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Abstract

This paper presents a hybrid of a general heuristic framework and a general
purpose mixed-integer programming (MIP) solver. The framework is based
on local search and an adaptive procedure which chooses between a set of
large neighborhoods to be searched. A mixed integer programming solver
and its built-in feasibility heuristics is used to search a neighborhood for
improving solutions. The general reoptimization approach used for repairing
solutions is specifically suited for combinatorial problems where it may be
hard to otherwise design suitable repair neighborhoods. The hybrid heuristic
framework is applied to the multi-item capacitated lot sizing problem with
setup times, where experiments have been conducted on a series of instances
from the literature and a newly generated extension of these. On average the
presented heuristic outperforms the best heuristics from the literature, and
the upper bounds found by the commercial MIP solver ILOG CPLEX using
state-of-the-art MIP formulations. Furthermore, we improve the best known
solutions on 60 out of 100 and improve the lower bound on all 100 instances
from the literature.
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1. Introduction

The adaptive large neighborhood search (ALNS) heuristic is a concept
introduced by Røpke & Pisinger (2006). The ALNS heuristic is a large neigh-
borhood improvement heuristic that operates on top of a construction heuris-
tic. The improvement is done using a local search method, e.g., simulated
annealing or tabu search, choosing between different neighborhoods. In each
iteration of the search a destroy neighborhood is chosen to destroy the cur-
rent solution, and a repair neighborhood is chosen to repair the solution. The
neighborhoods are weighted according to their success and weights are ad-
justed as the ALNS heuristic progresses. Destroy and repair neighborhoods
are normally assumed to be searched by fast heuristics.

The main motivation for extending the ALNS heuristic to a hybrid version
is that not all problem types are equally well suited for defining neighbor-
hoods. Especially the construction and the exploration of repair neighbor-
hoods can be a challenge, both with respect to finding a meaningful repair
operation and testing feasibility of such an operation. To address this prob-
lem, we propose to use a mixed integer programming (MIP) solver in the
repair phase of the ALNS heuristic. The idea is to solve a restricted sub-
problem that is based on a partial solution where variables are fixed (or
bounded). The process of constructing a subproblem, and the following re-
optimization of the subproblem with the use of a MIP solver, can in the
context of an ALNS heuristic be seen as the application of a destroy and a
repair neighborhood. As such the hybrid ALNS can be viewed as a special-
ization of the ALNS framework which simplifies the task of defining repair
neighborhoods.

The reoptimization of the subproblems done in the repair neighborhoods
relies heavily on primal heuristics in the MIP solver to produce good incum-
bent solutions since it may be too cumbersome to solve the subproblem to
optimality. Heuristics found in modern MIP solvers include the local branch-
ing heuristic by Fischetti & Lodi (2003), the feasibility pump introduced by
Fischetti et al. (2005) and refined by Bertacco et al. (2007); Achterberg &
Berthold (2007), and the relaxation induced neighborhood search by Danna
et al. (2005). Naturally such MIP heuristics are constructed in such a way
that they can be applied directly to a problem without taking into account
special characteristics. Also, the MIP heuristics are limited in the sense that
they are only applied within the branch-and-bound tree and they are in-
duced from the current fractional solution. The hybrid ALNS works with
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different neighborhoods, outside the scope of a branch-and-bound tree, and
takes historical information into account.

The ALNS framework introduced by Røpke & Pisinger (2006) has grown
out of the large neighborhood search framework by Shaw (1998). The heuris-
tic has several similarities with variable neighborhood search, see e.g., Mlade-
nović & Hansen (1997), and hyper-heuristics, see e.g., Burke et al. (2003).
However, there is no adaptiveness built into the basic idea of the variable
neighborhood search. This approach mainly relies on the diversity of the
neighborhoods being used. The hyper-heuristic approach operates on sim-
pler low-level heuristics whereas the ALNS heuristic operates on neighbor-
hoods. Furthermore, to make the search adaptive, an evaluation function
is used to calculate a score for each low-level heuristic. This score is used
in a roulette-wheel selection mechanism to choose a neighborhood for the
next iteration. ALNS heuristics have been implemented for vehicle routing
problems with great success, see Røpke & Pisinger (2006); Pisinger & Røpke
(2007). Examples of an application of the framework outside a routing prob-
lem context are few: Cordeau et al. (2010) schedule technicians and tasks in a
telecommunications company and Muller (2009) presents an ALNS heuristic
for the resource-constrained project scheduling problem. For a recent survey
on large neighborhood search and the ALNS framework we refer to Pisinger
& Røpke (2010).

