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Abstract

This paper reports three adaptations to DynDE, an approach to udiiggebtial Evolution to solve dynamic optimization prob-

lems. The first approach, Competitive Population Evaluation (CPE), is a multi-population DE strategy aimed at locating optima
faster in the dynamic environment. This approach is based on allowing populations to compete for function evaluations based on
their performance. The second approach, Reinitialization Midpoint Check (RMC), is aimed at improving the technique used by
DynDE to maintain populations onféierent peaks in the search space. A third approach, consisting of a combination of CPE and
RMC is investigated. The new strategies are empirically compared to DynDE using various problem sets. The empirical results
show that the new approaches constitute an improvement over DynDE and other approaches in the literature.
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1. Introduction

Dynamic optimization problems are found in many real world domains, for exampleféic trantrol, polarization
mode dispersion compensation in optical fibre, and target tracking in military applications. Despite the fact that evolu-
tionary algorithms often successfully solve static problems, dynamic optimization problems tend to pose a challenge
to evolutionary algorithms (Morrison, 2004). Lack of diversity is the main drawback of most of the standard evolu-
tionary algorithms when it comes to dynamic problems, since the algorithms tend to converge on a single optimum in
the solution space and then lack the diversity to locate new optima when they appsaerilial evolution (DE) is
one of the evolutionary algorithms that do not scale well to dynamic environments.

Mendes and Mohais (2005) applied DE to dynamic optimization problems by utilizing multiple populations main-
tained on distinct peaks in the solution space. In order to better track the movements of the peaks in the solution space,
the diversity of a subset of each population was increased.

In this paper, extensions to the above approach are suggested. The first adaptation is a novel approach called Com-
petitive Population Evaluation (CPE). CPE allows populations to compete for fithess evaluations, hence allocating
fitness evaluations to the more successful populations first. The second suggested adaptation is Reinitialization Mid-
point Check (RMC). RMC is an improvement on the technique used in DynDE to prevent populations converging to
the same peak.

The rest of the paper is structured as follows: related work is discussed in Section 2. The DE algorithm is discussed
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in Section 3. Section 4 reviews the research of Mendes and Mohais (2005). The benchmark which is used in this work
is described in section 5. CPE is presented in section 6, RMC in section 7 and the combination of CPE and RMC is
described in section 8. The results of a comparative investigation into the scalability of each of these approaches is
given in section 9. The new approaches are compared with other research in section 10, and conclusions are drawn in
section 11.

2. Related Work

Several of the earlier investigations into optimization in dynamic environments involved approaches based on Ge-
netic Algorithms. More recently, attention has been given to other population-based optimization algorithms like
Particle Swarm Optimization (PSO) (Kennedy and Eberhart, 1995) affier&itial Evolution (DE) (Storn, 1996). A
survey of the literature identified three main strategies of which at least one is present in most algorithms aimed at
dynamic optimization. These strategies are:

— Increase Diversity: One of the main reasons why traditional population-based algorithms fail in dynamic envi-
ronments is that the algorithms converge to a solution and then lack the diversity required to locate new optima
once the environment has changed. Jin and Branke (2005) pointed out that most algorithms try to remedy this
problem by either explicitly increasing diversity after a change in the environment is detected, or by maintaining
more diversity during the entire run.

— Memory: Optima in the dynamic environments shift or disappear when changes in the environment occur.
However, unless the changes are large, information on where optima were located before the change can still be
used to locate new optima in the vicinity of old optima. Many algorithms make use of either explicit memory
to store information about the location of optima, or implicit memory, mostly in the form of sub-populations
that converge to a variety of optima. Since a change in the environment can lead to the global optimum being
reduced to a mere local optimum and vice versa, knowing the location of all, or at least several, of the local
optima can accelerate the location of the new global optimum.

— Parallel Search: Many algorithms employ a parallel search to locate the optima in the environment, mostly by
using multiple independent populations. Several approaches take steps to ensure that sub-populations do not
converge to the the same optimum and they also control how individuals are distributed among the populations.

Jin and Branke (2005) provide a survey on algorithms for dynamic optimization. These algorithms and some of the
more recent advances in the field will now be discussed in terms of the strategies described above.

Cobb (1990) suggested drastically increasing the mutation rate of a GA after a change in the environment has oc-
curred, while Vavak et al. (1997) advocated a more gradual increase. Hu and Eberhart (2002) suggested that particles
in a PSO algorithm should be reinitialized when a change in the environment occurs. Approaches aimed at maintain-
ing a high amount of diversity during the entire run include Grefenstette’s Random Immigrants (Grefenstette, 1999)
and refinements made by Yang (2005). These introduce random individuals into the GA's population after each gener-
ation. In contrast, Morrison (2004) made use of stationary individuals (called sentinels) that are uniformly distributed
around the search space to increase diversity.

The thermodynamic GA (Mori et al., 1997), (Mori et al., 1996), (Mori et al., 1998) explicitly controls the popula-
tion’s diversity throughout the run by selecting individuals for the next population, not only based on their fitness, but
also based on the rarity of their genes.

More recent diversity-increasing approaches include charged particles (Blackwell and Bentley, 2002), where each
particle is assigned a virtual charge and then allowed to repel each other based on the laws of electrostatics. The idea
of increasing diversity by reinitializing a number of individuals in a population within a hyper-sphere centered around
the best individual within the population was proposed by Blackwell and Branke (2004, 2006). These individuals
are called Quantum individuals and were implemented in a PSO algorithm. A similar approach, called Brownian in-
dividuals, involves the creation of individuals close to the best individual by adding a small random value sampled
from a normal distribution to each component of the best individual (Mendes and Mohais, 2005). Investigations into
finding an appropriate neighborhood structure for PSO (Janson and Middendorf, 2004), (Li and Dam, 2003) and an
appropriate scheme for DE (Mendes and Mohais, 2005) have been conducted, since these parameteftegteatly a
the diversity of the population.

In some dynamic problems the shape of the solution space is either oscillating or cyclic, i.e. changes in the dynamic
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environment will result in the environment returning to the same configuration at a future stage. For these problems,
maintaining an explicit memory of good solutions has been found to be especially useful. Ramsey and Grefenstette
(1993) made use of a knowledge base of strategies (individuals that had performed well in previous generations) that
are inserted in the population when a change occurs that results in a previously seen environment.

