
 1

A Honey-bee Mating Optimization Algorithm for Educational

Timetabling Problems

Nasser R. Sabar
1
, Masri Ayob

1
, Graham Kendall

2
, Rong Qu

2

1
Data Mining and Optimisation Research Group (DMO), Centre for Artificial Intelligent (CAIT)

Universiti Kebangsaan Malaysia, 43600 UKM, Bangi Selangor, Malaysia

naserdolayme@yahoo.com, masri@ftsm.ukm.my

2
ASAP Research Group, School of Computer Science

The University of Nottingham, Nottingham NG8 1BB, UK.

gxk,rxq@cs.nott.ac.uk

Abstract: In this work, we propose a variant of the Honey-bee Mating Optimization Algorithm for solv-

ing educational timetabling problems. The honey-bee algorithm is a nature inspired algorithm which sim-

ulates the process of real honey-bees mating. The performance of the proposed algorithm is tested over

two benchmark problems; exam (Carter’s un-capacitated datasets) and course (Socha datasets) timeta-

bling problems. We chose these two datasets as they have been widely studied in the literature and we

would also like to evaluate our algorithm across two different, yet related, domains. Results demonstrate

that the performance of the honey-bee mating optimization algorithm is comparable with the results of

other approaches in the scientific literature. Indeed, the proposed approach obtains best results compared

with other approaches on some instances, indicating that the honey-bee mating optimization algorithm is

a promising approach in solving educational timetabling problems.

Key words: Timetabling; Meta-Heuristics; Honey-bee mating; Nature inspired

1. Introduction

Educational timetabling problems can be defined as the problem of assigning a number of events (ex-

ams/courses) to a given number of timeslots and rooms while satisfying a set of constraints (Qu et al.

2009; Lewis 2008). These constraints are usually classified into two types. Hard constraints must be satis-

fied in order to provide a feasible solution, whereas, soft constraints can be violated (but we try to satisfy

them as far as possible). The quality of a timetable is measured based on how well the soft constraints

have been satisfied.

In recent years, there has been increased research interest into swarm-based approaches and they have

been found to be effective in dealing with several NP-hard problems (Yang 2008). Yang (2008) argued

that the main reason for choosing swarm-based approaches is due to their ease of implementation and

their flexibility (Baykasoùluet al. 2007). A number of nature inspired algorithms have been proposed in-

cluding genetic algorithms, ant colony algorithms, simulated annealing and honey-bee mating algorithms.

The honey-bee mating algorithm is a relatively new approach which attempts to model the natural behav-

ior of mating in real honey bees in order to solve combinatorial optimization problems.

Although honey-bee mating algorithms have been widely applied to solve optimization and NP-hard

problems (Baykasoùluet al. 2007), as far as we are aware, there has been no work undertaken to address

educational timetabling problems by using a honey-bee mating algorithm. The strengths of honey-bee

algorithms are their ability to simultaneously explore (probabilistically guided by the queen’s transition in

the space) and exploit (by employing a local search at each iteration) the problem search space. The queen

(current best solution) is the dominate solution and stores different drone’s genotypes in her mating pool.

 2

She can use some parts of these genotypes to create new broods, by combining some parts of the queen

genotypes with some parts of the drone’s genotype. Since the queen is the fittest individual it is hoped

that this will evolve superior solutions.

Motivated by the above, this work investigates variants of honey-bee algorithms for solving educa-

tional (exam and course) timetabling problems and evaluates the algorithm against other approaches that

have been presented in the scientific literature. The proposed variants attempt to avoid premature conver-

gence by maintaining population diversity. These features distinguish honey-bee algorithms from other

population based algorithms that have been utilised on university timetabling problems (for example,

Burke et al. 1996; Socha and Sample 2003, 2010 and Pillay and Banzhaf 2010).

The proposed method is tested against two benchmark datasets (the Carter un-capacitated dataset for

exam timetabling and the Socha course timetabling dataset) and compared with the original honey-bee

algorithm and other meta-heuristic methods. Results demonstrate that this nature inspired intelligent tech-

nique can be used to obtain high quality solutions for both exam and course timetabling problems.

The rest of the paper is organized as follows. Sections 2 reviews population based algorithms for edu-

cation timetabling problems. The original honey-bee algorithm is presented in section 3. Our proposed

approach is presented in section 4, followed by our results in section 5. Finally, concluding remarks are

presented in section 6.

2 Problem Descriptions

In this work, the performance of the proposed algorithm is demonstrated over two benchmark problems

which are exam (Carter’s un-capacitated datasets) and course (Socha datasets) timetabling problems.

2.1 Exam timetabling problems

Exam timetabling problem can be defined as the allocation of a number of exams to a given number of

time periods subject to the following set of hard and soft constraints (Carter et al. 1996 and Qu et al.

2009):

 Hard constraint: exams of common students (conflicting exams) cannot be scheduled at the same

time. A feasible timetable is one in which all exams have been assigned to feasible timeslots without

violating the hard constraints.

 Soft constraints: conflicting exams should be spread as far apart as possible to allow sufficient revi-

sion time between exams for students.

The quality of a timetable is given by the minimization of the soft constraint violations. The proximity

cost is used to calculate the penalty cost (equation 1) (see Carter et al. 1996 and Qu et al. 2009) as fol-

lows:

 S is the number of students in the problems

 m is the number of exams in the problem

 e is a collection exams

 t represent timeslots

}4,3,2,1,0{,/)(
1

1

1

iSswC kl

m

kl

i

m

k

 ... (1)

Where

 skl is the number of students taking both exams ek and el, if i=|tk-tl| <5;

 3

 wi=2
|4-i|

 is the cost of scheduling two conflicted exams ek and el (which have common enrolled stu-

dents) with i timeslots apart, if if i=|tk-tl| <5, i.e. w0=16, w1=8, w2=4, w3=4 and w4=1; tk and tl as the

timeslot of exam ek and el, respectively.

2.2 Course timetabling problem

The university course timetabling problem can be defined as assigning a given number of courses to a

given number of timeslots and rooms subject to a set of hard and soft constraints (Socha and Samples

2003). In this work, we have used the same model presented in Socha and Samples (2003), represented as

follows:

 A set of courses ci (i = 0… C)

 tn represent the set of timeslots (n = 1 …… 45)

 A set of R rooms rj (j = 0… R)

 A set of F room features

 A set of M students

The course timetabling problem consists of assigning every course ci to a timeslot tn and room rj so that

the following hard constraints are satisfied:

 No student can be assigned to more than one course at the same time.

 The room should satisfy the features required by the course.

 The number of students attending the course should be less than or equal to the capacity of the room.

 No more than one course is allowed at a timeslot in each room.

The objective is to satisfy all hard constraints and to minimize the number of students involved in the vio-

lation of soft constraints. The soft constraints are equally penalized (penalty cost = 1 for each violation

per student). The soft constraints are:

 A student should not have a course scheduled in the last timeslot of the day.

 A student should not have more than two consecutive courses.

 A student should not have a single course on a day.