The lot sizing problem (LSP) with setup times and setup costs can be
defined as follows: Given one resource, schedule the production of a set of
items over a given number of time periods such that all demands of items
are met, and such that the capacity of the resource is not exceeded. The
production of an item and each setup of production consumes capacity on
the resource and has a cost. The difference between setup times and setup
costs, is that setup times consume an amount of capacity on the resource,
while setup costs are an extra cost incurred in the objective function. The
LSP with setup times and setup costs is NP-hard, see e.g., Pochet & Wolsey
(2006). Maes et al. (1991) show that the problem remains NP-hard when
no setup costs are present (in fact just finding a feasible solution is NP-
hard). Heuristics for the LSP with setup times and setup costs include the
Lagrangian relaxation based heuristic of Trigeiro et al. (1989), the variable
neighborhood search heuristic of Hindi et al. (2003), and the cross entropy-
Lagrangian hybrid heuristic of Caserta & Rico (2009). Gopalakrishnan et al.
(2001) present a tabu search heuristic for a variant of the LSP with setup
times and setup costs, where setups can carry over from one time period to
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the next.
In the multi-period carry-over variant Sahling et al. (2009) present a fix-

and-optimize heuristic that repeatedly solves a series of subproblems with
a MIP solver. The approach is somewhat similar to the hybrid method
presented in this paper although it has no adaptiveness or randomness built-
in, instead Sahling et al. (2009) consider a large number of predetermined
subproblems and optimize over all of them. For some comparisons see for in-
stance Jans & Degraeve (2007) or Buschkühl et al. (2010). Exact approaches
for the LSP with setup times and setup costs include branch-and-cut algo-
rithms by Belvaux & Wolsey (2000); Wolsey (2002); Miller et al. (2000) and
a branch-and-price algorithm by Degraeve & Jans (2007). The good perfor-
mance of the branch-and-cut algorithms suggest that using a MIP solver to
solve restricted subproblems of the LSP with setup times and setup costs can
be done in reasonable time.

A recent study by Sural et al. (2009) shows that the standard bench-
mark instances of Trigeiro et al. (1989) are considerably harder when setup
costs are removed. Furthermore, Sural et al. (2009) consider an extension of
the standard (heterogeneous) instances denoted the homogeneous instances
where all holding costs are equal. Their experiments showed that the homo-
geneous instances have even larger integrality gaps than the heterogeneous
instances. It is thus of interest to develop heuristics for the case with setup
times and no setup costs, as considered in the following. Moreover, the
problem appears frequently in the industry, where different tools are used to
produce the items: The tools are a one-off investment so changes of tools
only involve a setup time. Papers relating to the LSP with setup times and
no setup costs include the MIP based heuristic of Denizel & Süral (2006),
and the Lagrangian heuristic of Sural et al. (2009). In the following we will
refer to the LSP with setup times and no setup costs as the LSPST.

The contribution of this paper is an ALNS heuristic which combines the
speed and flexibility of modern MIP solvers with the diversity of the ALNS
heuristic, creating a “hybrid” approach. The repair neighborhoods employ
the MIP solver in a generic fashion and neighborhoods are thus applicable to
a large variety of problems. An evaluation of the hybrid ALNS heuristic is
applied to the LSPST on a set of instances found in the literature. The ALNS
heuristic outperforms ILOG CPLEX (applied to two state-of-the-art MIP
formulations) and the current best heuristic of Sural et al. (2009) both with
respect to the quality of solutions and lower bounds. During the experiments
we found 60 new best upper bounds (for the 100 instances also considered
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by Sural et al. (2009)), and improved all lower bounds. This indicates the
usefulness of the hybrid ALNS approach.

The paper is organized as follows: Section 2 gives an outline of the ALNS
framework and describes the hybrid variant proposed in this paper, Section 3
presents an application of the hybrid ALNS heuristic to the LSPST, and
Section 4 contains the experimental results performed on the instances of
Sural et al. (2009) which is an extension of the instances of Trigeiro et al.
(1989), and on a new set of larger instances. Section 5 concludes the paper
and suggests new directions for future research.

2. A hybrid ALNS heuristic

We begin with an outline of the ALNS framework as described by Pisinger
& Røpke (2007) for a combinatorial problem min{f(x) | x ∈ X}. The
framework is divided into three parts, i) a master local search framework, ii)
a set of large neighborhoods that either destroy a solution or repair a partial
solution, and iii) a procedure for choosing neighborhoods which adapts to the
considered instance based on past performance. Following this, we present
the hybrid ALNS algorithm.

At the top level (also denoted master level) any local search heuristic can
be applied, e.g., simulated annealing, tabu search, guided local search, or
GRASP (greedy randomized adaptive search procedure). A neighborhood
of a solution is a set of solutions obtained by performing some operation
on the original solution. In large neighborhoods these operations involve
changing several settings in the solution at once, leading to a neighborhood
of potentially exponential size. Roulette wheel selection is used for choosing
neighborhoods, where the weight of a neighborhood is based on historical
success. Hence, successful neighborhoods have a higher probability to be
used as time passes, although all neighborhoods have a small chance of being
chosen to ensure diversity.