In situations where the dynamic environment is not expected to periodically return to the same configuration, mem-
ory is mostly employed to retain information regarding the location of optima in the environments before a change has
occurred. This is generally achieved by using multiple independent populations to locate various optima. A key feature
of these approaches is that independent populations are allowed to search for optima in parallel. Three of the seminal
algorithms in this class are Branke’s Self-Organizing Scouts (SOS) (Branke et al., 2000), (Branke, 2002), (Branke
and Schmeck, 2003), Oppacher and Wineberg'’s Shifting Balance GA (SBGA) (Oppacher and Wineberg, 1999) and
Ursem’s Multinational GA (MGA) (Ursem, 2000). All three of these approaches made use of some strategy to intel-
ligently distribute individuals among the populations.

SOS makes use of a large base population that identifies optima in the search space. When an optimum is located,
a small scout population is left to guard and further optimize the optimum. Individuals are distributed between the
various scout populations and the base population by the algorithm. This distribution is based firstly on the fitness
of the best individual in each population, and secondly, on the amount of improvement in fitness made between the
previous and current generation.

While SOS aims to keep the bulk of the population in a single population searching for new optima, SBGA groups
a single core around the best optimum that was found and uses smaller populations, called colonies, to search for new
optima. The information contained in the colony populations is shared with the core population by means of migrant
individuals that are periodically transferred from colony populations to the core population.

In contrast to SOS and SBGA, the MGA algorithm does not explicitly control the number of individuals in sub-
populations. Furthermore, parent individuals for the creatiorfishang for a given population are not only selected
from the current population, but from all individuals. MGA ugel-valley detectiorto form populations. This tech-
nique randomly samples points between two individuals to determine whether the two individuals are located on the
same optimum. Whenffspring are created, hill-valley detection determines if the new individuals are to remain in the
current population, whether the new individual should join another population or whether the new individual should
be placed in an entirely new population.

Considerable success has been achieved in applying modern optimization algorithms, like PSO and DE, to dynamic
optimization.

Parrott and Li (2004) suggested a multiple-population PSO approach to optimizing dynamic problems, call speci-
ation. The social component of PSO provides a simple method to divide the population in sub-populations. In this
algorithm, a particle is classed into a population if the Euclidean distance between the position of the particle and
the best particle in the population is within a certain threshold value.gldteal bestvalue of each particle within
a population is set to thpersonal besvalue of the best particle. Particles can thus migrate to another population
by moving too far away from the current population’s best particle or by moving closer to another population’s best
particle.

Blackwell and Branke (2006) introduced a multiple-population PSO-based algorithm that is based on three compo-
nents: Exclusion, Anti-convergence and Quantum individuals. An interesting novelty about their approach is that all
populations contain the same number of individuals. The aim of having multiple populations is that each population
should be positioned on its own, promising optimum in the environment. Unfortunately, populations often converge
to the same peak, hence decreasing diversity. Exclusion (Blackwell and Branke, 2004) is a technique meant to prevent
swarms from clustering around the same peak by means of reinitializing populations that stray within a threshold
Euclidean distance from a better performing population. This threshold distance is called the exclusion radius. Anti-
convergence is meant to prevent stagnation of the particles in the search space. Consequently, if it is found that all
populations have converged to their respective optima, the weakest population is randomly reinitialized. Convergence
is detected if all particles within a swarm fall within a threshold Euclidean distance of each other. This is called the
convergence radius.

Li et al. (2006) improved the speciation algorithm by introducing ideas from (Blackwell and Branke, 2004), namely
guantum individuals to increase diversity and anti-convergence to detect stagnation and subsequently to reinitialize
the worst-performing populations.

Mendes and Mohais (2005) adapted the ideas from (Blackwell and Branke, 2006) to a DE algorithm for dynamic

3



optimization. Their multi-population algorithm, DynDE, uses Brownian individuals to increase diversity, and exclu-
sion to prevent populations from converging to the same peak. DynDE will be discussed in detail in later sections.

Recently, Brest et al. (2006, 2009) proposed a self-adaptive multi-population DE alggfitBnf¢r optimizing
dynamic environments. This work focused on adapting the DE scale factor and crossover probability, but it also con-
tained several components that are similar to other dynamic optimization algorithms. An idea similar to exclusion is
used to prevent populations converging to the same optimum. An ageing metaphor is used to reinitialize populations
that have stagnated on a local optimum. Each individual's age is incremented every genefigmmginherit the
age of parents, but this age may be reduced if tfgpang performs significantly better than the parent. Populations
of which the best individual is too old are reinitialized. Within populations a further mechanism is used to prevent
convergence. Individuals are reinitialized if the Euclidean distance between the individual and the best individual in
the population is too small. The algorithm also utilizes a form of memory called an archive. The best individual is
added to the archive every time a change in the environment occurs. A random individual is selected from the archive
from which one of the sub-populations is generated by adding small random numbers to each of the individual’s com-
ponents.

The most successful non-population based algorithm is Moser and Hendtlass’s Multi-Phase Multi-Individual Ex-
tremal Optimization (MMEO) algorithm (Moser and Hendtlass, 2007). Extremal Optimization (EO) (Boettcher and
Percus, 1999) makes use of a single solution which is mutated, and consequently finds the optimum of the search space
through hill climbing. EO was adapted to contain several individuals, each of which uses five steps to find optima.
Firstly, a stepwise sampling of the solution space is performed to locate areas that potentially contain optima. From
these potential points, an individual uses hill climbing to find a local optimum. During the hill climbing phase the
individuals are checked to ensure that no duplicates (individuals that are optimizing the same peak) exist. If changes
in the environment occur, individuals are optimized further by using hill climbing. Finally, individuals are fine tuned
using finer grained hill climbing.

3. Differential Evolution

Differential Evolution (DE) is a relatively new optimization algorithm based on Darwinian evolution, created by
Storn and Price (1997). In DE, mutations are made based on the spfitadte between two or more individuals
added to a target vector, as opposed to other evolutionary algorithms where random mutations are generally made to
individuals in the population. Several variants to the DE algorithm have been suggested, but a generic algorithm is as
follows (K. Price, 2005):
(i) Randomly creaté individuals to form a population.
(ii) Evaluate each individual.
(iif) Createl individuals for a trial population as follows:
(a) Select three individuals at randomg; # X» # X3, from the current population.
(b) Create a new trial vectdv using:

Vi=X1+F - (X2 - Xa) 1)

where¥ € (0, o) is known as the scale factor.
(c) AddV; to the trial population.
(iv) For each individuaK; in the current population select the correspondhdn the trial population. With these
two individuals, do the following:
(a) Create @springU; as follows:

ij =

(2)

Vi if(U(0,1) < C; or j = jrand)
X j otherwise

whereC, € (0, 1) is the crossover probability arjging is a randomly selected index.
(b) Evaluate the fitness af;.
(c) If U; has a better fitness value thanthen replac&; with Uj;.
(v) Repeat steps 3 and 4 until a termination criterion is met.
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Most variations of DE (called schemes) are based ffierdint approaches to creating each of the temporary indi-
viduals, V; (Storn, 1996) (see equation (1)), and hafispring are created (see equation (2)). By convention, schemes
are labelled in the form Dfg/b/c, wherea is the method used to select the target vedias, the number of dier-
ence vectors andis the method used to creatéfgpring. The scheme used in the above algorithm is referred to as
DE/rand1/bin.

