.5

3
2

1
7
5
0
0

–
9
.4

5
9

0
.0

4
0
.0

0
0
.6

7
2

5
2
9
6
0
0

–
4
2
5
.2

1
9
5

0
.0

8
0
.0

0
2
.2

3
3

2
2
0
0

–
1
.9

5
9

0
.0

3
0
.0

7
0
.6

7
3

1
7
2
3
0
0

–
1
6
3
.3

9
7

0
.0

5
0
.0

0
1
.4

3
4

3
5
1
0
0

–
1
9
.5

5
9

0
.0

4
0
.0

0
0
.7

7
4

4
5
6
0
0

–
4
2
.9

8
9

0
.0

8
0
.0

0
1
.2

3
5

1
2
7
0
0

–
8
.8

5
9

0
.0

3
0
.0

0
0
.6

7
5

2
9
7
7
0
0

–
2
5
0
.9

1
3
1

0
.0

5
0
.0

0
1
.6

3
6

6
9
0
0

–
4
.7

5
9

0
.0

3
0
.0

0
0
.6

7
6

6
8
6
0
0

–
6
6
.3

1
0
6
1

0
.2

7
0
.0

0
1
1
.4

3
7

8
8
0
0

–
5
.8

5
9

0
.0

7
0
.0

0
0
.7

7
7

1
4
7
3
0
0

–
1
1
4
.1

1
5
1

0
.0

3
0
.0

0
2
.0

3
8

6
4
0
0

–
4
.4

5
9

0
.0

3
0
.1

9
0
.7

7
8

3
1
8
3
0
0

–
2
5
9
.7

2
3
9

0
.1

3
0
.0

0
2
.4

3
9

3
0
0
0

–
2
.6

5
9

0
.0

7
0
.1

4
0
.6

7
9

2
9
9
0
0

–
2
7
.4

7
9

0
.0

3
0
.0

0
1
.2

4
0

7
3
0
0

–
4
.9

1
0
.0

0
0
.0

0
0
.1

8
0

2
5
4
8
0
0

–
2
3
5
.4

1
0
.0

0
0
.0

0
0
.1

19

T
a
b
le

3
:

S
o
lu

ti
o
n

st
a
ti

st
ic

s
fo

r
N

=
5
0
,6

0

N
=

5
0

N
=

6
0

M
IP

O
u
r

M
e
th

o
d

M
IP

O
u
r

M
e
th

o
d

D
e
m

a
n
d

#
N

o
d
e
s

%
∆

se
c
s

N
o
d
e
s

%
∆

L
B

%
∆

U
B

se
c
s

#
N

o
d
e
s

%
∆

se
c
s

N
o
d
e
s

%
∆

L
B

%
∆

U
B

se
c
s

P
2

8
1

2
5
6
0
5
0
0

4
.2

2
–

1
0
.0

0
0
.0

0
0
.3

1
2
1

1
7
8
7
5
0
0

7
.3

9
–

1
5
3
9

0
.1

4
0
.0

2
2
2
.9

8
2

2
3
0
2
1
0
0

3
.0

0
–

5
0

0
.0

2
0
.0

0
2
.8

1
2
2

1
5
7
4
2
0
0

6
.2

9
–

1
0
.0

0
0
.0

0
0
.3

8
3

2
6
2
4
9
0
0

1
.8

9
–

5
0

0
.0

5
0
.0

0
2
.0

1
2
3

1
6
9
3
1
0
0

7
.5

3
–

2
8
5

0
.0

8
0
.0

0
5
.8

8
4

2
5
7
0
8
0
0

5
.8

9
–

5
0

0
.0

5
0
.0

7
2
.0

1
2
4

1
9
6
2
1
0
0

6
.2

6
–

7
4
1

0
.0

6
0
.0

0
1
3
.3

8
5

2
2
4
9
0
0
0

3
.6

0
–

1
4
0

0
.0

2
0
.0

9
2
.4

1
2
5

1
4
0
8
8
0
0

5
.8

1
–

1
0
.0

0
0
.0

0
0
.3

8
6

2
5
4
1
5
0
0

4
.5

5
–

1
0
.0

0
0
.0

0
0
.2

1
2
6

2
1
0
7
0
0
0

5
.7

5
–

3
3
1

0
.0

4
0
.0

0
7
.6

8
7

2
6
5
1
3
0
0

2
.6

1
–

6
8

0
.1

2
0
.0

0
2
.1

1
2
7

1
4
9
9
3
0
0

4
.9

7
–

1
1
9

0
.0

4
0
.0

0
3
.6

8
8

2
3
2
9
9
0
0

4
.2

2
–

9
5

0
.0

2
0
.0

0
3
.2

1
2
8

1
6
0
5
8
0
0

5
.1

2
–

2
5
9

0
.0

4
0
.0

0
5
.6

8
9

2
3
2
3
1
0
0

4
.1

8
–

1
0
.0

0
0
.0

0
0
.2

1
2
9

1
7
4
2
7
0
0

4
.4

6
–

2
2
1

0
.0

4
0
.0

2
6
.4

9
0

2
4
4
2
8
0
0

3
.4

2
–

5
0

0
.0

9
0
.0

5
2
.0

1
3
0

1
9
1
2
8
0
0

6
.4

0
–

1
0
.0

0
0
.0

0
0
.3

P
3

9
1

3
7
5
2
3
0
0

4
.5

1
–

1
0
.0

0
0
.0

0
0
.2

1
3
1

2
3
4
1
6
0
0

9
.9

2
–

1
0
.0

0
0
.0

0
0
.3

9
2

2
9
9
7
8
0
0

6
.9

9
–

5
0

0
.0

2
0
.0

0
3
.4

1
3
2

2
4
2
4
8
0
0

1
0
.7

7
–

1
9
7

0
.0

8
0
.0

0
4
.6

9
3

2
7
4
7
1
0
0

4
.3

5
–

5
0

0
.0

2
0
.0

9
2
.4

1
3
3

2
2
5
1
2
0
0

8
.8

7
–

4
2
5

0
.0

4
0
.0

0
9
.0

9
4

2
9
1
5
2
0
0

3
.3

6
–

1
0
.0

0
0
.0

0
0
.2

1
3
4

2
2
9
0
9
0
0

6
.8

5
–

1
0
.0

0
0
.0

0
0
.3

9
5

2
7
9
2
0
0
0

4
.5

6
–

1
0
.0

0
0
.0

0
0
.2

1
3
5

2
1
1
9
0
0
0

8
.2

0
–

1
0
.0

0
0
.0

0
0
.3

9
6

2
8
2
9
5
0
0

6
.6

2
–

1
0
.0

0
0
.0

0
0
.1

1
3
6

2
2
7
1
4
0
0

8
.1

3
–

1
0
.0

0
0
.0

0
0
.3

9
7

3
0
7
4
5
0
0

2
.8

9
–

5
0

0
.0

7
0
.0

0
2
.4

1
3
7

2
0
5
8
2
0
0

7
.5

6
–

1
0
.0

0
0
.0

0
0
.3

9
8

2
7
7
0
2
0
0

3
.5

9
–

6
8

0
.0

2
0
.0

0
3
.3

1
3
8

2
2
9
4
2
0
0

7
.3

0
–

1
0
.0

0
0
.0

0
0
.3

9
9

2
8
4
5
5
0
0

2
.2

4
–

1
0
.0

0
0
.0

0
0
.2

1
3
9

1
7
6
3
2
0
0

7
.1

3
–

3
7
1

0
.0

6
0
.0

0
7
.9

1
0
0

3
5
6
9
4
0
0

6
.0

2
–

7