3 Related Work in Education Timetabling

Over the last two decades, meta-heuristic approaches have been successfully applied to educational time-

tabling problems. For example, graph based heuristics (Burke et al 2007; Sabar et al. 2009b), tabu search

(Di Gaspero and Schaerf 2001), large neighbourhood search (Abdullah and Burke 2006), great deluge

algorithms (Landa-Silva and Obit 2008), hybrid algorithms (Sabar et al. 2009a), and population based

algorithms including memetic algorithms (Burke et al. 1996), ant colony (Socha and Sample 2003) and

genetic algorithms (Pillay and Banzhaf 2010) have all been utilized. The honey-bee mating optimization

(HBMO) algorithm belongs to the population-based algorithms. In this paper, we review the population

based algorithms that have been applied to university timetabling problems. Interested readers are re-

ferred to recent surveys in this area (Qu et al. 2009; Lewis 2008; McCollum et al. 2010; and Burke and

Petrovic 2002) for more comprehensive coverage of other methodologies.

3.1 Population Based Algorithms for Exam Timetabling

Population based algorithms, such as genetic algorithms and ant colony algorithms, have been utilized to

solve exam timetabling problems. Cote et al. (2005) proposed a bi-objective evolutionary algorithm to

minimize the timetable length and to space out conflicting exams as much as possible. The recombination

 4

operators were replaced by two local searches (tabu search and variable neighbourhood descent) to deal

with hard and soft constraint violations. The methods obtained competitive results on a number of

benchmark problems. However, replacing the crossover and mutation operators by two local searches led

to an increased number of parameters that needed to be tuned, which is one of the main disadvantages for

many meta-heuristic approaches.

Eley (2007) applied two ant algorithms to simultaneously construct and improve exam timetables. The

first algorithm, MMAS-ET, is based on the Max-Min Ant System that was used by Socha and Samples

(2003) on course timetabling problems. The second algorithm ANTCOL-ET is a modified version of

ANTCOL (originally used by Costa and Hertz (1997) to solve graph colouring problems). Both ant algo-

rithms were hybridized with a hill climber and tested on the Carter benchmark datasets. Results showed

that the simple ant system ANTCOL-ET outperformed the more complex MMAS-ET. Indeed, the per-

formance of ant systems can be considerably improved by adjusting the search parameters such as the

evaporation rate, the pheromone deposit interval and the number of cycles. However, in the construction

stage (exploration), the ants are trying to generate a feasible timetable from scratch by using previous

knowledge (pheromone). Therefore, the algorithm may struggle to obtain a feasible timetable in some

cases if parameter values are not set appropriately, especially for highly constrained problems.

Ersoy et al. (2007) proposed a combination of hill-climbing and memetic algorithms in a hyper-

heuristic framework. The authors compared their approach with a self-adaptive memetic algorithm based

hyper-heuristic with different heuristic selection and acceptance criteria. The experimental results on the

Carter benchmark datasets showed that a memetic algorithm based hyper-heuristic, which used a single

hill climber at a time, performed the best among variants of other hill climbing hyper-heuristics proposed

by the same authors.

Burke et al. (2010) presented a variant of variable neighbourhood search for solving exam timetabling

problems. An indirect genetic algorithm was employed to intelligently select a subset of neighborhoods.

Good results were obtained on some of the Carter benchmark problem instances.

Recently, Pillay and Banzaf (2010) proposed a two-stage informed genetic algorithm for exam timeta-

bling problems. The first phase focuses on generating feasible timetables that satisfy all hard constraints,

whilst the second phase tries to minimize soft constraint violations. In both phases, a genetic algorithm

was used to generate and improve the timetable. Comparable results have been obtained on the Carter

benchmark datasets over other approaches. However, they did not mention the rationale behind using a

GA in the construction and improvement phases, which increases the computational time and the number

of parameters that need to be tuned. Furthermore, all obtained results are worse than the best known.

3.2 Population Based Algorithms for Course Timetabling

Socha and Samples (2003) used ant colony optimization to solve university course timetabling problems.

They compared two algorithms, ant colony system and a MAX-MIN algorithm. At each step, each ant

constructs a complete solution that meets all the hard constraints by using heuristics and pheromone in-

formation. Then, a hill climbing local search is used to improve the solutions. Both approaches were test-

ed on the same datasets that were originally introduced by the same authors. MAX-MIN system usually

achieves better results.

Abdullah et al. (2007) presented a hybrid evolutionary approach to university course timetabling prob-

lems. Starting with feasible solutions, a memetic approach with a mutation operator and a randomized

iterative improvement technique is used to improve the solutions. Roulette wheel selection is utilized to

select the individuals, which are improved by a local search. The proposed method, tested on the Socha

dataset, produced good quality results for all tested datasets. Ignoring the crossover operator (the main

operator in a GA) led to an inefficient exploration of the search space.

 5

Abdullah and Turabieh (2008) proposed a standard genetic algorithm with hill climbing for university

course timetabling problems. The authors focused on mechanisms to repair infeasible solutions after ap-

plying crossover and mutation. Comparable results were obtained on the Socha datasets, but they were

worse than the best known results and also those reported in Abdullah et al. (2007).

Landa-Silva and Obit (2009) proposed an evolutionary non-linear great deluge algorithm for universi-

ty course timetabling. Individuals are selected by tournament selection and improved using a mutation

operator. The improved individual, if better than the worst individual, replaces the worse individual in the

population. Experimental results show that the hybridization between the non-linear great deluge and evo-

lutionary operators produces good quality results on the Socha datasets. The proposed method is similar

to Abdullah et al. (2007) in that using a population of solutions and applying mutation operators only,

omitting the main GA operator crossover. This may restrict its ability to explore broader regions of the

search space.

Turabieh et al. (2009) proposed an electromagnetism-like mechanism with force decay rate great del-

uge algorithm for university course timetabling. It is based on an attraction-repulsion movement for solu-

tions in the search space. The proposed method begins with a population of randomly generated, feasible

timetables and an attraction-repulsion mechanism is used to calculate the estimated quality for the great

deluge algorithm. Then, a great deluge algorithm is employed to enhance the solution. This method is

able to obtain very good results for the Socha datasets. However, since the estimated quality is changea-

ble, based on the current attraction-repulsion value, it might blindly explore the search space. Also, the

authors did not mention what will happen when the great deluge algorithm is unable to improve the solu-

tions any longer.

Motivated by the above, this work proposes another population based approach, which is a variant of

the HBMO algorithm. The proposed approach is designed to simultaneously explore (guided by the

queen’s transition in the space) and exploit (employing local search at each iteration). The differences

between HBMO and the previous population based algorithms that have been used to solve university

timetabling problems are:

1. Our approach is an improvement based method using a direct representation and employing a

crossover operator, whereas most of the previous population based algorithms omit the crossover

operator (we suspect, due to the complexity in maintaining feasibility) except (Abdullah and

Turabieh 2008 and Pillay and Banzaf 2010).

2. HBMO explores the search space probabilistically, guided by the queen’s transition, based on an

annealing function.

3. Instead of selecting two parents, using the same selection procedure (as in a genetic algorithm),

the first parent (the queen) is always the fittest individual and the second (the drone) is selected

based on its fitness using Equations (1) and (2) (see section 3).

4. Our approach employs an exploitation stage, at each iteration, by applying a local search algo-

rithm. Most previous population based algorithms did not apply an exploitation stage except for

(Abdullah et al. 2007; Landa-Silva and Obit 2009; Abdullah and Turabieh 2008 and Turabieh et

al. 2009).

Table 1 summaries the differences and similarities between our proposed HBMO algorithm and previ-

ous population based algorithms that have been applied to university timetabling problems.

Table 1

Differences and similarities between the HBMO algorithm and previous population based algorithms. “-“ means the

method did not use the corresponding operator.

