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Abstract

This paper considers a Markovian model for the optimal dynamic routing of homogeneous traffic to
parallel heterogeneous queues, each having its own finite input buffer and server pool, where buffer and
server-pool sizes, as well as service rates, may differ across queues. The main goal is to identify a heuristic
index-based routing policy with low complexity that consistently attains a nearly minimum average loss
rate (or, equivalently, maximum throughput rate). A second goal is to compare alternative policies, with
respect to computational demands and empirical performance. A novel routing policy that can be efficiently
computed is developed based on a second-order extension to Whittle’s restless bandit (RB) index, since
the latter is constant for this model. New results are also given for the more computationally demanding
index policy obtained via policy improvement (PI), including that it reduces to shortest queue routing under
symmetric buffer and server-pool sizes. A numerical study shows that the proposed RB index policy is
nearly optimal across the instances considered, and substantially outperforms several previously proposed
index policies.
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1 Introduction

This paper considers a Markov decision process (MDP) model for a distributed service system, concerning the
optimal dynamic routing, or assignment, of a Poisson job arrival stream with rate λ to K parallel multiserver
queues, where the latter have finite input buffer capacities nk for queue k ∈ K , {1, . . . , K}. Arrivals to a
nonfull system are immediately and irrevocably routed to a queue, while arrivals to a full system are blocked
and lost. The performance objective is to minimize the average loss rate, i.e., the average number of arriving
jobs per unit time that are blocked and lost. Each queue k has its own pool of mk identical exponential servers,
each working at rate µk. The system is heterogeneous, in that buffer and server-pool sizes, as well as service
rates, may differ across queues.

Note that the performance objective of minimizing the average loss rate is equivalent to that of maximizing
the average throughput rate, i.e., the average number of jobs completed per unit time, since under any job
assignment policy the sum of the throughput rate and the loss rate equals the arrival rate λ (since a job that is
not lost eventually completes service).

Such a model and performance objective are relevant to a variety of applications: (1) The main motivating
application is load sharing or balancing to distribute client requests across a cluster of Web-server nodes (see,
e.g., Zhang and Fan (2008)). As for the motivation for considering node queues with finite buffers, the latter
yield a simple form of admission control (as jobs finding all buffers full are rejected), which the service provider
can leverage to offer statistical response-time Quality of Service (QoS) guarantees in a Service Level Agreement
for admitted requests. The main performance metrics in a cluster are the average response time and the
throughput. Since in such systems the response times are controlled by limiting node buffer sizes, which has the
undesirable side effect of causing request losses, the relevant optimization problem is to minimize the average
loss rate. This is in contrast to most analytical work on Web-server load sharing, which mainly addresses
response-time minimization, often assuming infinite buffer space at the nodes. (2) In geographically distributed
telecommunication networks, messages are relayed to one of a number of service centers. Buffers sizes at the
latter are limited to ensure target QoS levels on response-time delays. See, e.g., Pourbabai and Seidmann
(1992). (3) In high-speed packet-switched networks, packets flowing through a router are forwarded through
one of multiple outgoing finite-buffer channels. When all buffers are full, packets are dropped and lost. As noted
in Kang and Tan (1997), “packet loss due to buffer overflow is the primary performance measure in high-speed
networks . . . ”.

Obtaining an optimal policy for the model of concern here by numerical solution of its dynamic programming
(DP) equations is, generally, a computationally intractable task for realistic model sizes. Thus, e.g., in a cluster
with K nodes where each node has n buffer spaces, the DP equations have (n + 1)K variables, one per system
state. A well-known approach to tackle such equations is to solve a related linear programming (LP) problem,
which has about K(n+1)K constraints on (n+1)K variables. Even with a buffer size of n = 60 jobs at each node,
and considering a very small cluster with K = 3 nodes, one gets an LP problem with nearly a quarter million
variables and three quarter million constraints, which would stress current high-end workstations. Besides,
the optimal policy would typically be too complex to implement. Currently, sizes of dozens of servers are
common, with many firms operating large-scale clusters with hundreds or thousands of servers. The resulting
DP equations would hence be impossible to solve numerically.

This motivates our main goal, which is to identify tractable heuristic policies that perform well. Particularly
appealing is the class of index policies. These attach a load index θk(xk) to each queue k, which is a numeric
function of its load state xk, where the latter gives the number of jobs in the queue input buffer, waiting or
in service. The policy routes each arrival to a nonfull queue, if any, with currently lowest index value. Classic
examples are the Shortest (nonfull) Queue (SQ) and the Shortest (nonfull) Expected Delay (SED) routing rules.
Index policies, being based on dynamic state information, offer the potential to significantly improve system
performance over static (state-blind) policies, while remaining tractable if the indices can be evaluated with low
complexity.

1.1 Prior Work on Minimum Loss Routing to Finite-Buffer Queues

While a vast literature addresses problems of job assignment to parallel infinite-buffer queues to minimize the
average response time, there is a gap in the literature on models for job assignment to parallel finite-buffer
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queues to minimize the average loss rate (maximize the average throughput rate), which have received much
less attention. Early research established the optimality of simple index rules under strong assumptions. For
the case mk ≡ nk ≡ 1 of single-server queues without waiting room, the Fastest Available Server (FAS) rule,
with index θFAS

k (xk) , 1/µk, is shown to be optimal in Seth (1977) and in Derman et al. (1980). Hordijk and
Koole (1990) shows that SQ routing is optimal in the case of parallel single-server queues with equal service
rates, allowing unequal buffers.