4. DynDE

DynDE is a diferential evolution algorithm developed by Mendes and Mohais (2005) to solve dynamic optimiza-
tion problems. The most successful versions of DynDE make use of multiple populations, exclusion and Brownian
individuals to adapt DE to dynamic environments.

4.1. Multiple populations

Typically, a static problem space may contain several peaks or local optima. These peaks not only move around
in a dynamic environment, but also change in height. This implies that it is necessary to track the movements of the
not only best peak found in the problem space, since an entiréreiit peak may become the optimal peak once a
change in the environment occurs. It is thus desirable to keep track of all the peak$e&ive method to achieve
this is to maintain several independent populations of DE individuals, one on each peak. In most experiments, Mendes
and Mohais used 10 populations, each containing 6 to 10 individuals.

4.2. Exclusion

In order to track all the peaks, it is necessary to ensure that all populations converdkerentipeaks. If all
populations converged to the optimum peak it would defeat the purpose of having multiple populations. Mendes and
Mohais used exclusion (Blackwell and Branke, 2004) to prevent populations from converging to the same peak. The
approach works by comparing the best individuals from each population. If the spfgatdce between any two of
these individuals becomes too small, their errors are compared and the entire population of the inferior individual is
randomly reinitialized. A threshold is used to determine if two individuals are too close. This is calculated as follows:

lexcl = il (3)
2pd
whereX is the range of thel dimensions (assuming equal ranges for all dimensions)paadhe number of peaks.
By studying equation (3) it can be seen that the exclusion threshold increases with the increase in the number of
dimensions and decreases if the number of peaks is increased.

4.3. Brownian individuals

Since a change in the environment implies at least some movement of some of the peaks, it is unlikely (even if
the change is small) that all of the populations will still be clustered around the optimum of their respective peaks.
In order to improve relocation of the optimum of the respective peak by the individuals in the sub-populations, the
diversity of each population should be increased. Mendes and Mohais successfully used Brownian individuals. In
every generation a predefined number of the weakest individuals are flagged as Brownian. These individuals are then
replaced by another individual created by adding a small random number sampled from a zero centered Gaussian
distribution to each component of the best individual in the sub-population. A Brownian indivietghn, is thus
created from the best individuapes; using the formula

7brown = —X>best+ ﬁ(O, V) 4)

whereyv is the standard deviation of the Gaussian distributed random number. Mendes and Mohais (Mendes and
Mohais, 2005) showed that the best value ¢ use is 0.2.
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4.4. DE Scheme

Mendes and Mohais (2005) showed that the mfistéive scheme to use when following their approach igieEt2/bin,
in which each temporary individual is created using

V =Kpest+ F - (X1 + X2 — X3 - Xa) (5)

whereX; # X, # X3 # X4. The temporary individuals are thus created from four random individuals and the current
best individual; X pes:

5. Moving Peaks Benchmark

Branke (June 2007) created the Moving Peaks Benchmark (MPB) in order to address the need for a single, adaptable
benchmark that can be used to compare the performance of algorithms aimed at dynamic optimization problems.
It has been used by several researchers (Janson and Middendorf, 2003), (Li et al., 2006), (Parrott and Li, 2004),
(Trojanowski, 2007). The benchmark contains a moving peaks function and performance measures to evaluate the
efficiency of an algorithm. The multi-dimensional problem space of the moving peaks function contains several peaks
of variable height, width and shape. These move around with height and width changing periodically.

The MPB allows the following parameters to be set:

— Number of peaks

Number of dimensions

Maximum and minimum peak width

Maximum and minimum peak height

Change period (the number of function evaluations between successive changes in the environment)
— Change severity (how much the peaks are moved)
— Height severity (standard deviation of changes made to the height of each peak)
— Width severity (standard deviation of changes made to the width of each peak)
— Peak function
— Correlation (between successive movements of a peak)

A static basis functionB(X), can optionally be added to the problem space.

The performance measure suggested by Branke and Schmeck (2002fiBrikesrror. The diline error is defined
as the average of trmirrent errors over the entire run, where the current error is defined as the smallest error found
since the last change in the environment.

6. Competitive Population Evaluation

For most static optimization problems thestiveness of an algorithm is measured by the error at the end of the
run. Although many approaches aim to reduce the run time of optimization algorithms (i.e. to make the algorithm
reach its lowest error value as soon as possible), the error during the course of the run is of secondary concern. In
contrast, optimization in dynamic environments implies that a solution is likely to be required at all times (or at least
just before changes in the environment occur), not just at the termination of the algorithm. In these situations, it is
imperative to find the lowest error value as is possible after changes in the environment have occurred.

The MPB measures an algorithm'fiieiency at finding solutions quickly by calculating the performance of an
optimization algorithm as the average of the error value over the entire run, as opposed to only averaging errors prior
to changes in the environment. An algorithm that finds solutions faster would also be beneficial in situations where
evaluation criteria are only concerned with the error value prior to changes in the environments, since it would be
more robust when the number of function evaluations between changes is reduced.

A dynamic optimization algorithm can thus be improved, not only by reducing the error, but also by making the
algorithm reach its lowest error value (before a change occurs in the environment) in fewer function evaluations.

The above argument is the motivation for a novel approach named Competitive Population Evaluation (CPE). The
primary goal of the new approach is not to decrease the error value found by DynDE, but rather to make the algorithm
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reach the lowest error value in fewer function evaluations.

The basis for the new approach is to allocate function evaluations to populations based on their performance.
The best-performing population is evolved on its own until its performance drops below that of another population.
The new best performing population is then evolved on its own until its performance drops below that of another
population. This allows the location of the highest peak to be discovered early, while the sub-optimum peaks are
located later. This approach thugtdrs from DynDE in that peaks are not located in parallel, but in sequence.

In short, the Competitive Population Evaluation algorithm works as follows:

(i) At the commencement of the run or after a change in the environment occurs, allow the standard DynDE

algorithm to run for two generations (two successive evaluations are needed to evaluate equation (6)).

(i) Calculate the performance val#e (see equation (6)), for each population.

(iii) Evolve only the population with the highest performance value in the next generation.

(iv) Update the performance value of the population that was evolved.

(v) If no change in the environment has occurred, return to step 2.