Approaches
Application

Type

Solution

Representation

Same Repre-

sentation as

Initialization

Method

Initial

Solution

Crossover

Type

Mutation

Type

Problem

Type

Exploita-

tion during

 6

HBMO search

HBMO Improvement direct
Graph

coloring
feasible Haploid

Shaking

procedure

Exam

and

course

Yes (at

every

iteration)

GA (Cote et

al. 2005)

Constructive +

improvement
direct NO Random infeasible

Local

search

Local

search
exam NO

ACO (Eley

2007)
Constructive direct NO

Graph

coloring
- - - exam NO

GA (Erosy et

al. 2007)
improvement direct NO

Graph

coloring
infeasible -

Move

operator
exam NO

GA (Burke et

al. 2010)
improvement indirect NO

Graph

coloring
feasible One point exam NO

GA (Pillay

and Banzaf

2010)

Constructive

+

improvement

direct NO GA feasible One point
Move

operator
exam NO

ACO (Socha

and Samples

2003)

Constructive direct NO - feasible - - Course NO

GA (Abdullah

et al. 2007)
improvement direct NO

Random+

Graph

coloring

feasible -
Move

operator
Course Yes

GA (Abdullah

and Turabieh

2008)

improvement direct Yes random feasible one point
Move

operator
Course Yes

GA + GD

(Landa-Silva

and Obit

2009)

improvement direct NO
Graph

coloring
feasible -

Great

deluge
Course Yes

EM+GD

(Turabieh et

al. 2009)

improvement direct Yes
Graph

coloring
feasible -

Great

deluge
Course Yes

4 The Honey-Bee Mating Optimization Algorithm

The honey-bee mating optimization (HBMO) algorithm was proposed by Abbass (2001a, 2001b). It has

been successfully applied to solve job shop scheduling, integrated partitioning/scheduling, data mining, 3-

sat, nonlinear constrained and unconstrained optimization, stochastic dynamic programming and continu-

ous optimization problems (see Baykasoùluet al. 2007). However, as far as we are aware, it has not been

investigated in the context of educational timetabling.

A honey-bee colony consists of queen(s) (best solution), drones (incumbent solutions), worker(s) (heu-

ristic), and broods (trial solutions). The HBMO algorithm simulates the natural mating behaviour of the

queen bee when she leaves the hive to mate with drones (Abbass 2001a, 2001b). After each successful

mating, the drone’s sperm is added to the queen’s spermatheca. Before the mating flight begins, the queen

is initialized with some energy and only ends her mating flight when her energy level drops below a

threshold (which is close to zero) (Afshar et al., 2007). Table 2 illustrates the analogy between the natural

honey bee colony and the artificial honey bee algorithm. Figure 1 presents the pseudo-code of the original

honey-bee algorithm (adopted from Abbass 2001a).

Table 2

Analogy between the natural honey bee colony and the artificial honey bee algorithm

Natural honey bee Artificial honey bee

Queen Best solution

Drones Incumbent solutions

Broods New trial solutions

 7

Worker Heuristic search

Mating, Breeding Crossover

The queen mates with a drone probabilistically, using Equation (2) (Abbass 2001a, 2001b).

p(Queen, Dronei) =e
tenergy

fi]
)(

)(
[

 (2)

where P(Queen, Dronei) represents the probability of accepting the i
th
 drone for mating. (f) represents

the absolute fitness difference between the drone and the queen, i.e. (fi)=|f(Queen)-f(Dronei)|. energy(t)

refers to the queen’s energy at time t of mating. The term fitness function in timetabling problems repre-

sents the objective function. The objective function represents the solution quality which calculates the

soft constraints violations (see results section). According to Afshar et al. (2007), the queen’s energy is

high at the beginning of her flights (indicating that the possibility of mating is high). The possibility of

mating is also high when the fitness of the drone is as good as the queens. As the mating flight continues,

the queen’s energy and speed decays according to Equations (3) and (4) (Abbass 2001a, 2001b).

 [0,1] within ratedecay and t]2... [0,1, twhere energy(t))1(tenergy (3)

 [0,1] within ratedecay and t]2... [0,1, there w -energy(t))1(tspeed
 (4)

where represents the decay rate, and relates to the rate of energy reduction after each transition in the

mating process. Initially, the queen’s energy level is randomly generated. Then, a number of mating

flights are undertaken. The queen moves between different states (i.e. solutions) in the allocated space,

according to her energy, and mates with drones using Equation (2). Once a drone has mated with the

queen, its sperm is added to the queen's spermatheca. After each encounter, the queen updates her energy

and speed using Equations (3) and (4). The queen ends her mating flight when her energy level drops be-

low a threshold (which is close to zero) or the queen’s maximum spermatheca size is reached.

Figure 1 The Original HBMO Algorithm (Abbass 2001a)

At the end of the mating flight, the queen returns to the nest. Then, the queen starts breeding by randomly

selecting a drone’s sperm from her spermatheca and performs crossover to produce a brood (one brood

per crossover) which is then fed by a worker to enhance the broods (all new generated broods are en-

Initialize worker

Randomly generate an initial population and set the best individual as the queen

For a pre-defined maximum number of mating flights

 Initialize the queen’s energy and speed randomly

 While queen’s energy > 0

The queen moves between states (solutions) and chooses drones probabilistically using Equation (2)

If a drone is selected, then

 Add its sperm to the queen’s spermatheca

End if

Update the queen’s internal energy and speed using Equations (3) and (4)

 End while

 Generate broods by applying crossover and mutation

 Use the worker to improve the broods

 If the best brood is fitter than the queen then

 Replace the queen with the best brood

 End if

 Kill all broods

End for

 8

hanced by a worker). The number of workers used for the algorithm represents the number of heuristics.

If the fittest brood is superior to the queen, it replaces her. All other broods, and the former queen, are

destroyed and then another mating flight is initiated, with a new queen and the same pool of drones.

The honey-bee mating algorithm shares two operators (crossover and mutation) with genetic algo-

rithms but has two main differences. Firstly, HBMO always uses the queen (which is the dominant solu-

tion) and stores different drone’s genotypes in her mating pool in order to create new broods by combin-

ing some parts of the queen genotypes with the same parts of the drone’s genotype. Since the queen is the

fittest individual, we hope that this will evolve better solutions. This kind of combination leads the search

towards better regions of the search space. In comparison, in genetic algorithms two parents are selected

to produce new children. This may not be effective in exploring the search space since the selection

mechanism employs probabilistic and random factors (e.g. roulette wheel selection). Secondly, HBMO

applies a local search at every iteration, which can be considered as an exploitation stage. By comparison

there is no local search (exploitation) in standard genetic algorithms, although a memetic algorithm can be

used to incorporate this feature.

5 The Honey-Bee Mating Optimization Algorithm for Educational Timetabling Problems

In this work, we propose a variation of HBMO, which we refer to as HBMO-ETP, for solving educational

timetabling problems. The proposed HBMO-ETP is an improvement based method which starts with

populations of feasible solutions, followed by the HBMO mating process.

Firstly, we select a number of honey-bees to create the population of the initial hive. Previous work

(Qu et al. 2009; Lewis 2008; Sabar et al. 2009a; Sabar et al. 2009b and Ayob et al. 2007) showed that in

many cases, random generation methods may not necessarily guarantee a good quality or even feasible

solution in some cases. Therefore, in this work, we employ hybrid graph coloring heuristics (Ayob et al.,

2007), to generate an initial population of feasible solutions. The three graph coloring heuristics we utilize

are:

 Least Saturation Degree First (SD): events are ordered dynamically, in an ascending order, by the

number of remaining available feasible timeslots.