More recently, the research focus has shifted to the design of suboptimal heuristic policies with low complexity
for intractable models with heterogeneous queues, such as the present model, for which, to the best of the author’s
knowledge, no analytical results are available on the structure of optimal policies. A well-known approach to
obtain a static policy is the optimal Bernoulli Splitting (OBS) method, which splits the arriving job stream
into independent substreams assigned to the queues according to fixed probabilities, obtained by solving a
nonlinear program (NLP). Note that such policies may route a job to a full queue, thus losing it, even when
some other queue has free space. Yao and Shanthikumar (1987) addresses computation of the OBS for maximum
throughput routing to parallel multiserver queues without waiting room (mk ≡ nk).

As for the design of more sophisticated index policies, a widely applied method is to start with the OBS,
and then to carry out one step of the policy improvement (PI) algorithm for MDPs, which is known to yield a
better policy. Such a one-step PI method is proposed in Krishnan (1988) to obtain a load index θPI

k (xk) for the
present model, albeit bypassing the issue of computing the OBS by referring to Yao and Shanthikumar (1987),
which only considers the no-waiting-room case.

Another powerful method to design index policies is to deploy restless bandit (RB) indexation. See Whittle
(1988). Niño-Mora (2002) first applied the Whittle RB index θRB

k (xk) to obtain policies for admission control
and routing to parallel queueing systems, presenting also index extensions, sufficient conditions for indexability
(existence of the index), and an efficient index algorithm. The application of such results to various routing
models is outlined in Niño-Mora (2007).

1.2 Goals and Contributions

The main goal of this paper is to identify a routing policy of index type for the model of concern that has
low computational complexity and consistently attains a nearly minimum average loss rate. A related second
goal is to compare several alternative routing policies, elucidating their relative standing with respect both to
computational demands and average loss performance.

The main contributions are the following:

1. Design of a new routing policy based on an extension to RB indexation. Whereas the Whittle index
turns out to be noninformative for the present model, taking on a constant value, a novel tie-breaking
second-order routing index is obtained based on analysis of a related discounted problem. Such an index
is efficiently computed with linear complexity on the buffer size by a first-order linear recursion, which is
solved in closed form. Also, a closed formula is presented for the upper bound on the maximum throughput
performance, based on an RB relaxation. A benchmarking study shows that the proposed RB index policy
is nearly optimal in every instance considered, while four alternative previously proposed index policies
are found to be severely suboptimal in moderate traffic.

2. New results on the OBS policy, which extend work in Yao and Shanthikumar (1987), as the latter applies
only to the no-waiting-room case. Algorithmic results are presented for the efficient numerical solution
of the NLP yielding the OBS. It is further shown that, under symmetric buffer and server-pool sizes, the
OBS feeds all queues with equal offered loads.

3. New results on the PI index policy introduced in Krishnan (1988). It is shown that, in the case of
symmetric buffer and server-pool sizes across queues, the PI index policy reduces to SQ routing, thus
failing to take into account differences in service rates across queues.
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1.3 Organization of the paper

The remainder of the paper is organized as follows. After the model is described in Section 2, Section 3 develops
the novel second-order RB routing index. Section 4 discusses application of the PI method, extending previous
work as outlined above. Section 5 reports on the benchmarking study. Section 6 concludes.

2 Model Description

Consider a distributed service system consisting of K parallel service stations, which are used to fulfill the
service requests, or jobs, submitted by a homogeneous customer stream, whose arrival times form a Poisson
process with rate λ. Station k ∈ K has mk > 1 parallel exponential servers, each working at rate µk, and a
finite input buffer with capacity for holding nk jobs, waiting or being served, with nk > mk. We will refer to
station k as queue k in the sequel. Upon arrival of a job, a central controller irrevocably routes the job to a
nonfull queue, if any is available, according to a routing policy. If all buffers are full, an arriving job is blocked
and lost. Once in a queue, jobs are scheduled for service on a First-Come First-Served (FCFS) basis.

Denote by Xk(t) ∈ Xk , {0, 1, . . . , nk} the state of queue k at time t, giving the number of jobs it holds
either waiting or being served, and by Ak(t) ∈ {0, 1} the binary action that equals 0 if an arrival at time t
would be routed to queue k. It is convenient to imagine that each queue k has its own entry gate, which the
system controller can open (Ak(t) = 0) or shut (Ak(t) = 1) at each time. The requirement that no job should
be routed to a full queue is thus formulated as

Ak(t) = 1 if Xk(t) = nk, k ∈ K, t > 0, (1)

while the requirement that a job must be routed to a nonfull queue if one is available is formulated as

∑

k∈K

Ak(t) = K − 1 if X(t) 6= n, t > 0, (2)

where X(t) =
(
Xk(t)

)
and n = (nk). Further, it is required that the number of jobs in each queue does not

exceed its buffer capacity:
Xk(t) 6 nk, k ∈ K, t > 0. (3)

Actions are selected according to a routing policy π from the class Π of history-dependent randomized policies
(in standard MDP terminology), which choose the joint action A(t) =

(
Ak(t)

)
at each time t > 0 based on

the history of joint states {X(s) : 0 6 s 6 t} and actions {A(s) : 0 6 s < t}, and satisfy the sample-path
constraints (1)–(3). We will further refer to the class ΠSRof stationary randomized policies, where the joint
action A(t) selected at each time t depends only on the joint state X(t), possibly in a randomized fashion.
Under a stationary deterministic policy, A(t) is a deterministic function of X(t).

Consider the optimal routing problem of finding an average-reward optimal policy that maximizes the average
throughput rate. The formulation of such a problem will be simplified by the fact that the corresponding MDP
model has finite state and action spaces, and, besides, is unichain, meaning that the Markov chain generated on
the state space by any stationary policy has a single ergodic class. This follows from the intuitive observation
that, in the present model, every pair of system states communicates with positive probability under any
stationary policy that satisfies (1)–(3). The unichain property allows us to focus, without loss of generality, on

routing policies from the class ΠSR. For any such policy, we will denote by X̃ = (X̃k) and Ã = (Ãk) random
vectors with the steady-state distributions of the ergodic joint state process X(t) and joint action process A(t).
We can hence formulate the throughput maximization problem as

maximize
π∈ΠSR

E
π

[
∑

k∈K

µ̄k

(
X̃k

)
]

, (4)

where E
π[·] denotes expectation under policy π, since the unichain property ensures that the maximum through-

put rate is independent of the initial state.
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We will draw in the sequel on the observation that problem (4) is equivalent to the problem of minimizing
the average loss rate in the system, which, by the PASTA (Poisson Arrivals See Time Averages) property, can
be formulated as

minimize
π∈ΠSR

λ P
π

{
X̃ = n

}
, (5)

where P
π {·} denotes probability under policy π.