The ALNS framework can be described as follows: Given a starting solu-
tion, the heuristic iteratively tries to improve it by exploring various neigh-
borhoods. Each neighborhood operates on a set of elements, e.g. variables in
a MIP-model, customers in a transportation problem, or items in a lot-sizing
problem. The set of neighborhoods is divided into destroy neighborhoods N−

and repair neighborhoods N+. Given a current solution x a destroy neigh-
borhood n− ∈ N− performs an operation on x, stores the removed elements
in an item bank B and leaves a partial solution x. A repair neighborhood
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inserts elements from the item bank into x creating a new solution x′. In
the case of the hybrid ALNS heuristic presented in this paper, the repair
neighborhoods make use of a MIP solver. A roulette wheel for each of the
sets N− and N+ is used in each iteration to choose which destroy and which
repair neighborhood should be used. This is based on a weight π for each
neighborhood that is initialized at the beginning according to the quality of
the neighborhood (this is a user defined consideration to be made a priori).
During the local search the weights are updated according to the quality of
the solutions produced with the given neighborhoods. The motivation be-
hind this is, that not all neighborhoods perform equally well on all problem
instances – hence the weights of the neighborhoods adapt to the instance
during the execution of the algorithm and hopefully produce better solutions
overall.

As mentioned above, the weights of the neighborhoods are updated ac-
cording to how successful a neighborhood is in obtaining better and new
solutions. In the paper by Pisinger & Røpke (2007) the weights are updated
as follows: the course of the algorithm is divided into time segments (e.g.
number of iterations). In each time segment t, two scores are maintained for
each neighborhood i: an observed weight πi,t records the actual performance
of neighborhood i in each iteration of the segment, while a smoothened weight
πi,t is calculated at the end of the segment on the basis of πi,t, the number
of times ai,t neighborhood i has been chosen in time segment t, and previous
values of πi,t. It is the smoothed weight which is used in the roulette wheel
for the subsequent time segment. A reaction factor r controls how much the
roulette weight depends on score in the most recent time segment t. The
smoothed weight is updated as follows:

πi,t+1 = r
πi,t

ai,t

+ (1− r)πi,t.

A low reaction factor keeps the weight at about the same level during the
algorithm. A neighborhood i has the probability:

pt(i) =
πi,t∑

j∈N πj,t

of being chosen in time segment t.
In Figure 1, the pseudo-code is given for the ALNS framework. The

criteria for accepting a new solution in line 5 depends on the choice of local
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ALNS

1 x is an initial solution; set x∗ := x
2 repeat
3 Choose n− ∈ N− and a n+ ∈ N+ based on π
4 Generate solution x′ based on x, n−, and n+

5 if x′ is accepted
6 then x := x′

7 if x′ < x∗

8 then x∗ := x′

9 Update π for N− and N+

10 until stop criterion is met
11 return x∗

Figure 1: Pseudo-code overview of the ALNS framework.

search framework and the score update on line 9 can be performed using
different strategies. The choices made for the hybrid ALNS heuristic will be
described in the following sections.

The basic idea behind the proposed hybrid ALNS heuristic is, that instead
of designing special purpose repair neighborhoods, which may not always be
straight forward, we use a MIP solver in order to repair (or reoptimize) a
solution. Each destroy neighborhood selects a number of variables from the
MIP model based on the current solution. These variables are “free” in the
sense that no additional constraints are imposed on them in the subproblem
constructed by the chosen repair neighborhood. Depending on the repair
neighborhood the remaining variables of the subproblem are either fixed or
bounded based on their values in the current solution. Thus the MIP based
repair neighborhood will consequently search a neighborhood around the
current solution. Using a MIP solver as a repair neighborhood provides an
easy tool to calculate lower bounds during the search. We propose that, when
an improved solution is found, the root node of the MIP is resolved with all
variables freed, and the current solution as an initial upper bound. For
modern MIP solvers an initial upper bound is used for both pre-processing
and reduced cost fixing during the optimization. Hence, a good initial upper
bound may yield improved lower bounds compared to solving the root node
with no (or a bad) initial solution. This way, the ALNS heuristic can provide
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valid lower bounds and an estimation of the solution quality based on the
integrality gap.

3. An application of ALNS to the LSPST

In this section we present an application of the hybrid ALNS heuristic
to the LSPST. First, a description of the “standard” mathematical model
is given, followed by a description of a transportation reformulation. We
then turn our attention to the hybrid ALNS heuristic and present the mas-
ter level local search procedure, followed by a description of an adjusted
weight calculation method used in the adaptive procedure. A description of
the neighborhoods employed is given, and finally the parameter values are
presented.