(vi) Return to step 1 when a change in the environment occurs.
The performance of a population depends on two factors: The current fithess of the best individual in the population
and the amount that the error of the best individual was reduced during the previous evaluation of the population. Let
K be the number of populations arfigt) be the fithess of the best individual in populatioduring generation. The
performance” of populationk after generation is given by:

Pk, 1) = (Afi(t) + 1)(R(t) + 1) (6)
Afi(t) = () - fi(t - 1)

For function maximization problemg(t) is calculated as:

R0 =1(t) —  min [ fo(0)

1..K

and

Re(t) = Ifilt) ~ max {fy(0)

K

.....

for function minimization problems. The best performing population will thus be the population with the highest
product of fitness and improvement. The motivation for the addition of 1 to the first and second term in equation
(6) is to prevent a population being assigned a performance of zero. Without the addition, the least fit population
would always be assigned a performance value of zero and would thus never come under consideration for evaluation.
Similarly, a good performing population that happens not to have shown any improvement during a specific generation,
would also be assigned a performance value of zero and would never be considered for evaluation again. The absolute
values ofAfy(t) andRg(t) are taken to ensure that the performance values are always positive. When a population

is reinitialized due to exclusion (see section 4.2), the fitness of the fittest individual is likely to be lower than before
reinitialization, which would lead ta fi(t) being a relatively large number. The population will be assigned a relatively
large performance value, making it likely that it would be allocated fitness evaluations in the near future.

By competitively choosing the better performing populations to evolve before other populations, the lowest error
value could be reached sooner, thus reducing the average error. This technique has the added advantage that better
performing populations will receive more function evaluations that would otherwise have been wasted on finding the
maximum of the sub-optimal peaks. The overall error value should consequently also be reduced.

An advantage of CPE is that it only utilizes information that is available in normal DynDE, so that no extra function
evaluations are required.

7. Reinitialization Midpoint Check

Section 4.2 explained how DynDE determines when two populations are located on the same peak, which results
in the weaker population being reinitialized. This approach does not take into account the case when two peaks are
located extremely close to each other, i.e. within the exclusion threshold. In these situations, one of the populations
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will be reinitialized, leaving one of the peaks unpopulated. It is proposed that this problem be partially remedied by
determining whether the midpoint between the best individuals in each population constitutes a higher error value
than the best individuals of both populations. If this is the case, it implies that a trough exists between the two
populations and that neither should be reinitialized (see Figure 1, scenario A). This approach will be referred to as the
Reinitialization Midpoint Check (RMC) approach. It is apparent that this strategy will not work in all cases. Scenarios
B and C of Figure 1 depict situations where multiple peaks within the exclusion threshold are not detected by a
midpoint check. Scenario C further constitutes an example of where no point between the two peaks will give a higher
error, thus making it impossible to detect by using any number of intermediate point checks.

This approach is similar, but simpler, thhiti-valley detectiorsuggested by Ursem (2000).

Scenario A Midpoint
Scenario B Midpoint

Scenario C Midpoint

Fig. 1: Midpoint Checking Scenarios

The midpoint check approach provides a method of detecting multiple peaks within the exclusion threshold without
being computationally expensive or using too many function evaluations, since only one point is evaluated.
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8. Combining RMC and CPE

The RMC and CPE algorithms are mutually independent and can thus be combined in a single algorithm. This
algorithm will be referred to as RMCCPE. RMCCPE thus consists of the standard DynDE algorithm with the addition
of a midpoint check before reinitializing populations when they are within the exclusion threshold of each other and
the evaluation of populations based on their performance.

9. Experimental Results
9.1. Experimental Procedure

In the following sections the empirical results comparing the proposed algorithms to the base algorithm, DynDE,
will be presented. The MPB settings corresponding to Scenario 2 (Branke, June 2007) are given in Table 1. In addition,

Table 1: MPB settings.

Setting ‘ Value ‘
Nr of Dimensions 5
Nr of Peaks 10

Max and Min Peak height[30,70]
Max and Min Peak widtf{1.0,12.0

Change period 5000
Change severity 1.0
Height severity 7.0
Width severity 1.0
Peak function Cone
Correlation [0.0,1.0]

the scalability of the algorithms in terms of change severity, change period, number of dimensiorsenedtgieak
function were investigated, by repeating the experiments for all combinations of the selected settings listed in Table
2. Furthermore, theffect of population size was investigated for sub-population size 6 (2 Brownian individuals)

Table 2: MPB settings.
Setting Values

Nr of Dimensions 5,10, 15, 20, 25
Change period {1000, 2000, 3000, 4000, 5000
Change severity 1.0,3.0,5.0

Peak function Cone, Sphere

and 10 (5 Brownian individuals). Figures 2 and 3 visually depict tHEedince between the conical and spherical
peak functions. The most apparenffeience is that, because spherical peaks do not fan out (do not have a constant
gradient) as much as the conical peaks, the absolute minimum on the graph with spherical peaks is much lower than
that of the conical peaks. On the other hand, the steeper slopes on the spherical graph should make the hill climbing
process simpler, but only until a point close to the absolute minimum, where optimization should become harder.

The various combinations of settings resulted in a total of 3@@rint experiments being conducted per algorithm.
Experiments were run for 500 000 function evaluations each. For each experiment the a¥i@rageroor over 50
runs along with the confidence interval is reported. A two-sided Mann-Whitney U test was done for each experiment
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Fig. 2: The Moving Peaks Function using the conical peak function in two dimensions
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Fig. 3: The Moving Peaks Function using the spherical peak function in two dimensions

to see if the results were statistically significantl§felient (within a 95% confidence interval) from the corresponding

DynDE results.

9.2. DynDE Results

Using the MPB settings shown in Table 1, Mendes and Mohais reporteffiime @rror and confidence interval of
1.75+ 0.032 for DynDE with a population size of 6 (2 Brownian individuals) an@4t 0.029 for DynDE with a

population size of 10 with 5 Brownian individuals (Mendes and Mohais, 2005).

The DynDE algorithm was reimplemented for the purposes of this paper, as described in (Mendes and Mohais,
2005). Considerably better results were found when repeating the experiments. For the MPB settings in Table 1, an
offline error of 128 + 0.09 was found for experiments with a population size of 6 and 2 Brownian individuals. Ex-
periments with a population size of 10 and 5 Brownian individuals yieldedi@ineerror of 157 + 0.09. A possible
explanation for this discrepancy could be the fact thatfi@dint random number seed was used or that small imple-
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mentation diferences havefiected the results positively. It will be assumed in this paper that an algorithm constitutes
an improvement over the DynDE algorithm if it yields afflioe error significantly lower than.87 for a population
size of 10 experiment and significantly lower tha@8for a population size of 6 experiment.
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Fig. 4: Ofline error of DynDE using the conical peak function with population size of 6 with change severity 1.0 for
various settings of dimension and change period.
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Fig. 5: Oline error of DynDE using the conical peak function with population size of 6 with change severity 3.0 for
various settings of dimension and change period.