The reason for the equivalence of problems (4) and (5) is that, under any routing policy π ∈ ΠSR, one has
the invariance identity

E
π

[
∑

k∈K

µ̄k

(
X̃k

)
]

+ λP
π

{
X̃ = n

}
≡ λ, (6)

i.e., the throughput rate plus the loss rate equals the arrival rate.
We will denote by J∗ the minimum loss rate objective for problem (5), and by V ∗ the maximum throughput

rate objective for problem (4). Note that J∗ + V ∗ = λ.

3 RB Index Method

The conventional RB index method is based on formulating (4) as a multiarmed restless bandit problem (MARBP),
and then using the index policy proposed in Whittle (1988) for the latter, which further yields a performance
bound. Here, we need to consider a variant of the MARBP to formulate the optimal routing problem of concern.
While the RB approach was first applied to the design of routing policies in Niño-Mora (2002, Sec. 8.1), it is
shown below that direct application of the results there to the present model does not yield a specific policy,
since the Whittle index takes on a constant value. As a tie-breaker, a second-order index is presented, based on
analysis of a related discounted problem.

3.1 Formulation as a Variant of the MARBP

The continuous-time average-reward MARBP concerns the optimal dynamic allocation of effort to K stochastic
projects with state processes Xk(t), for k ∈ K, modeled as independent RBs, i.e., binary-action (Ak(t) = 1:
active; Ak(t) = 0: passive) MDPs. Whittle (1988) assumes that a fixed number M out of the K projects must
be active at each time. Separable rewards are earned at the state- and action-dependent rate Rk(xk, ak) for
project k. Denoting by ΠSR(M) the class of admissible scheduling policies that are stationary randomized,
satisfy the sample-path activity constraint

∑
k Ak(t) ≡ M , and generate an ergodic joint state process X(t) and

joint action process A(t), the resulting average-reward MARBP is

maximize
π∈ΠSR(M)

E
π

[
∑

k∈K

Rk

(
X̃k, Ãk

)
]

, (7)

where X̃ = (X̃k) and Ã = (Ãk) are random vectors with the corresponding steady-state distributions.
Given the intractability of such a problem, Whittle (1988) defined an index for an RB project, and proposed

as a heuristic the resulting index policy: at each time, engage a subset of projects with the M currently highest
index values.

To formulate (4) as an MARBP, we use the idea in Niño-Mora (2002, Sec. 8.1) of viewing each queue k as
being fed with its own independent Poisson arrival stream with rate λ, subject to dynamic control of admission,
identifying each controlled queue with an RB project. One can visualize the admission control actions at each
queue as being carried out by a dedicated gatekeeper, who can open or shut the entry gate to his queue. We
thus interpret the active action Ak(t) = 1 for the kth RB as shutting the entry gate to queue k, and the passive
action Ak(t) = 0 as opening it. See Figure 1.

The optimal routing problem (4) is formulated as a variant of the MARBP in (7), differing from the latter
in two respects: (i) whereas in (7) both actions are available at every state, we incorporate the requirement (1)
that the active action be taken in project k at state xk = nk (the entry gate to a full queue must be closed);
and (ii) we replace the requirement that M , K − 1 projects be active at each time by the weaker constraint
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Figure 1: Routing to two queues as a two-armed restless bandit.

(2) that K − 1 projects be active when the system is not full; when the system is full, (i) implies that the K
projects will be active.

3.2 Relaxed Problem, Lagrangian Relaxation and Decomposition, and a Bound

Recall that ΠSR denotes the class of admissible policies for problem (4). Denote by Π̂
SR

the wider class of
policies that is obtained from ΠSR by dropping the requirement in (2) that exactly K − 1 gates be shut when
some queue is not full. We now replace the sample-path constraint (2) with the weaker constraint that the
average number of closed gates be at least K − 1,

E
π

[
∑

k∈K

Ãk

]
> K − 1, (8)

to obtain the following constrained-MDP relaxation of problem (4):

maximize
π∈Π̂

SR

,(8)

E
π

[
∑

k∈K

µ̄k

(
X̃k

)
]

. (9)

We will denote by V R the maximum value of problem (9). Recall that V ∗ is the maximum throughput rate in
problem (4).

Lemma 3.1. V R is an upper bound on the maximum throughput V ∗, i.e., V ∗ 6 V R.

Proof. Any feasible policy π ∈ Π̂
SR

for (4) is also feasible for relaxed problem (9), since it belongs to Π̂
SR

and
satisfies (8). Since the optimization objective is the same in both problems, their optimal values must satisfy
that V ∗ 6 V R.