3.1. Problem description

Standard formulation. This section briefly presents the “standard” mathe-
matical formulation (see e.g., Belvaux & Wolsey (2000)) of the LSPST. Let
I = {1, . . . , n} be the set of items and T = {1, . . . ,m} be the set of time
periods. The data set is given as follows: hi ≥ 0 is the unit inventory cost
of item i, di

t ≥ 0 is the demand of item i at time t, αi
t ≥ 0 is the capacity

used for producing item i at time t, βi
t ≥ 0 is the capacity used for setting

up the production of item i at time t, Ct ≥ 0 is the capacity of the resource
at time t, and M is a sufficiently large constant. The variables are give as
follows: si

t is the number of units of item i in stock at the end of time t, xi
t

is the number of units of production of item i at time t, and yi
t indicates if

a setup for production of item i at time t has been done. The y-variables
are binary, while the remaining variables are positive and continuous. The
standard mathematical (STD) formulation for the LSPST is:

min
∑
i∈I

(∑
t∈T

hisi
t

)
(1)

s.t. si
t−1 + xi

t = di
t + si

t t ∈ T, i ∈ I (2)

xi
t ≤Myi

t t ∈ T, i ∈ I (3)∑
i∈I

(
αi

tx
i
t + βi

ty
i
t

)
≤ Ct t ∈ T (4)

si
t, x

i
t ≥ 0, yi

t ∈ {0, 1} t ∈ T, i ∈ I (5)
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The objective (1) is to minimize the overall holding cost. Constraints (2)
ensure flow conservation of each item. That is, items in stock plus the items
produced in a time period must equal the number of items demanded in this
time period plus the number of items in stock after this time period. Con-
straints (3) ensure that production of an item can only occur if the resource
is set up to produce that item. Constraints (4) guarantee that the production
and setup capacity usages cannot exceed the resource capacity. Finally, the
domains of the variables are specified by constraints (5).

Transportation reformulation. In the paper by Denizel & Süral (2006) three
different strong reformulations of LSPST are examined. One of these, the
transportation problem reformulation, seems to perform the best and is also
the formulation employed for the heuristic presented by Sural et al. (2009)
(currently the best heuristic for the problem). We will examine both the
standard formulation and the strong transportation reformulation when com-
paring the hybrid ALNS heuristic with ILOG CPLEX. Let zi

tr ≥ 0 be the
quantity produced in period t ∈ T to satisfy the demand of item i ∈ I in
period r ∈ T , where r ≥ t. The remaining variables are as for the standard
model. The transportation (TP) reformulation can be written as:

min
∑
i∈I

(∑
r∈T

r−1∑
t=1

(r − t)hizi
tr

)
(6)

s.t.
r∑

t=1

zi
tr = dir r ∈ T, i ∈ I (7)

zi
tr ≤ diry

i
t t ∈ T, r = t, . . . ,m, i ∈ I (8)∑

i∈I

(
m∑

r=t

αi
tz

i
tr + βi

ty
i
t

)
≤ Ct t ∈ T (9)

yi
t ∈ {0, 1} t ∈ T, i ∈ I (10)

zi
tr ≥ 0 t ∈ T, r = t, . . . ,m, i ∈ I (11)

The objective (6) is again to minimize the overall holding cost. Constraints (7)
ensure that the total production of item i in periods 1 through r is equal to
the demand in period r. Constraints (8) ensure that production of an item
can only occur if the resource is set up to produce that item. Constraints (9)
guarantee that the production and setup capacity usages cannot exceed the
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resource capacity. The domains of the variables are specified by constraints
(10) and (11).

Although Denizel & Süral (2006) showed that the TP model is easier to
solve than the STD model, we are going to solve the LSPST heuristically with
several variables fixed in ALNS. Preliminary computational experiments with
the two MIP formulations indicate that the STD formulation is preferable
with respect to reoptimization times compared to the TP formulation. This
may be due to the quadratically increase in variables and constraints for the
TP formulation when the number of time periods increases. Also, it appears
that the primal heuristics of ILOG CPLEX are more efficient for the STD
formulation than for the TP formulation. Therefore, we have decide to base
the hybrid ALNS algorithm on the STD formulation.

3.2. Local search

In this paper, steepest descent has been chosen as the master level local
search procedure in ALNS. Since the destroy neighborhoods merely free a
subset of the variables, and because the MIP repair neighborhoods use the
current solution as an initial upper bound, it is always possible for the MIP
solver to find that solution again. Therefore, the MIP solver never returns
a solution that is worse than the current one. Hence, a selection process for
choosing worse solutions would not be relevant.

To diversify the search, the algorithm is restarted at different solutions
when no improvements have occurred in a number of iterations (chosen to
be equal to the segment size for updating the neighborhood weights). For
the initial restart the second best solution is chosen (the current solution is
the best solution). In subsequent restarts, the local search either switches
back to the best solution if it is not the current one or switches to the next
best solution that has not previously been used for a restart. The reason for
returning to the best solution in an attempt to find further improvements is
that the neighborhoods may have obtained different scores in the meantime
yielding a diversified exploration of the neighborhood of that solution.

To speed up the subproblem solution process, we suggest to limit the
number of explored branch nodes or terminate the search after a given time
limit. MIP heuristics are applied in the MIP solver to obtain feasible solutions
rapidly.
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3.3. Adaptive weight adjustments

In this paper we employ the same scoring scheme as (Røpke & Pisinger,
2006; Pisinger & Røpke, 2007). That is, if a neighborhood i produces a new
best incumbent solution it is awared a score of k0, i.e., the observed weight
is updated as π̄i,t = π̄i,t + k0, and if it produces a local improvement it is
awarded a score of k1.