The results into the scalability of DynDE with respect to the various combinations of settings in Table 2 are sum-
marized in Tables 3 and 4. For the sake of brevity, only the results for population size 6 in 5 dimensions are presented.
Full results are available upon request. It was found that in all cases the experiments with a population size of 6 out-
performed experiments with a population size of 10. A graphical representation of the DynDE results on the conical
peak function can be seen in Figures 4, 5, and 6 for change severity values of 1.0, 3.0, and 5.0 respectively. The same
results for the spherical peak function can be seen in Figures 7, 8, and 9. These figures show that similar trends exist
for the conical and spherical peak functions, with tifeet of increasing the dimension being more pronounced for
the spherical peak function. Any change in the MPB settings resulted in a higtiee @rror being given by the
DynDE algorithm. This is to be expected, since all the settings that were investigated do in fact make the problem
harder. For example changes occur more frequently and are more severe. On the whole, DynDE performed better on
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Fig. 6: Oline error of DynDE using the conical peak function with population size of 6 with change severity 5.0 for
various settings of dimension and change period.
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Fig. 7: Ofline error of DynDE using the spherical peak function with population size of 6 with change severity 1.0
for various settings of dimension and change period.

the conical peak function than on the spherical, although lower errors were found for the spherical peak function in
low dimension, low change severity experiments.

Lowering the change period and increasing the change severity had a very detrinffiectabe the DynDE al-
gorithm, especially in the 25 dimensional experiments where fime error for the extreme combination was
10989 + 16.96 on the conical peak function and 839+ 207.21 on the spherical peak function. Given that the
minimum peak height is 30, it would appear that none of the peaks are tracked under these conditions.

It can thus be concluded that DynDE does not scale well to higher dimensions, to more frequent and to more severe
changes in the environment.

9.3. CPE Results

Experiments were conducted to compare the Competitive Population Evaluation algorithm with the standard DynDE
algorithm. The outcomes of the Mann-Whitney U tests comparing the CPE results with those of DynDE are listed
in Tables 3 and 4. It was found that most experiments yielded a statistically signifiG@nedce (i.e. have a Mann-
Whitney U test p-value smaller than 0.05). The general trend offtieeteof varying the MPB setting was the same
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for various settings of dimension and change period.
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Fig. 9: Ofline error of DynDE using the spherical peak function with population size of 6 with change severity 5.0
for various settings of dimension and change period.

for CPE as for DynDE.
CPE vyielded a considerable improvement over normal DynDE for all instances using the conical peak function.

Considering only the population size 6 experiments, the average improvement is 28.44%, 31.16%, 33.77%, 39.61%,
and 42.85% in 5, 10, 15, 20, and 25 dimensions respectively. Figures 10, 11 and 12 graphicly depict the percentage
improvement of CPE over DynDE when using the conical function change frequencies of 1.0, 3.0, and 5.0 respectively.

For the spherical peak function experiments, CPE did not yield a statistically significant improvement over normal
DynDE for all instances. In the low dimensional, low change severity experiments, the results tend not to be statis-
tically significant. In contrast, significant improvements over DynDE were found in higher dimensions and higher
change severity experiments. Considering only the population size 6 experiments, the average improvements are
26.74%, 21.36%, 21.47%, 23.77%, and 23.44% in 5, 10, 15, 20, and 25 dimensions respectively.

Itis encouraging that the mentioned improvements are especially pronounced in the more challenging high dimen-
sional, low change period and high change severity problems. In 25 dimensions with a change period of 1000 and
change severity of 5, an improvement over standard DynDE of 67.25% was found using the conical peak function and
67.68% using the spherical peak function.
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Table 3: Gfline error using conical peak function. Change Severity, Change Period, Percentage Improvement over
DynDE (% Imp) and Mann-Whitney U test result (p-val)

’Change Severit;khange Perioc’Oﬂline Error ‘% Imp ‘p-vaIHChange Severitkhange Perioc*Oﬂline Error ‘% Imp ‘p-val‘

’ DynDE H RMC ‘
1 1000 3.63+0.10 - - 1 1000 3.49+ 0.07 3.88 %| 0.04
1 2000 243+0.1Q - -1 2000 2.29+ 0.07 5.59 %| 0.06
1 3000 1.85£0.09 - -1 3000 1.66+ 0.0610.35 % 0.00
1 4000 1.47£0.09 - -1 4000 1.32+ 0.0710.20 % 0.02
1 5000 1.28+0.09 - -1t 5000 1.14+ 0.0511.08 % 0.02
3 1000 13.60+ 0.9 - - 13 1000 13.19+ 0.89 2.97 %| 0.57
3 2000 6.02+0.1§ - - 13 2000 5.71+ 0.16 5.16 %| 0.01
3 3000 410+0.13 - - 13 3000 4.22+0.14-3.06 %9 0.34
3 4000 3.36+0.13 - - 13 4000 3.17+0.12 5.65 % 0.02
3 5000 2.68+0.12 - -8 5000 2.65+0.13 1.31 %| 0.42
5 1000 29.39+ 2.2 - - |5 1000 28.14+ 2.35 4.25 %] 0.50
5 2000 11.30+0.29 - - |5 2000 10.88+ 0.31 3.71 %| 0.07
5 3000 7.74+0.28 - - |5 3000 7.30+ 0.19 5.68 %| 0.01
5 4000 577+0.18 - - |5 4000 5.76+ 0.17 0.09 %| 0.85
5 5000 476+ 0.22 - - |5 5000 4.77+0.17-0.26 % 0.65
CPE RMCCPE
1 1000 2.85+ 0.0921.41 %0.00(|1 1000 2.75+ 0.0724.31 % 0.00
1 2000 1.87+0.0922.99 %0.00(|1 2000 1.72+ 0.0829.28 % 0.00
1 3000 1.49+ 0.12§19.48 %0.00(|1 3000 1.31+ 0.0828.97 % 0.00
1 4000 1.20+ 0.0818.30 %0.00||1 4000 1.16+ 0.0720.95 % 0.00
1 5000 1.09+ 0.1215.31 %0.00||1 5000 0.92+ 0.0728.37 % 0.00
3 1000 7.64+0.2043.78 % 0.00(|3 1000 7.32+0.1446.17 %0.00
3 2000 4.27+0.1329.15 %0.00||3 2000 4.13+0.1231.41 % 0.00
3 3000 3.06+ 0.1225.26 %0.00||3 3000 2.98+0.1227.18 % 0.00
3 4000 2.46+ 0.1326.80 % 0.00||3 4000 2.39+ 0.1128.96 % 0.00
3 5000 2.01+ 0.1025.13 %0.00||3 5000 1.98+ 0.1026.22 % 0.00
5 1000 14.99+ 0.5448.99 %0.00||5 1000 14.81+ 0.6049.61 % 0.00
5 2000 7.46+ 0.2134.00 % 0.00(|5 2000 7.19+ 0.2136.35 % 0.00
5 3000 5.13+ 0.2133.76 % 0.00(|5 3000 4.96+ 0.1635.97 % 0.00
5 4000 4.10+ 0.1628.94 %0.00||5 4000 3.92+0.1631.96 % 0.00
5 5000 3.18+ 0.1133.22 % 0.00(|5 5000 3.26+ 0.1831.46 % 0.00