3

0
.0

9
0
.0

2
3
.9

1
4
0

1
7
2
1
2
0
0

7
.5

0
–

1
1
9

0
.0

2
0
.0

4
4
.0

P
4

1
0
1

2
2
3
1
8
0
0

3
.5

5
–

1
3
6

0
.0

5
0
.0

0
3
.0

1
4
1

2
0
2
7
5
0
0

6
.6

0
–

1
0
.0

0
0
.0

0
0
.3

1
0
2

2
3
3
9
8
0
0

3
.6

9
–

5
0

0
.0

5
0
.0

2
2
.1

1
4
2

1
9
5
0
8
0
0

6
.5

2
–

1
6
9
3

0
.0

9
0
.0

0
3
0
.1

1
0
3

1
2
9
4
1
0
0

–
2
0
6
9
.0

1
0
1

0
.1

1
0
.0

0
4
.4

1
4
3

2
0
8
7
6
0
0

8
.0

2
–

8
1
1

0
.0

8
0
.0

0
1
5
.3

1
0
4

2
3
4
1
1
0
0

4
.2

8
–

1
6
4

0
.1

2
0
.0

0
7
.8

1
4
4

2
1
7
3
1
0
0

7
.8

8
–

6
6
9

0
.0

8
0
.0

0
1
1
.9

1
0
5

2
4
0
3
9
0
0

0
.4

8
–

9
3

0
.0

9
0
.0

0
3
.1

1
4
5

2
0
1
3
8
0
0

9
.4

8
–

1
1
9

0
.0

4
0
.0

4
4
.8

1
0
6

2
4
6
3
5
0
0

1
.7

1
–

5
0

0
.0

4
0
.0

0
2
.9

1
4
6

1
7
5
7
5
0
0

5
.8

6
–

3
3
9

0
.1

0
0
.0

4
7
.2

1
0
7

2
5
4
0
2
0
0

3
.4

5
–

5
0

0
.0

2
0
.0

2
2
.5

1
4
7

2
1
7
4
6
0
0

7
.1

6
–

1
1
9

0
.0

2
0
.0

4
5
.1

1
0
8

2
5
5
4
8
0
0

3
.5

0
–

8
2

0
.0

5
0
.0

9
3
.4

1
4
8

1
7
8
8
2
0
0

7
.5

9
–

1
0
.0

0
0
.0

0
0
.3

1
0
9

2
3
2
9
1
0
0

2
.4

9
–

8
3

0
.0

7
0
.1

1
3
.9

1
4
9

2
0
4
6
7
0
0

9
.2

0
–

1
1
9

0
.0

2
0
.0

2
3
.7

1
1
0

2
5
8
8
6
0
0

5
.0

8
–

2
1
6

0
.0

7
0
.0

0
5
.0

1
5
0

1
8
5
0
7
0
0

7
.7

2
–

1
1
9

0
.0

4
0
.0

2
4
.2

P
5

1
1
1

2
8
0
2
2
0
0

1
.7

9
–

1
0
.0

0
0
.0

0
0
.2

1
5
1

2
0
8
3
0
0
0

6
.4

2
–

1
1
9

0
.0

2
0
.0

0
4
.0

1
1
2

2
4
9
3
7
0
0

0
.1

9
–

9
5

0
.0

4
0
.0

0
2
.9

1
5
2

2
0
7
3
3
0
0

6
.0

9
–

2
2
7

0
.0

2
0
.0

0
5
.3

1
1
3

2
4
3
5
3
0
0

0
.9

6
–

5
0

0
.0

4
0
.0

8
2
.1

1
5
3

2
0
3
8
9
0
0

3
.9

8
–

1
0
.0

0
0
.0

0
0
.3

1
1
4

3
0
4
0
7
0
0

2
.3

7
–

1
0
.0

0
0
.0

0
0
.2

1
5
4

1
9
1
9
3
0
0

7
.6

5
–

1
2
5

0
.0

2
0
.0

0
3
.2

1
1
5

1
6
9
2
9
0
0

–
2
3
1
0
.3

7
9

0
.0

6
0
.0

6
3
.2

1
5
5

2
0
9
8
8
0
0

5
.8

3
–

2
0
7

0
.0

3
0
.0

2
5
.0

1
1
6

4
4
0
7
0
0

–
6
6
9
.6

5
0

0
.0

4
0
.0

0
1
.9

1
5
6

1
9
7
6
3
0
0

5
.8

4
–

2
3
1

0
.0

5
0
.0

3
4
.5

1
1
7

3
1
2
5
4
0
0

3
.7

4
–

1
0
5

0
.1

1
0
.0

0
3
.4

1
5
7

2
2
9
4
2
0
0

4
.9

5
–

3
0
3

0
.0

9
0
.0

0
6
.4

1
1
8

9
3
7
0
0
0

–
1
3
7
5
.7

9
6

0
.1

0
0
.0

0
2
.5

1
5
8

1
7
5
4
9
0
0

5
.1

9
–

1
8
9

0
.0

2
0
.0

0
4
.7

1
1
9

2
8
9
2
5
0
0

3
.5

4
–

1
0
.0

0
0
.0

0
0
.2

1
5
9

2
0
0
7
4
0
0

6
.3

1
–

1
0
.0

0
0
.0

0
0
.3

1
2
0

1
2
2
4
0
0
0

–
1
7
3
0
.3

3
2
7

0
.1

2
0
.0

0
7
.5

1
6
0

1
8
9
1
0
0
0

6
.9

0
–

2
3
1

0
.0

3
0
.0

2
5
.9

20