3.4. Destroy neighborhoods

Except for the random removal neighborhood each neighborhood focuses
on specific structural disadvantages in a solution to the LSPST, e.g., too
many items in stock, or a frequent change of the production of items. A
parameter Q controls how large a part of the current solution is destroyed.
It is measured as a percentage of the combined production of the LSPST.
The destroy neighborhoods are divided in two steps: i) a removal candidate
set, R, of sets of production variables, i.e., sets of x-variables, is constructed
based on the chosen destroy neighborhood, ii) iteratively a set F of produc-
tion variables is constructed by selecting sets of variables from R until their
cumulative production values correspond to Q, or no more sets of variables
remain. The variables of the set F are the variables that will be freed in the
subsequent reoptimization. Depending on the destroy neighborhood chosen,
the sets of variables are either randomly selected or randomly selected based
on some weight. In the following let (x̄, ȳ, s̄) denote the current solution.
There are in total six destroy neighborhoods:

Random. Frees production variables at random throughout the production
plan:

R =
{
{xi

t} : x̄i
t > 0, t ∈ T, i ∈ I

}
.

The set F is constructed by choosing sets of variables from R randomly.
The neighborhood is good at diversifying the search, and hence it is
useful if the search is stuck in a local minimum.

Production causing stock. Frees production variables that cause items to
be placed in stock. Hopefully, the production can be inserted at a later
time in the production plan, saving inventory expenses:

R =
{
{xi

t} : s̄i
t > 0 ∧ s̄i

t+1 > 0, t ∈ T, i ∈ I
}
.

The set F is constructed by choosing sets of variables from R randomly.
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Capacity critical. Frees production of items in time steps, where some
resource is fully loaded. This allows for a reshuffling of the production:

R =
{
{xi

t} : x̄i
t∗ > 0 ∧ (t = t∗ ∨ t = t∗ − 1 ∨ t = t∗ + 1), i ∈ I

}
,

where t∗ = arg max{
∑

I x̄
i
t : t ∈ T}, i.e., t∗ is the time period with

the most combined production. Variables for time steps immediately
preceding and succeeding t∗ are included to open up for the possibility
of shifting the production between these time periods. The set F is
constructed by choosing sets of variables from R randomly.

Stocked items. Frees production of items that have the largest amount of
units in stock throughout the production plan. The idea is to attempt
a reshuffle of stocked items between those types of items that are fa-
vorable to put in stock, e.g., due to low holding cost:

R =

{
{xi

t : t ∈ T} :
∑
t∈T

s̄i
t > 0, i ∈ I

}

The set F is constructed by choosing sets of variables from R randomly
by roulette wheel selection, where each set S ∈ R corresponding to some
item i∗, has weight

∑
t∈T s̄

i∗
t . At least two item types are freed.

Time periods with high stock density. Frees production from time pe-
riods where many items are in stock. The idea is to reshuffle the pro-
duction (and thereby the stocked items) into the previous or succeeding
time periods. The time periods are sorted according to the number of
stocked items. When the production in a time period t is cleared, the
time periods immediately preceding and succeeding t are also cleared:

R =
{
{xi

t−1, x
i
t, x

i
t+1 : i ∈ I} : t ∈ T

}
The set F is constructed by choosing sets of variables from R randomly
by roulette wheel selection, where each set S ∈ R corresponding to some
triple of time (t∗ − 1, t∗, t∗ + 1) has weight

∑
i∈I(s̄i

t∗−1 + s̄i
t∗ + s̄i

t∗+1).

Production higher than demand. When the production is high compared
to the demand of the corresponding item in a given time period t, sev-
eral items are put in stock. Often a solution can be shifted, such that
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the majority of the production is moved to the following time period,
so we define:

R =
{
{xi

t−1, x
i
t, x

i
t+1} : t ∈ T, i ∈ I

}
The set F is constructed by choosing sets of variables from R randomly
by roulette wheel selection, where each set S ∈ R corresponding to some
item i∗ and some triple of time (t∗ − 1, t∗, t∗ + 1) has weight x̄i∗

t∗ − di∗
t∗ .

3.5. Repair neighborhoods

Let F be the set constructed by the application of one of the destroy
neighborhoods just described. In the following let F̄ denote the set produc-
tion variables not in F , i.e., the set of variables which are not freed. The two
MIP repair neighborhoods employed for the LSPST are:

Bound by solution value. Bound variables x ∈ F̄ to a fraction of their
current value, i.e., if xi

t is a variable in F̄ , fix xi
t ≥ δx̄i

t for some value of δ.
An appropriate value of δ was chosen as δ = 0.5 for the studied problem.
Production variables x are linked to the setup variables y. Hence,
whenever x̄i

t > 0 we bound the variable yt
t = 1. Stock is generally to

be avoided, therefore we avoid to fix any of the stock variables s from
below so that we do not accidentally force unnecessary stock. When
employing this repair neighborhood the optimization problem (1) – (5)
is extended with the following constraint

xi
t ≥ δx̄i

t, ∀xi
t ∈ F̄

Fix by solution value. Fix variables x ∈ F̄ , to their value in the current
solution, where the production equals the demand, i.e., we fix xi

t = x̄i
t

whenever we have x̄i
t = di

t. In solutions for the LSPST, this scenario
happens frequently in consecutive time periods for the production of an
item. In order to allow some diversification in the production we only
fix production when there is no stock in the preceding and the succeed-
ing time periods, i.e., for a variable xi

t it must hold that si
t−1 = si

t+1 = 0.