 Largest Degree First (LD): events are ordered, in a decreasing order, by the number of conflicts

they have with all other events.

 Largest Enrolment First (LE): events ordered by the number of students enrolled, in a decreasing

order.

The generation method starts with an empty timetable and applies the hybridized heuristics to schedule

the unscheduled events. The hybridized heuristic (SD+LD+LE) sorts the unscheduled events in a non-

decreasing order of the number of available timeslots (SD). Those with equal SD evaluations are then ar-

ranged in a non-increasing order of the number of conflicts they have with other events (LD) and those

with equal LD evaluations are then arranged in a non-increasing order of the number of student enrol-

ments (LE). Then, the first event in the unscheduled list is selected to be assigned to a timeslot that satis-

fies all the hard constraints. We assign events to a random timeslot when the event has no conflict with

those that have already been scheduled, ensuring that all hard constraints are satisfied. The process of se-

lection and assignment of events is repeated until all events have been scheduled, or some events cannot

be assigned to any available timeslot. If this occurs, we stop the process and start again. Although there is

no guarantee that a feasible solution can be generated, for all the instances used in this work, we were al-

ways able to obtain a feasible solution. The best solution in this initial population becomes the queen. The

other solutions generated during this phase become the drones.

Next, we use equation (2) to determine which drone the queen will mate with. Based on our prelimi-

nary experiments we eliminated the speed parameter (equation (4) in the original HBMO, (see section 4)

since it did not affect the selection of a drone to mate with the queen. Therefore, we only use the energy

 9

equation (3). Note that the elimination of the speed parameter will decrease the number of parameters that

need to be tuned (i.e. decay rate in Equation (4)). If the mating is successful (according to the probabilis-

tic decision rule), the drone's sperm is added into the queen's spermatheca.

Next, the queen starts breeding and some broods are formed. A worker is then applied (i.e. an im-

provement) to the resultant broods. We utilize a simple descent algorithm as the worker to improve the

trial solutions. As in the original honey-bee mating optimization algorithm, the workers improve the

brood produced from the breeding queen with the possibility of replacing the queen if the improved brood

is better than the current queen.

The original HBMO (see section 4) suffers from premature convergence. This is due to the initial pop-

ulation never being updated or modified during the mating and breeding process. In order to avoid prema-

ture convergence, the population of solutions is updated at every mating process. The major difference

between our proposed HBMO-ETP algorithm and the original is that all the drones that have been used

are then discarded and the new broods are modified to provide fresh drones for the next mating flight. In

the original HBMO, all broods are killed and the new mating flight begins using the previous population.

This ensures that no drone’s sperm can be used more than once which, we hope, maintains diversity and

stops premature convergence. Table 3 shows a summary of differences and similarities between our

HBMO-ETP and the original algorithm. The pseudo-code for the HBMO-ETP algorithm is shown in Fig-

ure 2.

Table 3

Differences and similarities between our HBMO-ETP and the original HBMO

Parameters
Abbass (2001a)

Original HBMO

Our Proposed

HBMO-ETP

Drones generation methods Generated randomly Generated by (LS+LD+LE)

No. of queens 1 1

Local search Greedy SAT (GSAT) Simple Descent

Crossover haploid haploid

Mutation type Flip Shaking procedure

Resultant broods All broods are killed All broods will be used in the next mating flight

Fitness function Fitness function Objective function (timetable quality or penalty cost)

 10

Figure 2 The pseudo code of HBMO- ETP

In lines 1 to 5 (see figure 2), we initialize three user-defined parameters. These are: (i) the number of

queens, (ii) the queen’s spermatheca size, which represent the maximum number of matings each queen

performs in a single mating flight, thus also the number of broods that will be born after each single mat-

ing flight and (iii) the number of workers. We only use one worker (heuristic search) i.e. simple descent

algorithm. However, any other local search is also applicable. In lines 6 to 8, we create the drone popula-

tion by employing hybridizations of graph colouring (Least Saturation Degree, Largest Degree first and

Largest Enrolments First) heuristics (see Ayob et al. 2007). The best solution is set as the queen Q in

lines 9 and 10.

Lines 11 to 35 represent a mating flight. In line 13, we initialize the queen with energy. Then, we se-

lect the set of drones from the drone population based on Equation (2) to build a mating pool for possible

information exchange between the queen and the selected drone in line 15. If the drones are accepted we

add them to the queen’s spermatheca (lines 16 to 21). Based on Equation (2), the fitter drones have more

chance of being selected. This procedure is repeated until the queen’s maximum spermatheca size is

reached or the queen’s energy drops to zero. Then, the breeding process starts (lines 24 to 33). A new set

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Set the maximum number of mating flights M, the number of queens =1, Iter = 0

Set the number of workers W; queen spermatheca q_s = Ø

Set the maximum queen spermatheca size q_s_mx

Set drones population d_pop = Ø; drones maximum population size d_mx_pop

Set broods population b_pop = Ø;

For i = 1 to d_mx_pop

Generate the drone soli and add it to d_pop

End for

Calculate the fitness value for each drone f(soli)

Select the best drone (soli) and set it as the queen Q (best solution)

While Iter M

Iter = Iter + 1

Initialize energy = rand [0.5, 1], t = 0; = 0.9

While energy > 0 or |q_s| < q_s_mx

Randomly select a drone soli from d_pop

Calculate Δ(f) = |f(Q)-f(soli)|

Generate a random number R in range (0, 1)

If exp (-Δ(f) /energy (t)) < R

Add sperm of the drone soli to q_s

|q_s| = |q_s| +1

End if

t = t + 1; energy (t) = energy (t-1)

End while

For j = 1 to |q_s| do

Select a drone sperm (solj) from q_s

Generate a brood (solj*) by crossing the queen's (Q) genotype with the selected drone sperm (solj) using

haploid crossover

Apply the selected worker (Simple Descent) to improve the brood’s (solj*) fitness

If the best brood's f(solj*) is fitter than the queen's f(Q) then

Replace the queen with the brood, Q= solj* and f(Q) =f (solj*)

Else add solj* to b_pop

End if

End for j

Shake all broods (b_pop) by using Kemp-chain neighbor structures

Kill all old drones and insert the new shaked broods (b_pop) into d_pop

End While

Return the queen (Best Solution Found)

 11

of broods can be generated by employing pre-defined crossover operators between the queen and drones

(see line 26).

In our HBMO-ETP algorithm, a chromosome is used to represent a candidate solution soli to the prob-

lem where each gene represents a timeslot of the candidate solution. Table 4 provides an example of the

chromosome encoding, where columns represent timeslots e.g. T1, T2...T9 and rows represent rooms. The

entries of Table 4 are the events themselves, e.g. e2, e3, e4 … en.

Table 4 chromosome (complete timetable)
 Timeslots

R
o

o
m

s

T1 T2 T3 T4 T5 T6 T7 T8 T9

e2 e11 e8 e19 e7 e14 e16 e10 e7

e3 e6 e9 e4 e1 e17 e12 e18

 e7 e15 e13 e20 e5

 e12 e18 e21

In Figure 3, we illustrate a simple crossover (haploid crossover Abbass 2001a, 2001b) by using an exam-

ple. Assume two solutions A and B, which are a drone and a queen, are employed to produce a brood.