Unlike the original problem (4), the relaxed problem (9) will turn out to be tractable. To address it we
dualize the constraint (8), scaled by λ, with a multiplier η > 0, which yields the Lagrangian relaxation

maximize
π∈Π̂

SR

E
π

[
∑

k∈K

µ̄k

(
X̃k

)
− ηλ

{
K − 1 −

∑

k∈K

Ãk

}]
, (10)

whose optimal value satisfies that V L(η) > V R. Independence of the queues’ state transitions allows us to
decompose (10) into the K individual queue subproblems

maximize
πk∈ΠSR

k

E
πk

[
µ̄k

(
X̃k

)
+ ηλÃk

]
, (11)
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where ΠSR
k is the class of stationary randomized admission control policies for operating queue k in isolation,

which are required to satisfy (1) and to induce an ergodic state process X̃k and action process Ãk.
Note that (11) is an optimal admission control subproblem for queue k, whose objective balances average

throughput rewards and rejection subsidies, the latter being earned at rate η per rejected job. Denoting its
optimal value by V ∗

k (η), the optimal value of Lagrangian relaxation (10) decomposes as

V L(η) = −(K − 1)λη +
∑

k∈K

V ∗
k (η). (12)

Such an approach decentralizes the solution to relaxed problem (9), with η playing the role of an economic
incentive used by the central controller to subsidize gatekeepers for rejecting arrivals, while leaving them to
solve their own subproblems (11). A full decentralization will result by pitching η to a critical level η∗ under
which V L(η∗) = V R. Existence of such an η∗ follows from LP strong duality, drawing on the well-known LP
formulation for solving the DP equations of unichain average-reward finite state and action MDPs. Thus, η∗ is
obtained by solving the Lagrangian dual problem

minimize
η>0

V L(η). (13)

The latter, being a scalar convex minimization problem, can be solved efficiently if the V ∗
k (η) can be quickly

evaluated. Such is the case in the present setting, as the following new result shows. Let

B(λ) ,
∑

k∈K

Bmk,nk
(λ/µk), (14)

where Bmk,nk
(rk) denotes the blocking probability in the M/M/mk/nk queue with offered load rk.

Lemma 3.2. (a) It is optimal for (11) to: reject all arrivals if η > 1; accept arrivals when the queue is not
full if η < 1; take any action if η = 1;

(b) the optimal value of queue k subproblem (11) is given by

V ∗
k (η) =

{
λ

[
1 − (1 − η)Bmk,nk

(λ/µk)
]

if η < 1;

λη if η ≥ 1;

(c) the optimal value of the Lagrangian relaxation (10) is given by

V L(η) =

{
λ

[
K − B(λ) +

(
B(λ) − (K − 1)

)
η
]

if η < 1;

λη if η ≥ 1.

Proof. Part (a) follows since admission control subproblem (11) balances average throughput rewards, which
are earned at a rate of 1 per completed job, against average rejection subsidies, which are earned at a rate of
η per rejected job. Therefore, e.g., in the case η > 1, rejecting each arrival and hence collecting the resulting
subsidy of η is more profitable than accepting it only to receive a lesser reward of 1 when the job completes.
The cases η < 1 and η = 1 are argued similarly.

Part (b) follows by evaluating the optimal policies identified in part (a). Thus, in the case η < 1, the optimal
policy accepts all arrivals to queue k when it is not full, inducing an M/M/mk/nk queue. Hence, under such
an optimal policy, arrivals to the queue are lost with probability

E
[
Ãk

]
= P

{
Ãk = 1

}
= P

{
X̃k = nk

}
= Bmk,nk

(λ/µk),

and the queue throughput is E
[
µ̄k

(
X̃k

)]
= λ − λBmk,nk

(λ/µk). Therefore, the optimal objective value for
subproblem (11) is given by

λ − λBmk,nk
(λ/µk) + ηλBmk,nk

(λ/µk) = λ − (1 − η)λBmk,nk
(λ/µk).
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In the case η ≥ 1, it is optimal to reject all arrivals to queue k, and hence Ãk ≡ 1 and X̃k ≡ 0. Therefore,
E

[
Ãk

]
= 1 and E

[
µ̄k

(
X̃k

)]
= 0, which yields that the optimal objective value for subproblem (11) takes on the

value λη.
Part (c) follows directly from part (b), (12) and (14).

We are now ready to solve the Lagrangian dual problem (13), giving in closed form its optimal value, which
equals that of relaxed problem (9), and provides an upper bound on the optimal throughput V ∗ for problem
(4).

Proposition 3.3 (Throughput upper bound). If B(λ) > K − 1 (resp. if B(λ) ≤ K − 1), then η∗ = 0 (resp.
η∗ = 1) solves the Lagrangian dual problem (13), and hence its optimal value is V R = V L(η∗) =

[
K − B(λ)

]
λ

(resp. V R = V L(η∗) = λ).

Proof. The result follows immediately from (13) and Lemma 3.2(c) through elementary arguments.

Note that the upper bound V R on the optimal throughput V ∗ given in Proposition 3.3 is nontrivial only in
the case B(λ) > K − 1, in which V R =

[
K − B(λ)

]
λ < λ. One sees from (14) that the inequality B(λ) > K − 1

will hold when the arrival rate λ is high enough, since B(λ) → K as λ → ∞.
Note further that Proposition 3.3 also yields a lower bound on the minimum loss rate J∗ for problem (5):

since J∗ + V ∗ = λ, we obtain
J∗ >

[
B(λ) − (K − 1)

]
λ. (15)

3.3 The RB Index does not Yield a Particular Policy

We next adapt to the admission control subproblem (11) for queue k the concept of indexability for an RB
introduced in Whittle (1988) and extended in Niño-Mora (2002). Consider the collection of single-queue admis-
sion control subproblems (11), parameterized by the rejection subsidy η, which is allowed to range over the real
line R. We will thus refer to the η-subsidy subproblem. Let us say that such a problem collection is indexable
if there exists a break-even rejection subsidy ηRB

k (xk) attached to every queue state 0 6 xk < nk, such that,
for any given rejection subsidy η ∈ R, it is optimal for the η-subsidy subproblem to reject an arrival finding
0 6 xk < nk jobs present iff ηRB

k (xk) 6 η. We will refer to ηRB
k (xk) as the RB or Whittle index for queue k.