9.4. RMC Results

The results of experiments conducted to investigatefiieetiveness of the RMC approach are listed in Tables 3 and
4. The outcomes of the Mann-Whitney U tests comparing the RMC results with those of DynDE indicate that, on the
whole, only experiments in 5 dimensions yield a statistically significantiigidint result from DynDE. Furthermore,
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Table 4: Glline error using spherical peak function. Change Severity, Change Period, Percentage Improvement over
DynDE (% Imp) and Mann-Whitney U test result (p-val)

’Change Severitkhange Perioc*Oﬂline Error ‘% Imp ‘p-vaIHChange Severit)PChange Perioc*Oﬂ-’line Error‘ % Imp ‘p-val‘

’ DynDE H RMC ‘
1 1000 1.66+0.14 - - |11 1000 1.30+ 0.0721.46 % 0.00
1 2000 1.20+0.10 - - |1 2000 1.00+ 0.08 16.87 %4 0.01
1 3000 1.03£0.11 - - |1 3000 0.86+ 0.0716.30 99 0.02
1 4000 1.04£0.09 - - |1 4000 0.76+ 0.0727.27 % 0.00
1 5000 0.91+0.10 - - |1 5000 0.74+ 0.0718.75 9% 0.01
3 1000 9.66+1.03 - - |13 1000 9.58+1.00 0.84 %|0.80
3 2000 3.27+£0.1Q - - |13 2000 2.89+ 0.0511.75 % 0.00
3 3000 244+0.1Q9 - - |13 3000 2.15+0.0611.83 % 0.00
3 4000 1.91+0.079 - -3 4000 1.76+ 0.07 7.71 % 0.00
3 5000 1.70+0.08 - - |13 5000 1.53+ 0.0710.12 % 0.00
5 1000 54.49+ 11.024 - - |5 1000 65.70+ 11.65-20.58 % 0.59
5 2000 9.29+0.1§ - - |5 2000 8.93+0.18 3.81 % | 0.00
5 3000 6.13+0.11 - - |5 3000 5.84+ 0.0 4.69 % | 0.00
5 4000 4.79+0.10 - - |5 4000 4.56+ 0.07 4.67 %| 0.00
5 5000 3.95+ 0.0 - - |5 5000 3.83+0.09 3.24 % | 0.00
CPE RMCCPE
1 1000 1.31+0.1021.29 % 0.00|[1 1000 1.12+ 0.0432.37 9% 0.00
1 2000 1.06+ 0.1011.66 % 0.05/[1 2000 0.85=+ 0.08 29.16 % 0.00
1 3000 0.90+ 0.0812.14 % 0.15||1 3000 0.74+ 0.07 28.24 % 0.00
1 4000 0.95+ 0.10 9.13 %| 0.10||1 4000 0.75+ 0.08 28.34 % 0.00
1 5000 0.94+0.10-3.24 % 0.61||1 5000 0.66+ 0.08 26.92 % 0.00
3 1000 4.16+ 0.1056.87 % 0.00||3 1000 3.61+0.0862.63 % 0.00
3 2000 2.42+0.0925.95 % 0.00(3 2000 2.10+ 0.06 35.71 % 0.00
3 3000 1.85+0.0924.18 % 0.00|(3 3000 1.59+ 0.0734.68 %4 0.00
3 4000 1.55+ 0.0918.58 % 0.00|3 4000 1.29+ 0.0632.25 % 0.00
3 5000 1.34+ 0.0821.04 % 0.00||3 5000 1.15+ 0.0732.33 %4 0.00
5 1000 15.14+ 1.21§72.21 % 0.00(|5 1000 14.92+ 1.1572.62 % 0.00
5 2000 5.89+ 0.1136.61 % 0.00(|5 2000 5.54+ 0.06 40.30 % 0.00
5 3000 4.12+ 0.0732.69 % 0.00||5 3000 3.95+ 0.06 35.49 % 0.00
5 4000 3.22+ 0.0732.83 % 0.00(|5 4000 3.08+ 0.06 35.65 % 0.00
5 5000 2.80+ 0.0729.22 % 0.00(|5 5000 2.61+ 0.06 34.03 % 0.00

only some of the 5 dimensional results are statistically significant, but they show a considerable improvement over
DynDE. Improvements are more pronounced when using the spherical peak function; an average improvement of
20.13% was found over DynDE for 5 dimensional experiments with change severity of 1 and population size of 6.
For all high dimensional experiments almost none of the results are statistically significant. A possible explanation
for this fact could be that peaks are less likely to appear within the exclusion threshold of each other in higher
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Fig. 10: Percentage improvement of CPE over DynDE using the conical peak function with population size of 6 with
change severity 1.0 for various settings of dimension and change period.
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Fig. 11: Percentage improvement of CPE over DynDE using the conical peak function with population size of 6 with
change severity 3.0 for various settings of dimension and change period.

dimensions, or that more cases, as depicted in Figure 1, scenarios B and C, occur. Encouragingly, only 2 of the 300
experiments yielded a result statistically significantly worse than DynDE. As with standard DynDE, the population
size 6 experiments outperformed the population size 10 experiments.

Figure 13 graphically depicts the percentage improvement of RMC over DynDE in 5 dimensions for the conical
peak function.