Two random genes (i.e. timeslots) from both the drone and the queen are selected (shown as the shaded

genes T1 and T8 in chromosome (A) and genes T3 and T7 in chromosome (B)). Then we move all events

(exams or courses) from gene T3 in chromosome (B) to gene T1 in chromosome (A), and from gene T7 in

chromosome (B) to gene T8 in chromosome (A). If an event conflicts with those in the new gene, or the

same event is already in the new gene (e.g. e15 in T3 chromosome (B)) the event will not be moved. A re-

pair mechanism has to be applied to remove duplicate events, as shown in Figure 3 (C), and to make sure

that the broods which are produced are feasible. All the old events, that caused duplication, are removed.

If the events conflict with those in the new gene, or the same events are already in the new gene (e.g. e15

in T3 chromosome (B)) the events will not be moved. Otherwise, we move events to the new gene and

delete it from the old gene as shown in Figure 3(C).

Figure 3 Example of Haploid Crossover

After crossover, a local search is applied to improve the broods. In this work, we employ a simple descent

algorithm as our local search procedure. The simple descent algorithm starts with a feasible initial solu-

tion (i.e. brood) and iteratively improves it by examining its neighborhood. A neighborhood of a given

solution is obtained by moving one event from its current timeslot to another timeslot, which is selected

randomly. The solution is accepted, if the move does not violate any hard constraints and the quality of

the neighborhood solution is better than the incumbent solution. Otherwise, the solution is rejected and a

 12

new event is selected to generate a neighborhood solution. This process is repeated until the stopping

condition is satisfied. In this work, the stopping condition is set to 5,000 iterations which was determined

by our preliminary testing.

 If the improved brood is better than the queen, the queen is replaced by the brood. Otherwise we keep

the original queen as the best solution. In order to ensure that no drone’s sperm can be used more than

once, the new broods will be modified using a shaking procedure (mutation operator). In this work, we

employed a kempe chain neighbourhood (see Thomson and Dowsland 1996) as a shaking procedure to

modify the generated broods. The kempe chain neighbourhood is applied to each brood to swap a subset

of events between two timeslots. The main feature of the kempe chain neighbourhood is the capability of

moving a chain of events within the timetable while ensuring the feasibility. The modified broods will

replace the old ones for the next mating flight.

6 Experimental Results and Discussion

We tested our HBMO-ETP algorithm on the un-capacitated exam timetabling problems introduced by

Carter et al. (1996) and the course timetabling problems in Socha and Sample (2003) (see section 2). The-

se two benchmarks have been widely used in the literature to evaluate the performance of different ap-

proaches. The proposed algorithm was implemented in Visual C++ 6.0 on a PC AMD Athlon with a 1.92

GHz processor and 512 RAM running Windows XP 2002.

6.1 The HBMO-ETP Parameters Setting

The parameter settings of HBMO-ETP for both the exam and course timetabling problems are listed in

Table 5. The parameters of the proposed algorithm were selected based on our preliminary experiments.

They provide a good trade-off between solution quality and the computational time needed to reach good

quality solutions. Our preliminary tests show that increasing the size of queen spermtheca has no impact

on the algorithm performance, but the computational time is increased. We found that the most sensitive

parameter is the number of selected genes for the crossover operator. Increasing the number of selected

genes will increase the exploitation stage to generate a good quality solution but, at the same time require

more computational time to maintain solution feasibility. Please note that we used the same parameter

setting across instances within both exam and course timetabling problems. We believe that this is an im-

portant element of this paper.

Table 5 HBMO-ETP parameters

No. Parameters Tested Range Suggested

Value

1- No. of Drones 10-60 40

2- No. of Mating Flights 5000-15000 10000

3- Size of Queen Spermtheca 5-30 10

4- No. of Broods 5-30 10

5- No. of selected genes in Crossover 2 - (number of gens-1) 8

6- Simple Descent Iteration 1000-8000 5000

5.2 The HBMO-ETP for the Carter Uncapacitated Exam Benchmark Dataset

Table 6 presents the characteristics of the uncapacitated exam timetabling benchmark problem instances

from Carter et al. (1996) (Toronto b type I in Qu et al. 2009).

Our first experiment compares the performance of HBMO-ETP with the original algorithm (using equa-

tion (4)). Both HBMO-ETP and the original HMBO use the same parameter settings (Table 5). Twenty

 13

independent runs (each taking 2-8 hours depending on the size of the problem instance) were carried out

for each of the 13 instances using different random seeds. We note that this run time is acceptable in uni-

versity timetabling problems because the timetables are usually produced months before the actual sched-

ule is required (Burke et al. 2010). The results of average and best penalty cost (out of 20 runs) of

HBMO-ETP and the original HBMO are presented in Table 7.

Table 6 Carter’s un-capacitated benchmark exam timetabling dataset

Data sets Number of timeslots Number of exams Number of Students

Car-f-92-I 32 543 18419

Car-s-91-I 35 682 16925

Ear-f-83-I 24 190 1125

Hec-s-92-I 18 81 2823

Kfu-s-93 20 461 5349

Lse-f-91 18 381 2726

Pur-s-93-I 43 2419 30032

Rye-s-93 23 486 11483

Sta-f-83-I 13 139 611

Tre-s-92 23 261 4360

Uta-s-92-I 35 622 21267

Ute-s-92 10 184 2750

Yor-f-83-I 21 181 941

Table 7

HBMO-ETP compared against HBMO. Best penalty costs are in bold.

Datasets
HBMO-ETP Original HBMO

Ave Best Ave Best

Car-f-92-I 4.30 3.90 4.67 4.19

Car-s-91-I 4.86 4.79 5.43 5.12

Ear-f-83-I 36.43 34.69 38.21 3.51

Hec-s-92-I 10.84 10.66 11.27 10.90

Kfu-s-93 13.41 13.00 14.25 13.43

Lse-f-91 10.56 10.00 10.83 10.54

Pur-s-93-I 6.3 4.76 9.48 8.29

Rye-s-93 11.90 10.97 13.59 12.17

Sta-f-83-I 159.67 157.04 158.28 157.82

Tre-s-92 8.00 7.87 8.3 8.00

Uta-s-92-I 3.28 3.10 3.41 3.29

Ute-s-92 26.98 25.94 27.23 26.85

Yor-f-83-I 36.77 36.15 38.22 37.14

With reference to Table 7, the penalty cost produced by HBMO-ETP is better than the original algo-

rithm. We believe this is due to the fact that HBMO-ETP enhances the diversity of the population by dis-

carding the mated drones and inserting broods into the drone population.

Our second experiment compares HBMO-ETP with other meta-heuristic methodologies, both popula-

tion based and local search methods. The five population based methods that we compare against in Ta-

bles 8 and 9 are:

- H1: Cote et al. (2005): Bi-objective evolutionary algorithm with local search.

- H2: Burke et al. (2010): Variable neighbourhood genetic algorithm.

- H3: Eley (2007): Ant algorithm with hill climbing.

- H4: Ersoy et al. (2007): Memetic algorithm based hyper-heuristics.

- H5: Pillay and Banzhaf: (2010): Informed genetic algorithm.

 14

As shown in Tables 8 and 9, HBMO-ETP obtains competitive results when compared against all the

population based methodologies. Moreover, for 6 instances, HBMO-ETP outperforms, or obtains the

same best results, as other methods. HBMO-ETP obtained the second best results on Car-s-91 and Rye-s-

93 across all population methods, whilst on Ear-f-83, Hec-s-92 and Ute-s-92 it is the third best overall

population method. We can conclude that HBMO-ETP is generally able to produce high quality results

when compared against other population based methods.