It follows immediately from the definition of indexability and Lemma 3.2(a) that each subproblem (11) is
indexable, with the RB index being constant across states: ηRB

k (xk) ≡ 1 We thus find that the RB index for
this model does not yield a particular policy — since the resulting index policy prescribes routing an arrival at
time t to a nonfull queue, if any, with currently highest index ηRB

k

(
Xk(t)

)
, breaking ties arbitrarily.

3.4 A Tie-Breaking Second-Order Index Policy

To break the ties caused by use of the RB index, we will use a second-order RB index, as introduced in Niño-
Mora (2006, Sec. 2.2) for a different model. To define the second-order index, consider the α-discounted version
of queue k’s admission control subproblem (11), where α > 0 denotes the discount rate:

maximize
πk∈ΠSR

k

E
πk

xk

[ ∫ ∞

0

e−αt
{

µ̄k

(
Xk(t)

)
+ ηλAk(t)

}
dt

]
. (16)

In (16), E
πk

xk
[·] denotes expectation under policy πk, conditioned on Xk(0) = xk.

Similarly as for (11), let us say that subproblem (16) is indexable if there exists a break-even rejection
subsidy ηRB

k (xk; α) for each queue state 0 6 xk < nk, such that, for any rejection subsidy η ∈ R, it is optimal
to reject an arrival finding 0 6 xk < nk jobs present, regardless of the initial state, iff ηRB

k (xk; α) 6 η. We will
refer to ηRB

k (xk; α) as the queue’s α-discount RB index.
Further, if the first-order Maclaurin series expansion of ηRB

k (xk; α) is

ηRB
k (xk; α) = 1 − θRB

k (xk)α + o(α), as α ց 0, (17)
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then we define the tie-breaking second-order RB index to be θRB
k (xk). It is the latter that we will use to define

a heuristic routing index policy for problem (4): route an arrival at time t to a nonfull queue, if any, with lowest
index θRB

k

(
Xk(t)

)
.

We next turn to showing that subproblem (16) is indexable, and to evaluating the second-order index
θRB

k (xk). We will attain both goals by reducing (16) to an equivalent subproblem that, unlike (16), satisfies
the sufficient indexability conditions for admission control problems given in Niño-Mora (2002, Sec. 7). The
following invariance identity will play a key role.

Lemma 3.4. Under any admission policy πk ∈ ΠSR
k for queue k,

E
πk

xk

[∫ ∞

0

e−αt
{

αXk(t) + µ̄k

(
Xk(t)

)
− λ

(
1 − Ak(t)

)}
dt

]
≡ xk.

Proof. Suppose that linear holding costs are incurred over time at unit rate. Then, the expected total discounted

(ETD) holding cost, E
πk

xk

[ ∫ ∞

0 e−αtXk(t) dt
]
, can be equivalently accounted for via job-oriented lump charges as

in Bell (1971). To do so, charge 1/α for each job initially present and for each job admitted thereafter, as though

they were to stay forever in the system, which gives the ETD charge xk/α + (λ/α)Eπk

xk

[ ∫ ∞

0 e−αt
(
1 − Ak(t)

)
dt

]
.

Then, refund to each job upon departure the amount 1/α, which gives the ETD refund (1/α)Eπk

xk

[ ∫ ∞

0 e−αtµ̄k

(
X(t)

)
dt

]
.

Equating the expected costs under both charging schemes yields the result.

We next draw on Lemma 3.4 to reformulate the objective of subproblem (16) in a form that is more convenient
for our purposes.

Lemma 3.5. The objective of subproblem (16) can be reformulated as

xk + λ/α − E
πk

xk

[∫ ∞

0

e−αt
{

αXk(t) + (1 − η)λAk(t)
}

dt

]
.

Proof. By Lemma 3.4, we have

E
πk

xk

[∫ ∞

0

e−αtµ̄k

(
Xk(t)

)
dt

]
= xk − E

πk

xk

[∫ ∞

0

e−αt
{

αXk(t) − λ
(
1 − Ak(t)

)}
dt

]
,

and hence we can write the objective of subproblem (16),

E
πk

xk

[ ∫ ∞

0

e−αt
{

µ̄k

(
Xk(t)

)
+ ηλAk(t)

}
dt

]
,

as the given expression.

Consider now the discounted-cost subproblem

minimize
πk∈ΠSR

k

E
πk

xk

[∫ ∞

0

e−αt
{

Xk(t) + νλAk(t)
}

dt

]
, (18)

which is to find an admission control policy for queue k minimizing the expected discounted value of holding
costs and rejection charges, with the former continuously accruing at unit rate per unit time a job spends in the
system, and the latter being incurred at rate ν per rejected job. This is a special case of the general optimal
admission control problem solved in Niño-Mora (2002, Sec. 7) via RB indexation. The results there ensure
existence of the RB index νRB

k (xk; α) attached to states 0 6 xk < nk, which is such that, for any value of the
rejection charge ν ∈ R, it is optimal for problem (18) to reject an arrival in state xk iff νRB

k (xk; α) > ν.
We draw on Niño-Mora (2002, Sec. 7) to address the average-cost subproblem

minimize
πk∈ΠSR

k

E
πk

[∫ ∞

0

{
X̃k + νλÃk

}
dt

]
, (19)
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as results there ensure existence of the RB index νRB
k (xk) = limαց0 νRB

k (xk; α), which is such that, for any
ν ∈ R, it is optimal for (19) to reject an arrival in state 0 6 xk < nk iff νRB

k (xk) > ν.
We are now ready to establish that subproblem (16) is indexable, and to evaluate the second-order index

θRB
k (xk) defined via (17).

Proposition 3.6. (a) Subproblem (16) is indexable, with its RB index ηRB
k (xk; α) being related to that of

subproblem (18) by ηRB
k (xk; α) = 1 − ανRB

k (xk; α);

(b) we have the Maclaurin expansion ηRB
k (xk; α) = 1−νRB

k (xk)α+o(α) as α ց 0, and hence the second-order
RB index defined via (17) is θRB

k (xk) = νRB
k (xk).