9.5. RMCCPE Results

The results for the combined RMCCPE approach are summarized in Tables 3 to 4. Using a Mann-Whitney U test,
it was found that all conical peak function results and most spherical peak function results were statistically sig-
nificantly different from DynDE. In all cases, RMCCPE performed better than DynDE. Once again, the population
size 6 experiments outperformed the population size 10 experiments. Figures 14, 15, and 16 graphicly depict the
percentage improvement of RMCCPE over DynDE when using the conical function change frequencies of 1.0, 3.0,
and 5.0 respectively. Considering only the population size 6 experiments on the conical peak function, the average
improvements over DynDE are 31.81%, 31.21%, 33.31%, 40.51%, and 42.97% in 5, 10, 15, 20, and 25 dimensions
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Fig. 12: Percentage improvement of CPE over DynDE using the conical peak function with population size of 6 with
change severity 5.0 for various settings of dimension and change period.
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Fig. 13: Percentage improvement over DynDE of the Midpoint Check approach in 5 dimensions for various values for
change period and change severity using a population size of 6 on the conical peak function.

respectively. For the population size 6 experiments, the spherical peak function resulted in improvements of 37.38%,
21.42%, 20.56%, 24.85%, and 25.31% in 5, 10, 15, 20, and 25 dimensions respectively.

In order to determine whether RMCCPE constitutes an improvement over its sub-components RMC and CPE,
Mann-Whitney U tests were conducted comparing RMC to RMCCPE and CPE to RMCCPE. The results are omitted
for the sake of brevity. It was found that in virtually all cases RMCCPE constituted a statistically significant improve-
ment over RMC. This result is not surprising, considering that CPE generally outperformed RMC.

In the comparison between CPE and RMCCPE it was found that statistically significant improvements of RMCCPE
over CPE were isolated mainly to 5 dimensional experiments. This is consistent with the fact that the improvement of
RMC over DynDE was also mainly in the low dimensional experiments. In the 300 experiments investigated it was
found that RMCCPE vyielded a statistically significant improvement over CPE in 41 of the cases, while CPE was only
statistically significantly better than RMCCPE in 5 of the cases.
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Fig. 14: Percentage improvement of RMCCPE over DynDE using the conical peak function with population size of 6
with change severity 1.0 for various settings of dimension and change period.
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Fig. 15: Percentage improvement of RMCCPE over DynDE using the conical peak function with population size of 6
with change severity 3.0 for various settings of dimension and change period.
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Fig. 16: Percentage improvement of RMCCPE over DynDE using the conical peak function with population size of 6
with change severity 5.0 for various settings of dimension and change period.
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10. Comparison with other approaches

It has been shown in this paper that using RMC and CPE yielded better results than DynDE alone. In this section
the combined RMCCPE algorithm will be compared to other approaches in the literature.

Using the MPB benchmark, the most successful algorithm in the literature is the work of Moser and Hendtlass
(2007), called Multi-Phase Multi-Individual Extremal Optimisation (MMEOQ). Using this algorithm to solve the MPB
with the settings in Table 1 resulted in afilime error of 066 + 0.20. This result is superior to the result found using
RMCCPE which was @2+0.07. However, Moser and Hendtlass point out that MMEQ is not expected to be very scal-
able with regard to increasing the number of dimensions. Through personal communication with Moser (2007), it was
established that MMEO yields atfiftine error of 267 + 0.17 in 10 dimensions and artfiine error of 509+ 0.36 was
found in 15 dimensions. In the same experiments, RMCCPE resulted ifiiae error of 270+ 0.23 and 455+ 0.29,
respectively. RMCCPE is thus on a par with MMEO in 10 dimensions and outperforms MMEO in 15 dimensions.

After MMEO, the best reported results using the MPB are those of Blackwell and Branke (2006). This Particle
Swarm based approach incorporates many of the same principles as DynDE, for example multiple populations and
exclusion. An dtline error of 175+ 0.06 was reported for the MPB settings in Table 1. RMCCPE producedb2%/
lower ofline error. For the high change severity of 3 experiments, Blackwell and Branke foundiaa error of
3.00+ 0.06 as opposed to the RMCCPE result &8+ 0.10; and for the change severity of 5 experiments, Blackwell
and Branke found anfBiine error of 424+ 0.10, as opposed to the RMCCPE result &f&+ 0.18. In 10 dimensional
experiments Blackwell and Branke found affiine error of 417 + 0.15 while using RMCCPE resulted in affilme
error of 270+ 0.23 (a result that is 339% better).

The 2009 Congress on Evolutionary Computation (CEC2009) ran a dynamic optimization competition. This com-
petition used the Generalized Benchmark Generator (GBG) of Li et al. (2008), (Li and Yang, 2008) to compare the
results of competing algorithms. GBG consists of six test functions which are optimized foffenedi change types.

A seventh change type wherein the dimension of the functions is changed is included in the benchmark. The evalua-
tion criteria used by the GBG is the average best error just before a change occurs in the environment and an overall
performance mark based on the relative best fitness sampled at specific intervals.

The winning algorithm of this competition w§BE, developed by Brest et al. (2009DE was implemented by the
present authors in order to compare its performance to the algorithms discussed in this paper.

RMCCPE was run on the GBG with the settings recommended for the CEC2009 competition (the dynamic di-
mension change type experiments were omitted, since the algorithms presented here have not been adapted for those
types of problems). RMCCPE yielded results inferiof&. Since the recommended change period of the GBG is
relatively high (100 000 function evaluations compared to 5000 which is standardly used by the MPB), the relative
scalability ofiDE, DynDE and RMCCPE with respect to change period, was investigated. Table 5 lists the results of
this investigation. The number of test cases for which each algorithm performed the best out of the 42 is listed per
change period along with the average error over all the problems and the overall performance mark (as calculated
without the dynamic dimension problems). It can be seen that, \jibiteis considerably superior in large change
period experiments, it is outperformed by DynDE and RMCCPE in the small change period experiments.

Full results ofDE and RMCCPE on the GBG with a change period of 5000 can be seen in Tables 6 and 7 respec-
tively. jDE performed better than RMCCPE on only one of the test cases, function 3 with change type 5.

jDE was run on the MPB for the various settings listed in Table 2 for the cone peak function. The results of the 5
dimensional experiments can be seen in Table 8.

Comparing these results to those found using RMCCPE in Table 3 shows that RMCCPE performed bg& than
on the MPB.

It can thus be seen that the RMCCPE approach presented here compares favourably with some of the state of the
art approaches in the literature.