Table 8

HBMO-ETP compared against other population based methods in the literature. Best costs are in bold.

Datasets
HBMO-ETP H1 H2

Ave Best Ave Best Best

Car-f-92-I 4.30 3.90 4.4 4.2 3.9

Car-s-91-I 4.86 4.79 5.5 5.2 4.6

Ear-f-83-I 36.43 34.69 35.6 34.2 32.8

Hec-s-92-I 10.84 10.66 16.5 10.2 10.0

Kfu-s-93 13.41 13.00 14.4 14.2 13.0

Lse-f-91 10.56 10.00 11.5 11.2 10.0

Pur-s-93-I 6.3 4.76 - - -

Rye-s-93 11.90 10.97 9.1 8.8 -

Sta-f-83-I 159.67 157.04 157.6 157.2 156.9

Tre-s-92 8.00 7.87 8.8 8.2 7.9

Uta-s-92-I 3.28 3.10 3.6 3.2 3.2

Ute-s-92 26.98 25.94 25.5 25.2 24.8

Yor-f-83-I 36.77 36.15 37.5 36.2 34.9

Table 9

HBMO-ETP compared against other population based methods in the literature. Best penalty costs are in bold.

Datasets
HBMO-ETP H3 H4 H5

Ave Best Ave Best Best Best

Car-f-92-I 4.30 3.90 4.4 4.3 - 4.2

Car-s-91-I 4.86 4.79 5.3 5.2 - 4.9

Ear-f-83-I 36.43 34.69 38.5 36.8 - 35.9

Hec-s-92-I 10.84 10.66 11.4 11.1 11.7 11.5

Kfu-s-93 13.41 13.00 14.9 14.5 15.8 14.4

Lse-f-91 10.56 10.00 11.7 11.3 13.3 10.9

Pur-s-93-I 6.3 4.76 4.6 4.6 - 4.7

Rye-s-93 11.90 10.97 10.0 9.8 - 9.3

Sta-f-83-I 159.67 157.04 157.5 157.3 157.9 157.8

Tre-s-92 8.00 7.87 8.7 8.6 - 8.4

Uta-s-92-I 3.28 3.10 3.5 3.5 - 3.4

Ute-s-92 26.98 25.94 27.5 26.4 26.7 27.2

Yor-f-83-I 36.77 36.15 40.7 39.4 40.7 39.3

Tables 10 and 11 presents the penalty cost of HBMO-ETP compared to other (non-population based)

methods in the literature. These approaches we compare against are:

 P1: Carter et al. (1996): Largest cliques as the initialization for graph heuristics with backtrack-

ing.

 P2: Di Gaspero and Schaerf (2001): Tabu search algorithm.

 P3: Caramia et al. (2001): Novel local search-based approaches.

 P4: Burke and Newall (2003): Enhancing timetable solutions with local search methods

 P5: Merlot et al. (2003): A hybrid algorithm.

 P6: White et al. (2001): Tabu search with longer-term memory

 15

 P7: Burke et al. (2007): A graph-based hyper-heuristic.

 P8: Abdullah et al. (2006): A multi-start large neighbourhood search approach with local search

methods.

Table 10

Results obtained from HBMO-ETP compared to other (non-population based) methods in the literature. Best

penalty costs are in bold.

Data sets
HBMO-ETP P1 P2 P3 P4

Ave Best Ave Best Ave Best Best Best

Car-f-92-I 4.30 3.90 7.0 6.2 5.6 5.2 6.0 4.10

Car-s-91-I 4.86 4.79 8.4 7.1 6.5 6.2 6.6 4.65

Ear-f-83-I 36.43 34.69 40.9 36.4 46.7 45.7 29.3 37.05

Hec-s-92-I 10.84 10.66 15.0 10.8 12.6 12.4 9.2 11.54

Kfu-s-93 13.41 13.00 18.8 14.0 19.5 18.0 13.8 13.90

Lse-f-91 10.56 10.00 12.4 10.0 15.9 15.5 9.6 10.82

Pur-s-93-I 6.3 4.76 - - - - 3.7 -

Rye-s-93 11.90 10.97 8.7 7.3 - - 6.8 -

Sta-f-83-I 159.67 157.04 167.1 161.5 166.8 160.8 158.2 168.73

Tre-s-92 8.00 7.87 10.8 9.6 10.5 10.0 9.4 8.35

Uta-s-92-I 3.28 3.10 4.8 3.5 4.5 4.2 3.5 3.20

Ute-s-92 26.98 25.94 30.8 25.8 31.3 29.0 24.4 25.83

Yor-f-83-I 36.77 36.15 45.6 41.7 42.1 41.0 36.2 37.28

Table 11

Results obtained from HBMO-ETP compared to other (non-population based) methods in the literature. Best

penalty costs are in bold.

Data sets
HBMO-ETP P4 P6 P7 P8

Ave Best Ave Best Ave Best Best Best

Car-f-92-I 4.30 3.90 4.4 4.3 4.7 4.63 5.36 4.1

Car-s-91-I 4.86 4.79 5.2 5.1 5.8 5.73 4.53 4.8

Ear-f-83-I 36.43 34.69 35.4 35.1 46.4 45.8 37.92 36.0

Hec-s-92-I 10.84 10.66 10.7 10.6 13.4 12.9 12.25 10.8

Kfu-s-93 13.41 13.00 14.0 13.5 17.8 17.1 15.2 15.2

Lse-f-91 10.56 10.00 11.0 10.5 14.8 14.7 11.33 11.9

Pur-s-93-I 6.3 4.76 - - - - - -

Rye-s-93 11.90 10.97 8.7 8.4 11.7 11.6 - -

Sta-f-83-I 159.67 157.04 157.4 157.3 158 158 158.19 159.0

Tre-s-92 8.00 7.87 8.6 8.4 9.2 8.94 8.92 8.5

Uta-s-92-I 3.28 3.10 3.6 3.5 4.5 4.44 3.88 3.6

Ute-s-92 26.98 25.94 25.2 25.1 29.1 29.0 28.01 26.0

Yor-f-83-I 36.77 36.15 37.9 37.4 49.5 42.3 41.37 36.2

We can see that our proposed HBMO-ETP has produced good quality solutions (with regard to our

best and average results) for 7 instances (Car-f-92, Kfu-s-93, Pur-s-93, Sta-f-83, Tre-s-92, Uta-s-92, and

Yor-f-83) when compared to those produced by other approaches in the literature. Indeed, we also ob-

tained competitive results with other approaches in the literature for other instances.

5.3 The HBMO-ETP for the Socha Course Timetabling Benchmark Dataset

Table 12 presents the characteristics of the Socha benchmark dataset (Socha and Samples 2003). The

benchmark consists of 11 problem instances which are categorized as small, medium and large.

 16

Table 12

The Socha benchmark course timetabling dataset

 Small Medium Large

Number of courses 100 400 400

Number of rooms 5 10 10

Number of timeslots 45 45 45

Number of features 5 10 10

Approx features per room 3 3 5

Percent feature use 70 80 90

Number of students 80 200 400

Max events per student 20 20 20

Max students per event 20 50 100

In order to assess the performance of the proposed HBMO-ETP, we first compare it with the original

HMBO (using equation (3) and without population updating strategy) using the same parameter settings

as before (Table 5). Again, 20 runs were carried out for each of the 11 problem instances using different

random seeds, each taking1-6 hours depending on the size and constraints in the instances (e.g. small 1 to

small 5 takes a maximum 1 hour, whereas, medium and large takes 3 and 6 hours, respectively). Table 13

presents the best penalty cost (from the 20 runs) and average cost.