Proof. (a) It follows from Lemma 3.5 that subproblem (16) is equivalent to

minimize
πk∈ΠSR

k

E
πk

xk

[∫ ∞

0

e−αt
{

Xk(t) +
1 − η

α
λAk(t)

}
dt

]
,

and hence the results in Niño-Mora (2002, Sec. 7) ensure that it is optimal to reject an arrival in state 0 6 xk < nk

iff νRB
k (xk; α) > (1 − η)/α, i.e., iff 1 − ανRB

k (xk; α) 6 η. This shows that subproblem (16) is indexable, with RB
index ηRB

k (xk; α) = 1 − ανRB
k (xk; α).

(b) This part follows from (a) and the result referred to above on the existence of the RB index νRB
k (xk) =

limαց0 νRB
k (xk; α) for average-cost subproblem (19).

3.5 Efficient Computation and a Closed Formula for the Index θ
RB

k
(xk)

In light of the identity θRB
k (xk) ≡ νRB

k (xk) in Proposition 3.6(b), to evaluate θRB
k (xk) we can use the coupled first-

order recursions given in Niño-Mora (2002, pp. 396–397) for computing the index νRB
k (xk). Besides θRB

k (xk),
such recursions evaluate quantities yk(xk) and wk(xk), as follows, where we write µ̄k(xk) , min(xk, mk)µk,
ρk(xk) , λ/µ̄k(xk + 1), and ∆µ̄k(xk) , µ̄k(xk) − µ̄k(xk − 1): for 1 ≤ xk < nk,

θRB
k (xk) = θRB

k (xk − 1) +
1 − θRB

k (xk − 1)∆µ̄k(xk + 1)

∆µ̄k(xk + 1) + wk(xk − 1)/ρk(xk − 1)

yk(xk) = 1 −
λµ̄k(xk)/yk(xk − 1)[

λ + µ̄k(xk)
][

λ + µ̄k(xk + 1)
]

wk(xk) = λ
∆µ̄k(xk + 1) + wk(xk − 1)/ρk(xk − 1)

yk(xk)
[
λ + µ̄k(xk + 1)

] ,

(20)

with initial values θRB
k (0) = 1/µk, yk(0) = 1, and wk(0) = λµk/(λ + µk).

Using (20) the index values θRB
k (0), . . . , θRB

k (nk − 1) are efficiently evaluated in O(nk) time.
We next develop a closed formula for the index θRB

k (xk), by exploiting the representation in Niño-Mora
(2002, The. 6.4(b)) for νRB

k (xk), given by

θRB
k (xk) =

1

λ

Lmk,xk+1(rk) − Lmk,xk
(rk)

Bmk,xk
(rk) − Bmk,xk+1(rk)

, (21)

where Lmk,xk
(rk) and Bmk,xk

(rk) denote the mean number in system and the blocking probability for the
M/M/mk/xk queue with offered load rk = λ/µk, respectively. The following result refers to the Erlang-B
formula Bmk

(rk) for the blocking probability in the M/M/mk/mk queue with offered load rk, and to the
Erlang-C formula Cmk

(rk), which is used even in the case rk ≥ mk, where it does not have the interpretation
for the case rk < mk as the delay probability for the M/M/mk queue with offered load rk. We further denote
by C′

mk
(rk) the derivative of Cmk

(rk) with respect to rk, and by ρk , rk/mk the offered load per server.

Proposition 3.7. The RB index θRB
k (xk) has the following evaluation: θRB

k (xk) = 1/µk for 0 ≤ xk < mk; and,
for mk ≤ xk < nk,

θRB
k (xk) =

[
ρkCmk

(rk)(ρxk−mk+1
k − 1)

mkµk(ρk − 1)2
−

xk + 1 − rk

mkµk(ρk − 1)

]
, if ρk 6= 1,
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and

θRB
k (xk) =

1
2

(
xk − mk + 2 + 2mkC′

mk
(mk)

)
(xk − mk + 1) + mk

mkµk

, if ρk = 1.

Proof. Two cases need be distinguished. If xk < mk, the M/M/mk/xk queue reduces to the M/M/xk/xk queue.
Hence, Bmk,xk

(rk) = Bxk
(rk), Lmk,xk

(rk) = rk

[
1 − Bxk

(rk)
]

and, therefore, θRB
k (xk) = 1/µk. In the second

case, when mk ≤ xk < nk, substituting for Bmk,xk
(rk) and Lmk,xk

(rk) their closed formulae (see, e.g., Gross
et al. (2008, Sec. 2.5)), and simplifying the resulting expressions, gives the result when ρk 6= 1.

The formula for the case ρk = 1 is obtained by replacing (in the formula for the case ρk 6= 1) Cmk
(rk) with

its first-order Taylor expansion 1 − mkC′
mk

(mk)(1 − ρk), and simplifying the resulting expression as ρk → 1.

To evaluate the required C′
mk

(mk) when ρk = 1, we can draw on the identities

Cmk
(rk) =

mkBmk
(rk)

mk − rk + rkBmk
(rk)

, B′
mk

(rk) =
mk − rk + rkBmk

(rk)

rk

Bmk
(rk),

where B′
mk

(rk) is the derivative of Bmk
(rk) with respect to rk, which yield that B′

mk
(mk) = Bmk

(mk)2 and

C′
mk

(mk) =
[
1 − Bmk

(mk)
]
/
(
mkBmk

(mk)
)
.

4 PI Index Method

This section discusses application of the PI index method, based on performing one PI step over an OBS,
extending the results in Krishnan (1988).

4.1 First Stage: OBS Method

This section considers the OBS method to design a static routing policy for the present model, extending work
in Yao and Shanthikumar (1987). Whereas the latter paper addressed only the special no-waiting-room case
mk ≡ nk, the following discussion applies to the general case mk 6 nk.