Let ¯̄F ⊆ F̄ be the subset of variables of F̄ for which this condition holds.
When employing this repair neighborhood the optimization problem (1)
– (5) is extended with the following constraint

xi
t = x̄i

t, ∀xi
t ∈ ¯̄F
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3.6. ALNS parameters

At the master level, a time limit of 300 seconds is chosen as the termi-
nation criteria of the steepest descent local search. The reaction factor r is
set fairly high at 0.8 since we expect few iterations, and therefore would like
the neighborhood weights to converge fast. All neighborhoods are initialized
with a weight of 100. Through experimentation, the values 20 and 13 where
chosen for k0 and k1 respectively when adaptively adjusting the weights of the
neighborhoods. During the first iteration, an estimate of the overall number
of iterations is calculated based on the running time of that iteration, i.e.,
the max iterations = time limit/time first iteration. The segment size
for updating the weights is set to one hundredth of the estimated number
of overall iterations, or at least 10 and at most 50 iterations. As mentioned
earlier the parameter Q controls how large a part of the current solution is
destroyed. Muller (2009) suggests an exponential decrease of Q in the num-
ber of iterations. In this paper we propose a linear decrease beginning at
Qstart = 0.4 and decreasing towards Qend = 0.1. Since the number of itera-
tions is unknown we calculate the decrease based on the maximum running
time, i.e, Q = Qstart−(Qstart−Qend) ·(time current/time limit). The linear
decrease provides room for large neighborhoods in more iterations which is
crucial when few iterations are explored.

3.7. Overview

Figure 2 shows the pseudo-code for the complete algorithm. The initial
solution is found by solving the root node of the branch-and-bound-tree and
returning the best heuristic solution found by the MIP solver. For all the
considered test instances this produced a feasible initial solution. The stop
criteria used in the call to the MIP solver in line 6 is to solve the root node of
the branch-and-bound tree and then return the best heuristic solution found.
For this call the MIP solver is initialized with the current solution.

4. Experimental results

In this section, we compare the ALNS heuristic to ILOG CPLEX with
default settings (using both the STD and the TP formulations) and to the
heuristic of Sural et al. (2009), which is currently the best for the problem
considered. The experiments are performed on a 2.66 GHz Intel(R) Xeon(R)
X5355 machine with 8 GB memory using ILOG CPLEX version 12.1. For
the result reported by Sural et al. (2009) an IBM PC with an Intel Pentium
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Hybrid-ALNS

1 x is an initial solution; set x∗ := x
2 repeat
3 Choose n− ∈ N− and a n+ ∈ N+ based on π
4 Construct the set F (and R) based on n− and x.
5 Construct a restricted MIP model based on

F̄ , n+ and x
6 Solve problem with a MIP solver (subject to

stopping criterion)
7 Collect all solutions found by MIP solver into a pool
8 if no solution better than x found for tnoimprovment

9 then if x = x∗

10 then x := x∗

11 else Set x to second best solution not
previously used for restarting

12 else Let x′ be the best found solution.
13 if x′ is better than x
14 then x := x′

15 if x′ better than x∗

16 then x∗ := x′

17 Use MIP solver to resolve problem
with x∗ as input obtain LB

18 Update π for N− and N+

19 until stop criterion is met
20 return x∗

Figure 2: Pseudo-code overview of the ALNS framework.
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IV processor was employed, which is about 3 times slower than the processor
used for these tests according to SPEC (www.spec.org). The time limit for
the ALNS heuristic and for ILOG CPLEX is 300 seconds, which is also one
of the stopping criteria used by Sural et al. (2009). For the ALNS heuristic
results are calculated as the average of 10 runs.

4.1. Instances

The considered test instances are the same as those used by Sural et al.
(2009). These instances have been generated on the basis of the instances
of Trigeiro et al. (1989) by setting the setup costs to 0, and setting all zero
demand to 2. The base set of Trigeiro et al. (1989) are divided into four
groups: the five instances G51–G55 each have 12 items and 15 time periods,
the five instances G56–G60 each have 24 items and 15 time periods, the five
instances G66–G70 each have 12 items and 30 time periods, and the five
instances G71-G75 each have 24 items and 30 time periods. In addition to
these instances, Sural et al. (2009) generate four new groups having 10 time
periods and two new groups having 15 time periods by taking the original
instances and reducing the number of time periods to respectively 10 and 15.
These are in the following denoted by appending -10 and -15 to the name of
the original instance. This results in 50 heterogeneous instances. Additional
50 homogeneous instances were created by Sural et al. (2009) on the basis of
the heterogeneous instances by setting all holding costs to 1.