Table 13

Results obtained from HBMO-ETP compared to original one. Best penalty costs are in bold.

Datasets
HBMO-ETP Original HBMO

Ave Best Ave Best

small1 0 0 2 0

small2 0 0 2 0

small3 0 0 1 0

small4 0 0 3 0

small5 0 0 4 0

medium1 79 75 101 98

medium2 93 88 140 133

medium3 134 129 217 201

medium4 81 74 159 139

medium5 73 64 190 178

large 531 523 840 827

It is clear from Table 13 that the best results obtained by HBMO-ETP outperform HBMO. Although the

best results of the small instances are the same (both methods obtained zero cost), on average HBMO-

ETP is more stable, in that the best and average results are the same (zero). Again, we believe this is due

to the use of the population updating strategy to maintain diversity.

The performance of HBMO-ETP has been compared with five population based methods in Table 14

on the same dataset:

 M1: MAX-MIN Ant System by Socha and Samples (2003).

 M2: Genetic algorithm and local search by Abdullah and Turabieh (2008).

 M3: Hybrid evolutionary approach by Abdullah et al. (2007).

 M4: Evolutionary non-linear great deluge by Landa-Silva and Obit (2009).

 M5: Electromagnetism-like mechanism with force decay rate great deluge by Turabieh et al

(2009)

It can be seen that across all problem instances, HBMO-ETP has produced much better results when

compared against all the population based methods. For the five small instances, HBMO-ETP is able to

 17

solve them to the optimality. We can also see that both the best and average results are better than the re-

sults obtained by other population based methods except the average for the large instance, which is

slightly worse than that of M3.

Table 14

Results obtained from HBMO-ETP compared to the population based methods in the literature. Best penalty

costs are in bold.

Datasets
HBMO-ETP M1 M2 M3 M4 M5

Ave Best Best Ave Best Ave Best Best Best

small1 0 0 1 2.4 2 0 0 0 0

small2 0 0 3 4 4 0 0 0 0

small3 0 0 1 2.3 2 0 0 0 0

small4 0 0 1 2 0 0 0 0 0

small5 0 0 0 6.4 4 0 0 0 0

medium1 79 75 195 275 254 224.8 221 126 175

medium2 93 88 184 268 258 150.6 147 123 197

medium3 134 129 248 262.8 251 252 246 185 216

medium4 81 74 164 353 321 167.8 165 116 149

medium5 73 64 219 284.4 276 135.4 130 129 190

large 531 523 851 1032.2 1027 552.4 529 821 912

Table 15 compares HBMO-ETP with other (non-population based) methods in the literature. These

approaches are:

 S1: Graph hyper-heuristic by Burke et al. (2007).

 S2: Non-linear great deluge by Landa-Silva and Obit (2008).

 S3: Extended great deluge by McMullan (2007).

 S4: Variable neighbourhood search with tabu by Abdullah et al. (2005).

 S5: Great deluge and tabu search by Abdullah et al. (2009).

Table 15

Results obtained from HBMO-ETP compared to other (non-population based) methods in the literature. Best

penalty costs are in bold.

Datasets
HBMO-ETP S1 S2 S3

S4
S5

Ave Best Best Best Ave Best Ave Best

small1 0 0 6 3 0.8 0 0 0.8 0

small2 0 0 7 4 2 0 0 2 0

small3 0 0 3 6 1.3 0 0 1.4 0

small4 0 0 3 6 1 0 0 1 0

small5 0 0 4 0 0.2 0 0 0.6 0

medium1 79 75 372 140 101.4 80 317 132.2 78

medium2 93 88 419 130 116.9 105 313 124.6 92

medium3 134 129 359 189 162.1 139 357 162 135

medium4 81 74 348 112 108.8 88 245 111.2 75

medium5 73 64 171 141 119.7 88 292 113.1 68

large 531 523 1068 876 834.1 730 - 738.6 556

Again, HBMO-ETP outperforms other approaches across all instances. Furthermore, both the best and

average results are better than all other methods on all instances. These results demonstrate that HBMO-

ETP is able to produce highly competitive results, which supports findings on the exam timetabling prob-

lems.

6 Conclusions

 18

We have presented the first honey-bee mating optimization algorithm for solving educational timetabling

problems (HBMO-ETP), which is based on the original HBMO algorithm.

HBMO mimics the mating flight of the queen bee. When the drones mate with her they deposit their

sperm in her spermatheca, giving her many possible genotype combinations to generate new broods. One

feature of HBMO is its ability to explore and exploit the search space simultaneously. The original

HBMO suffers from premature convergence as the initial population is never updated or modified during

the entire search process. The proposed HBMO-ETP maintains the population diversity by discarding

mated drones and inserting the generated broods into the population for the next mating flight.

The original HBMO, and our proposed enhancement (HBMO-ETP), has been evaluated on both exam

and course timetabling benchmark problems. Results show that HBMO-ETP produces highly competitive

solutions for both of the benchmarks and outperforms the original HBMO. This is due to its ability to ex-

plore and exploit the search space. However, like other meta-heuristic algorithms, the main drawback of

HBMO-ETP is the number of parameters that need to be set, such as the drone’s population size, mating

pool size and the brood’s population size.

Now that we have demonstrated the effectiveness of this method on very well established benchmarks,

we plan to widen our investigations to the new benchmark (exam and course) datasets that have recently

been introduced (ITC 2007 datasets, McCollum et al. 2010), as well as other highly constrained optimiza-

tion problems including nurse rostering.

References

Abbass, H.A., A monogenous MBO approach to satisfiability. In: Proceeding of the International Conference on

Computational Intelligence for Modeling, Control and Automation, CIMCA’2001, 2001a. Las Vegas, NV, USA.

Abbass, H.A., Marriage in honey-bee optimization (MBO): A haplometrosis polygynous swarming approach.

CEC2001, 2001b, pp. 207-214. Seoul, Korea.

Abdullah, S. and Turabieh, H., Generating university course timetable using genetic algorithm and local search. Pro-

ceeding of the 3rd International Conference on Hybrid Information Technology. 2008, pp 254-260.

Abdullah, S., Burke, E. K. and McCollum, B., A hybrid evolutionary approach to the university course timetabling

problem. CEC2007, 2007, ISBN: 1-4244-1340-0, pp 1764-1768.

Abdullah, S., Burke, E.K. and McCollum, B., An investigation of variable neighbourhood search for university

course timetabling. The 2nd Multidisciplinary International Conference on Scheduling: Theory and Applications

(MISTA05), 2005, pp. 413-427.

Abdullah, S., Burke, E.K., A Multi-start Large Neighbourhood Search Approach with Local Search Methods for

Examination Timetabling. In: Long, D., Smith, S.F., Borrajo, D., McCluskey, L. (eds.) ICAPS 2006, pp. 334-

337, Cumbria, UK.

Abdullah, S., Shaker, K., McCollum, B., McMullan, P., Construction of Course Timetables Based on Great Deluge

and Tabu Search: in MIC09, 2009, Germany.