4.1.1 BS Policies.

Consider a Bernoulli splitting (BS) where each arrival is independently routed to queue k with a fixed probability
pk. Note that BS policies can violate requirement (1) by routing an arrival to a full queue, and hence they do
not belong to the class ΠSR of admissible policies considered in Section 2.

To accommodate such static policies, we reformulate problem (5) as

minimize
π∈Π̃

SR

λE
π

[
∑

k∈K

(
1 − Ãk

)
1

{X̃k=nk}

]
, (22)

where Π̃
SR

is the class of stationary randomized policies obtained from ΠSR by allowing randomized actions,
dropping the constraint (1), and replacing (2) with

∑

k∈K

Ak(t) = K − 1, t > 0. (23)

Thus, under policies in Π̃
SR

every arrival is routed to some queue, which can be full. Note that the objective
in (22) is the (long-run) expected proportion of jobs that are lost due to being routed to a full queue, and that
problems (5) and (22) are equivalent, provided the following result holds.

Conjecture 4.1. An optimal policy for problem (22) routes an arrival to a nonfull queue, if any is available.
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While Conjecture 4.1 appears intuitively clear, the author has not found a proof in the literature.
Under a BS, the queues are decoupled, with queue k behaving as an M/M/mk/nk queue with arrival rate

λk , λpk. Denoting by rk(λk) , λk/µk the offered load to queue k, the total loss rate is
∑

k∈K
φk(λk), where

φk(λk) , λkBmk,nk

(
rk(λk)

)
and Bm,n(r) denotes the blocking probability in the M/M/m/n queue with offered

load r. Note that the derivative of the loss rate φk(λk) for queue k has the evaluation

φ′
k(λk) = Bmk,nk

(
rk(λk)

)
+ rk(λk)B′

mk,nk

(
rk(λk)

)
, (24)

from which it follows that φ′
k(0) = 0, a result we will use below.

Each φk(λk) is continuously differentiable. Shanthikumar and Yao (1992, Cor. 5.i) shows that φk(λk) is
convex nondecreasing. Liyanage and Shanthikumar (1992, Th. 2.9 (2.26i)) states the stronger result (though
referring to the former paper for a proof) that φk(λk) is increasing and strictly convex.

Proposition 4.2 (Liyanage, Shanthikumar, and Yao). φk(λk) is increasing and strictly convex.

4.1.2 Computing the OBS

The OBS method is to find a BS λ∗ = (λ∗
k) that solves the NLP

minimize

{
∑

k∈K

φk(λk) :
∑

k∈K

λk = λ, 0 6 λk 6 λ, k ∈ K

}
. (25)

Although the constraints λk 6 λ in (25) are redundant, we include them for algorithmic reasons, as discussed
below.

Problem (25) is an example of the much studied separable, convex, and differentiable nonlinear resource
allocation problem. Nevertheless, we analyze it next to exploit its special properties.

Proposition 4.2, together with the compactness of the feasible solutions region, ensures existence of a unique
λ∗ attaining the minimum cost JBS of (25), which is characterized as the unique feasible solution satisfying the
first-order Karush–Kuhn–Tucker (KKT) conditions: There exists a unique multiplier y∗ ∈ R attached to the
equality constraint in (25) such that

φ′
k(λ∗

k) > y∗ if λ∗
k = 0; φ′

k(λ∗
k) = y∗ if 0 < λ∗

k < λ; φ′
k(λ∗

k) 6 y∗ if λ∗
k = λ. (26)

To find the optimal (λ∗, y∗) pair, we consider the Lagrangian function

LBS(y) , min
λk∈[0,λ]

k∈K

∑

k∈K

φk(λk) + y

[
λ −

∑

k∈K

λk

]
= λy +

∑

k∈K

min
λk∈[0,λ]

[
φk(λk) − λky

]
, (27)

which is concave in y and gives a lower bound LBS(y) 6 JBS. Since the right-hand side in (27) decomposes
into K one-variable strictly convex subproblems, we can evaluate LBS(y) by finding the unique optimal solution
λ∗

k(y) to each one, so

LBS(y) = λy +
∑

k∈K

[
φk

(
λ∗

k(y)
)

− λ∗
k(y)y

]
. (28)

The following result is immediate.

Lemma 4.3. (a) λ∗
k(y) = 0 if y 6 φ′

k(0) (i.e., if y 6 0, since φ′
k(0) = 0);

(b) λ∗
k(y) = λ if y > φ′

k(λ);

(c) if 0 < y < φ′
k(λ), λ∗

k(y) is the unique root in (0, λ) of φ′
k(λk) = y;

(d) λ∗
k(y) is continuous nondecreasing in y ∈ R, being increasing over y ∈ [0, φ′

k(λ)]. Hence,
∑

k∈K
λ∗

k(y) is
continuous increasing over y ∈ [0, maxk∈K φ′

k(λ)].
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The optimal y∗ is found by solving the Lagrangian dual problem

maximize
{

LBS(y) : y ∈ R
}

, (29)

which, due to Proposition 4.2, has the same optimal value JBS as (25).
The next result, which exploits the properties discussed above of the functions φk(λk), gives the key to

finding the solutions to dual and primal problems (29) and (25). Let b , mink∈K φ′
k(λ). Part (a) identifies a

finite open interval containing the optimal y∗, while part (b) ensures that the OBS routes traffic to every queue.