In order to experiment with larger (and harder) instances, we have gen-
erated a number of new instances in a similar way as Sural et al. (2009): For
each of the original instances containing 15 time periods an instance con-
taining respectively 30 and 45 time periods is created by concatenating the
15 time period instance (two respectively three times). Likewise, for each
of the original instances containing 30 time periods, an instance containing
respectively 60 and 90 time periods is created by concatenation. These are
in the following denoted by appending -30, -45, -60 and -90 to the name
of the original instance. Again, a further set of homogeneous instances is
created on the basis of these by setting all holding costs to 1. This results
in a total of 40 new heterogeneous and 40 new homogeneous instances. The
total number of instances considered is thus 180.

In the following experiments, the class S refers to the instances by Sural
et al. (2009) and the class M refers to the instances generated in this paper.
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ALNS MIP STD MIP TP Sural et al. (SDW)

Group LB UB UB∗ gap LB UB gap LB UB gap LB UB gap

S homo 13.42 0.18 0.01 16.98 7.17 0.30 19.36 5.00 0.46 6.28 18.46 0.63 27.78
S hetero 11.80 0.13 0.02 23.71 4.67 0.19 14.26 2.35 0.13 2.83 15.71 2.98 25.51

M homo 15.44 0.67 0.07 20.40 20.56 1.30 161.75 14.73 1.89 20.99 - - -
M hetero 11.68 1.11 0.28 15.55 16.92 1.19 140.80 11.03 1.66 15.63 - - -

Table 1: Comparison of the ALNS heuristic with the STD and TP formulations
solved with default ILOG CPLEX settings and the SDW heuristic of Sural et al.
(2009). The LB column is the average deviation in percent of the lower bound from
the best upper bound found across all algorithms calculated as UB − LB/UB,
thus smaller is better. The UB column is likewise the average deviation of the
upper bound from the best found solution, the UB∗ column is the best solution
found across the 10 runs of the ALNS heuristic. The gap column is the average
integrality gap in percent at the point where the procedure stops using the lower
and the upper bounds calculated by that procedure. For the ALNS heuristics the
results are reported as average of 10 runs. For each line the best value across the
algorithms are indicated in boldface.

4.2. Comparison

Table 1 and Table 2 shows a comparison, for bounds and time respectively,
of the results obtained by applying the ALNS heuristic, ILOG CPLEX with
default settings (using both the STD and TP formulations), and the best
heuristic of Sural et al. (2009) (SDW) to the benchmark instances. We
remind the reader that for the ALNS heuristic, the results are the average
of 10 runs. The results shown are broken down by classes (S and M), and
by heterogeneous and homogeneous instances. The time column is, for the
ALNS heuristic, the average time taken to find the best solution, and for
the MIP models it is the time taken to find the best solution (given the 300
second time limit). For SDW it is the total time used by the algorithm. Many
of the instances (especially in class S) can be solved to optimality within the
300 second time limit when employing ILOG CPLEX. Detailed results for
each instance may be found in Appendix Appendix A. Note that for the
MIP models, some of the reported times may exceed the 300 second time
limit due to close-down of ILOG CPLEX.

When considering the instances of Sural et al. (2009), we see from Table 1
that both the ALNS heuristic and the MIP solver outperform the best heuris-
tic (SDW) of Sural et al. (2009) both with regards to the quality of the lower
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ALNS MIP STD MIP TP Sural et al. (SDW)

Group tb(s) tb(s) tt(s) tb(s) tt(s) tt(s)

S homo 64.44 128.42 196.17 126.66 204.68 8.99
S hetero 57.96 90.51 110.34 80.67 109.00 12.14

M homo 229.50 264.18 300.08 291.74 323.52 -
M hetero 232.53 261.07 287.63 262.51 316.30 -

Table 2: Comparison of the ALNS heuristic with the STD and TP formulations
solved with default ILOG CPLEX settings and the SDW heuristic of Sural et al.
(2009). The tb(s) column is the average time used to find the best solution and
the tt(s) is the total solution time by the ALNS heuristic and the MIP solver on
the STD and TP formulations, and for the heuristic of Sural et al. (2009) it is the
average of the total times reported in that paper. For the ALNS heuristics the
results are reported as average of 10 runs. For each line the best value across the
algorithms are indicated in boldface.

and upper bounds. Taking the best upper and lower bounds found by either
the ALNS heuristic or the MIP solver we find 24 new best upper bounds
and 50 new best lower bounds (out of 50) for the homogeneous instances,
and 36 new best upper bounds and 50 new best lower bounds (out of 50) for
the heterogeneous instances (see the next section for details). Although, the
TP formulation finds equally good upper bounds on the heterogeneous class
S instances, it can be seen that the ALNS heuristics consistently finds the
best upper bounds. Except for the heterogeneous class S instances the STD
formulation outperforms the TP formulation with regard to upper bounds.
The TP formulation produces better lower bounds than both the STD for-
mulation and the ALNS heuristic. However, when considering the M class,
the computed gaps are smaller for the ALNS heuristic because it finds bet-
ter upper bounds than the TP formulation. A little surprisingly the ALNS
heuristic actually finds better lower bounds on the class M instances than
the STD formulation although the heuristic is derived from that model.