Afshar, A., Haddad, Bozog, O. Marino, M. A., Adams, B. J., Honey-bee mating optimization (HBMO) algorithm for

optimal reservoir operation. Journal of the Franklin Institute, 2007, 344, 452-462.

Ayob, M., Malik, A.M.A., Abdullah, S., Hamdan, A.R., Kendall, G., Qu, R., Solving a Practical Examination Time-

tabling Problem: A Case Study. In: Gervasi, O., Gavrilova, M. (Eds.) ICCSA 2007, LNCS, vol. 4707, pp. 611–

624. Part III. Springer, Heidelberg.

Baykasoùlu, Lale Özbakır and Pınar Tapkan, Artificial Bee Colony Algorithm and Its Application to Generalized

Assignment Problem, Source. In: Felix T. S. Chan and Manoj Kumar Tiwari (eds.) Swarm Intelligence: Focus on

Ant and Particle Swarm Optimization. ISBN 978-3-902613-09-7, December 2007, pp. 532, , Itech Education and

Publishing, Vienna, Austria.

Burke, E.K., Eckersley, A.J., McCollum, B., Petrovic S., Qu, R., Hybrid variable neighbourhood approaches to uni-

versity exam timetabling. European Journal of Operational Research, 2010, 206, 46-53.

Burke, E.K., McCollum, B., Meisels, A., Petrovic, S., Qu, R., A Graph-Based Hyper-Heuristic for Educational

Timetabling Problems. European Journal of Operational Research, 2007, 176, 177–192.

Burke, E.K., Newall, J., Enhancing timetable solutions with local search methods. In: Burke, E.K., De Causmaecker,

P. (eds.) PATAT 2002. LNCS, 2003, vol. 2740, pp. 195–206. Springer, Heidelberg.

 19

Burke, E.K., Newall, J.P. Weare, R.F., A memetic algorithm for university exam timetabling. In Burke, E.K., Ross,

P. (eds.) PATAT 1996. LNCS, 1996, vol. 1153, pp. 241-250. Springer, Heidelberg.

Burke, E.K., Petrovic, S., Recent research directions in automated timetabling. European Journal of Operational

Research, 2002, 140, 266–280.

Caramia, M., Dell’Olmo, P., Italiano, G. F., New algorithms for examination timetabling. In: Naher, S., Wagner, D.

(eds.) WAE 2000. LNCS, 2001, vol. 1982, pp. 230-241. Springer, Heidelberg.

Carter, M.W., Laporte, G., Lee, S.Y., Examination timetabling: Algorithmic strategies and applications. Journal of

Operational Research Society 1996, 47(3), 373–383.

Costa, D., Hertz, A., Ant can colour graphs. Journal of Operational Research Society, 1997, 48, 295-305.

Cote, P. and Sabourin, R., A hybrid multi-objective evolutionary algorithm for the uncapacitated exam proximity

problem. In: E.K. Burke and M. Trick (eds). Selected Papers from the 5th International Conference on the Prac-

tice and Theory of Automated Timetabling. Springer Lecture Notes in Computer Science, 2005, vol. 3616. 294-

312.

Di Gaspero, L., Schaerf, A., Tabu search techniques for examination timetabling. In: Burke, E.K., Erben, W. (eds.)

PATAT 2000. LNCS, 2001, vol. 2079, pp. 104–117. Springer, Heidelberg.

Eley, M., Ant algorithms for the exam timetabling problem. In: Burke, E.K., Rudova, H. (eds.) PATAT 2007.

LNCS, 2007, vol. 3867, pp. 364-382. Springer, Heidelberg.

Ersoy, E., Ozcan, E. and Etaner., A.S., Memetic algorithms and hyper hill-climbers. In Proceedings of the 3rd Mul-

tidisciplinary International Conference on Scheduling: Theory and Applications. 2007, pp. 159-166.

Landa-Silva, D. and Obit, J.H., Great deluge with non-linear decay rate for solving course timetabling problem. The

fourth international IEEE conference on Intelligent Systems. 2008, pp. 8.11–8.18, Varna, Bulgaria.

Landa-Silva, D. and Obit, J.H., Evolutionary Non-linear Great Deluge for University Course Timetabling: In pro-

ceeding of 2009 internation conference on hybrid artificial intelligent HAIS09, LNAI 5572, 2009, pp. 269–276

Springer-Verlag Berlin Heidelberg.

Lewis, R., A survey of metaheuristic-based techniques for university timetabling problems. OR Spectrum, 2008,

30(1), 167–190.

McCollum B., McMullan P., Paechter B., Lewis R., Schaerf A., Di Gaspero L., Parkes A., Qu R., Burke E., Setting

the Research Agenda in Automated Timetabling: The Second International Timetabling Competition. INFORMS

Journal on Computing. 2010, 22(1): 120-130.

McMullan, P., An extended implementation of the great deluge algorithm for course timetabling, Computational

Science – ICCS, Part I, LNCS, 2007, 4487 pp 538–545 Springer-Verlag Berlin Heidelberg.

Merlot, L.T.G., Borland, N., Hughes, B.D., Stuckey, P.J., A hybrid algorithm for the examination timetabling prob-

lem. In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, 2003, vol. 2740, pp. 207–231. Springer,

Heidelberg.

Pillay, N. and Banzhaf, W., An informed genetic algorithm for the examination timetable problem. Applied Soft

Computing 2010, 10 (2010) 457–467.

Qu, R., Burke, E.K., McCollum, B., Merlot, L.T.G., Lee, S.Y., A Survey of Search Approaches and Automated

System Development for Examination Timetabling. Journal of Scheduling, 2009, 12(1), 55-89.

Sabar, N. R., Ayob, M. and Kendall, G., Tabu Exponential Monte-Carlo with Counter Heuristic for Examination

Timetabling. In: proceedings of 2009 IEEE Symposium on Computational Intelligence in Scheduling

(CISched2009), 2009a, pp. 90-94, Nashville, Tennessee, USA.

Sabar, N. R., Ayob, M., Kendall, G., & Qu, R. Roulette wheel graph colouring for solving examination timetabling

problems. In Proceedings of the 3rd International Conference on combinatorial optimization and applications.

LNCS 5573, (2009b). PP. 463 – 470. Berlin: Springer.

Socha, K. and Samples, M., Ant Algorithms for the University Course Timetabling Problem with Regard to the

State-of-the-Art, in Evolutionary Computation in Combinatorial Optimization (EvoCOP 2003), 2003, vol. 2611,

Lecture Notes in Computer Science pp. 334-345 Berlin Springer-Verlag.

Thompson, J.M., Dowsland, K.A., Variants of simulated annealing for the examination timetabling problem. Annals

of Operations research, 1996, 63, 105-128.

Turabieh, H., Abdullah, S. and McCollum, B., Electromagnetism-like Mechanism with Force Decay Rate Great

Deluge for the Course Timetabling Problem: in proceeding of The Fourth International Conference on Rough Set

and Knowledge Technology, P. Wen et al. (Eds.): RSKT 2009, LNCS 5589, 2009, pp. 497–504, Springer-Verlag

Berlin Heidelberg.

White, G. M., Xie, B. S., Examination timetables and tabu search with longer-term memory. In Burke, E.K., Erben,

W. (eds.) PATAT 2000, LNCS, 2001, vol. 2079, pp. 85–103. Springer, Heidelberg.

Yang, X., Nature Inspired Metaheuristic Algorithms, Luniver Press, 2008.