11. Discussion and Conclusions

CPE is a novel extension to DynDE that yields significantly better results, especially for high change frequency and
high change severity problems. Noteworthy improvements were also found for the more complicated high dimensional
problems.
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Table 5: jDE compared to DynDE and RMCCPE foftdient values of Change PeriodF)
Change PeriodMeasure JDE|DynDE|RMCCPE

5000 Number best 1 13 28
Average errg653.00 453.33  408.43
Performancg 10.18 13.58 14.99

10000 Number best 11 15| 16
Average errgb08.56 357.61  348.03
Performancg 17.43 16.77 17.15

20000 Number best 26 7 9
Average erro818.40 303.05 303.31
Performance 30.08 19.66 19.39
40000 Number best 33 8 1
Average errgi76.38 268.03  273.37
Performance 43.33 22.68 21.96

100000 Number best 34 8 0
Average error 98.871 238.03  243.19
Performancg 59.83 27.56 26.51

RMC resulted in an improvement in only some of the tested scenarios and only in the low dimensional cases. In
comparison with CPE, the improvement yielded by RMC was also much smaller. Despite this, RMC is still considered
to be a worthwhile addition to DynDE, because it is relatively simple to implement and, with the exception of only
two cases, none of the statistically significant results indicated that it makes the standard DynDE algorithm worse.

On average, the combination of RMC and CPE is in several cases more successful than each of the approaches on
its own. Experiments comparing the performance of RMCCPE to normal DynDE indicated that large improvements
were in problems with high change frequency and severity, making RMCCPE a more viable option.

Comparison with other approaches showed that although RMCCPE is not the best algorithm for large change
period problems, RMCCPE outperforms most other algorithms in the literature on the rfiareltdimall change
period problems.

RMCCPE does not depend on any intrinsic DE behaviour. Future work could include studyitigthe®applying
RMCCPE to other multi-population optimization algorithms for dynamic environments.
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Table 6: jDE results on GBG with change period of 5000

ProblemPeaksErrors Ty T2 T3 Ta Ts Ts

1 10 |Avg_best 154 254 197 204 6.4 3.25
Avg.worsf 57.07 73.60 61.70 86.53 69.63 88.36
Avg_mean 21.74 33.73 26.45 4458 34.95 54.41]
STD 457 3.1 538 525 340 3.3]
50 |Avg_best 214 400 294 239 6.1 4.53
Avg-worsf 59.30 69.80 63.24 86.64 64.24 87.62
Avg_mean 24.97 32.67 28.19 4589 29.21 53.52
STD 294 274 385 418 194 2.99

2 Avg_best | 19.24 96.01] 93.27 10.95 148.55 25.94
Avg_worst 367.85 595.92 594.00 673.75 568.52 872.35
Avg_mearn 137.07 422.64 433.87 270.64 424.51 434.17
STD 34.77 38.56 21.57 31.06 15.89 27.74

3 Avg_best | 481.20 769.86 764.85 583.61 796.10 621.76
Avg_wors{1011.811353.861333.8(1744.391226.6(2065.57
Avg_mearn 837.501142.6(01111.751038.421059.471222.77
STD 34.89 41.74 22.83 43.23 41.21 49.99

4 Avg_best| 21.127 955Q 96.41 16.48 258.44 26.69
Avg_worst 450.37 681.08 659.30 751.09 632.53 911.72
Avg_mean 222.74 514.47 498.62 335.64 499.27 478.13
STD 35.64 16.74 10.61 30.88 25.87 27.14

5 Avg_best | 109.76 198.41 175.44 19.21 274.70 86.3]
Avg_worsi1730.241940.881964.5(01945.491906.542056.61
Avg_meanl1171.461434.3%1402.921080.191337.721335.9¢
STD 176.29 62.37 74.37 97.01 71.81 120.00

6 Avg_best | 43.77 264.16 199.72 24.46 315.63 113.6]
Avg_worst 656.361107.511148.871097.8(1159.241476.75
Avg_mearn 356.93 853.89 878.82 595.29 890.16 870.97
STD 82.87 28.44 25.00 76.97 33.47 59.23
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Table 7: RMCCPE results on GBG with change period of 5000
ProblemPeaksErrors Ty To Ts Ta Ts Te
1 10 |Avgbest| 4.09 279 229 464 49§ 4.4Q
Avgwors{ 31.2§ 42.6§ 41.0§ 54.22 3855 61.04
Avg.mean 11.8§ 14.3§ 1557 25.11 15.9§ 29.21
STD 095 119 502 217 3.0 1.31
50 |Avgbest| 4.51 267 275 433 4.02 4.12
Avg.wors{ 39.07 36.7Q 37.13 54.7§ 33.97 60.89
Avg.mean 15.69 14.99 17.21 26.10 14.03 30.72
STD 157 174 461] 158 09§ 1.95
2 Avg best| 46.17 94.61 92.19 48.4Q 163.9§ 53.3(Q
Avg.wors{ 172.01 457.32 464.76 267.19 467.40 448.19
Avg_mear) 96.93 272.16 294.96 130.22 349.23 197.22
STD 5.60 29.60 16.93 16.58 9.83 25.61

3 Avg_best | 654.92 929.17 922.50 700.58 907.03 752.48
Avg-wors{1091.191301.191289.141693.591294.8(1995.49
Avg_mean 825.861106.2(01086.991031.941078.781206.8(
STD 31.8Q0 12.06 11.23 21.29 35.04 40.59

4 Avg_best | 60.19 115.70 129.11 47.28 199.43 70.2]
Avg_worst 212.03 570.32 563.09 319.83 555.09 560.89
Avg_mearn 118.82 369.13 379.98 148.92 440.37 247.82
STD 6.90 37.49 17.29 14.51 12.65 24.96
5 Avg_best | 141.32 184.94 185.79 132.78 229.91 165.95
Avg_worst 446.09 577.361726.0¢ 703.611868.122051.77
Avg_mearn 289.50 386.09 467.87 302.53 547.07 520.73
STD 18.46 14.03 57.23 20.98 72.83 67.9]

6 Avg_best | 72.0Q 116.48 119.46 73.93 163.43 100.28
Avg_worst 271.22 906.921029.84 751.811068.211295.35
Avg_mean 146.88 432.05 643.52 239.23 731.73 498.64
STD 16.33 65.11 67.8Q 71.17 50.67 98.75

Table 8: |DE diline error using conical peak function forfidirent values of Change Severity and Change Period
’Change Se\*Change Perioc’Oﬂiine Error HChange Se\*Change Perioc’Oﬂiine Error HChange Se\*Change PeriodOfﬂine Error

1 1000 13.75+ 0.86 3 1000 19.99+ 0.68 5 1000 24.78+ 0.65
1 2000 8.97+ 0.44 3 2000 15.83+ 0.68 5 2000 19.28+ 0.68
1 3000 7.06+ 0.43 3 3000 13.15+ 0.48 5 3000 16.87+ 0.64
1 4000 6.79+ 0.49 3 4000 11.22+ 0.49 5 4000 14.50+ 0.58
1 5000 5.88+ 0.31) 3 5000 10.00+ 0.37 5 5000 12.74+ 0.52
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