The time comparison in Table 2 clearly shows that the heuristic of Sural
et al. (2009) is by far the fastest. When comparing the ALNS heuristic and
the MIP formulations, it is clear that the ALNS heuristic is much faster at
finding a good solution than both of the MIP formulations. This indicates
the the running time of the ALNS heuristic may be decreased from the 300
second limit and still produce good upper bounds.

We measure the effectiveness of the neighborhoods by a percentage which
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is calculated based on the number of iterations a neighborhood was chosen
that lead to a solution that was at least as good as the current incumbent
divided by the total number of iterations that did not lead to a worse solution.
For the destroy neighborhoods the neighborhoods performed equally well
within a ±3% range and for the repair neighborhoods the range was within
±2% range.

5. Conclusion

We have presented a hybrid heuristic solution approach based on the
ALNS framework where a MIP solver is used in the repair phase. This results
in a general hybrid ALNS heuristic where i) the “difficult” part of creating
efficient repair neighborhoods has been eliminated and ii) the strength of
modern MIP solvers can be exploited. The framework is particularly well
suited for problems where finding a feasible solution is difficult (possibly
NP-hard).

The proposed hybrid algorithm has been applied to the LSPST and the
computational results indicate that the heuristic is very competitive. On
two sets of benchmark instances from the literature the ALNS heuristic is,
within a 300 second time limit, able to produce significantly better upper
and lower bounds than previously reported. Also the ALNS heuristic was
able to produce better average solution for one set and equally good solutions
for the other set when compared to two formulations solved by a commercial
solver. On two new sets of larger instances the ALNS heuristic outperforms
the two formulations solved by a commercial solver with regard to the quality
of the upper bound. Furthermore, the lower bounds produced by the ALNS
heuristic is competitive with the bounds of the transportation reformulation
model. Both the ALNS heuristic and ILOG CPLEX solving the STD and the
TP formulations outperform the current best heuristic found in the literature,
with respect to the quality of the solution and the lower bound returned.
This indicates that it may be beneficial to use general MIP based repair
neighborhoods in combination with problem specific destroy neighborhoods
in ALNS.

Taking the best upper and lower bounds found by either the ALNS heuris-
tic or the MIP solver we were able to improve on 24 (out of 50) upper bounds
and all lower bounds for the homogeneous benchmark instances of Sural et al.
(2009), and improve on 36 (out of 50) upper bounds and all lower bounds
for the heterogeneous instances of Sural et al. (2009).
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It is somewhat surprising that the LSPST model was more suited for the
hybrid ALNS framework than the stronger TP formulation. As previously
mentioned this may be due to scalability issues in the TP formulation when
the number of time periods grow.

A suggestion for a future improvement is to apply the hybrid ALNS
heuristic within the reoptimization process in the repair neighborhood. When
solving larger problems the MIP solver may become too slow to use in the
repair neighborhoods, and it may be beneficial to apply a meta-heuristic
approach to reoptimize the subproblem. This approach can be applied re-
cursively until the subproblems are small enough for the MIP solver to be
handled efficiently.

Acknowledgments
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Appendix A. Detailed results

Table A.3 and Table A.4 lists detailed results for the class S homogeneous
and heterogeneous instances taken from Sural et al. (2009), and Table A.5
and Table A.6 lists detailed results for the class M heterogeneous and ho-
mogeneous instances of this paper. For the ALNS algorithm the results are
averages of 10 runs.
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Mladenović, N., & Hansen, P. (1997). Variable neighborhood search. Com-
puters and Operations Research, 24 , 1097–1100.

Muller, L. F. (2009). An adaptive large neighborhood search algorithm for
the resource-constrained project scheduling problem. In Proceedings of
the VIII Metaheuristics International Conference (MIC) 2009 . Hamburg,
Germany.

Pisinger, D., & Røpke, S. (2007). A general heuristic for vehicle routing
problems. Computers and Operations Research, 34 , 2403–2435.

Pisinger, D., & Røpke, S. (2010). Large neighborhood search. In M. Gen-
dreau, & J.-Y. Potvin (Eds.), Handbook of Metaheuristics . Springer Verlag.
(2nd ed.).

Pochet, Y., & Wolsey, L. (2006). Production Planning in Mixed Integer
Programming . Springer.

Røpke, S., & Pisinger, D. (2006). An adaptive large neighborhood search
heuristic for the pickup and delivery problem with time windows. Trans-
portation Science, 40 , 455–472.
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