Proposition 4.4. (a) Lagrangian dual problem (29) is equivalent to

maximize
{

LBS(y) : y ∈ (0, b)
}

, (30)

with its optimal solution y∗ being the unique root in (0, b) of the equation
∑

k∈K

λ∗
k(y) = λ; (31)

(b) the OBS of the arrival stream is λ∗ ,
(
λ∗

k(y∗)
)
, which satisfies that

0 < λ∗
k < λ, k ∈ K. (32)

Proof. The proofs of both parts are intertwined. We start by showing that two of the three cases in the KKT
conditions (26) can be dismissed. Thus, if the OBS had λ∗

k = 0 for some station k, then the multiplier would be
y∗ ≤ φ′

k(0) = 0. But then, for any station l with λ∗
l > 0 we would have that y∗ ≥ φ′

l(λ
∗
l ) > 0, a contradiction,

which discards the case λ∗
k = 0. And, if the OBS had λ∗

k = λ for some station k, we would then have that
λ∗

l = 0 for some other station l, which, as we have just seen, cannot happen. Hence, the only possible case is
0 < λ∗

k < λ, which must hold for every k.
Now, it follows from the KKT conditions that it must be φ′

k(λ∗
k) = y∗, and hence λ∗

k = Λk(y∗) for every k.
And, finally, since

∑
k λ∗

k = λ, y∗ is characterized by the equation (31), which has a unique root in (0, b), since
the Λk(y) are increasing in y and satisfy that Λk(0) = 0 and Λk(bk) = λ.

We can approximate y∗ within the desired accuracy using, e.g., the bisection method on (31), which further
yields an approximation to λ∗.

The next result gives the OBS in closed form, assuming equal buffer (nk ≡ n) and server-pool (mk ≡ m)
sizes at the stations, in which case they are shown to have equal offered loads λ∗

k/µk ≡ r∗. It extends the result
in Yao and Shanthikumar (1987, Cor. 4.1) for the case mk = nk ≡ m and µk ≡ µ.

Proposition 4.5. If nk ≡ n and mk ≡ m, then under the OBS all queues have equal offered loads, i.e.,
λ∗

k = λµk/
∑K

l∈K
µl, for k ∈ K.

Proof. From (24), we have that φ′
k(λk) = φm,n

(
rk(λk)

)
, with φm,n(r) being increasing in r (see Proposition

4.2). Hence, to find the root λ∗
k of φ′

k(λk) = y∗, we can proceed as follows. Let r∗ be the unique root of
φm,n(r) = y∗. Then, from rk(λ∗

k) = λ∗
k/µk = r∗ we obtain λ∗

k = µkr∗ for each k. Further, from
∑

l λ∗
l = λ we

obtain r∗
∑

l µl = λ, and hence r∗ = λ/
∑

l µl and λ∗
k = λµk/

∑
l µl for each k.

4.1.3 Efficient Numerical Evaluations.

Since implementation of the BS method requires multiple evaluations of φk(·) and φ′
k(·) for each queue k, it is

essential that such functions be computed as efficiently as possible. In light of the definition of φk(λk), and of
(24), the key is to evaluate the blocking probability Bm,n(r) in the M/M/m/n queue with offered load r, as
well as its derivative with respect to r, B′

m,n(r).
We first formulate Bm,n(r) in terms of the Erlang-B function Bm(r). Standard results give that, denoting

by ρ , r/m the offered load per server for the queue,

Bm,n(r) =





ρn−m(1 − ρ)Bm(r)

1 − ρ + ρ(1 − ρn−m)Bm(r)
, r 6= m

Bm(m)

1 + (n − m)Bm(m)
, r = m.

(33)

13



As for Bm(r) and its derivative B′
m(r), by standard results we have

B0(r) = 1, Bm(r) =
rBm−1(r)

m + rBm−1(r)
, B′

m(r) =
m − r + rBm(r)

r
Bm(r), m > 1. (34)

We next give recursions for computing Bm,m(r) and B′
m,n(r). From (33),

Bm,m(r) = Bm(r), Bm,n(r) =
rBm,n−1(r)

m + rBm,n−1(r)
, n > m + 1. (35)

Further, from (33) and (34) we obtain

B′
m,n(r) =

[
n − r

ρ
+

(
n − r −

1 − ρn−m

(1 − ρ)ρn−m

)
Bm,n(r)

1 − ρ

]
Bm,n(r)

m
, r 6= m, (36)

B′
m,n(m) =

[
n − m +

(
1 + m + n − (1 + n − m)2

)Bm,n(m)

2

]
Bm,n(m)

m
. (37)

The above recursions allow us to compute Bm,n(r) and B′
m,n(r) in O(n) time.

4.1.4 Second Stage: PI Step and Index Policy.

Krishnan (1988) first applied the PI method to the present model, yet focusing only on its second stage (deriving
the PI index rule), once the first stage (obtaining the OBS) has been carried out. We next briefly reformulate
Krishnan’s results in the present notation, and further extend them to obtain a new result.

Krishnan (1988) argues from first principles that the PI routing index has the following evaluation, where
r∗

k , λ∗
k/µk, ρ∗

k , r∗
k/mk, and λ∗ = (λ∗

k) is the OBS:

θPI
k (xk) =





Bmk,nk
(r∗

k)/Bxk
(r∗

k), 0 6 xk 6 mk,

Bmk,nk
(r∗

k)
1 − ρ∗

k + ρ∗
k(1 − (ρ∗

k)xk−mk)Bmk
(r∗

k)

(ρ∗
k)xk−mk (1 − ρ∗

k)Bmk
(r∗

k)
, mk < xk < nk.

(38)

Note that, in the case ρ∗
k = 1, the latter formula must be replaced with

θPI
k (xk) = Bmk,nk

(mk)
[
xk − mk + 1/Bmk

(mk)
]
, mk < xk < nk. (39)

Such expressions arise as solutions to the following first-order linear recursion:

φ∗
k − λ∗

kθPI
k (0) = 0; φ∗

k − λ∗
kθPI

k (xk) + µ̄k(xk)θPI
k (xk − 1) = 0, 1 6 xk < nk, (40)

where φ∗
k , φk

(
λ∗

k

)
= λ∗

kBmk,nk
(r∗

k). Thus, (40) allows to compute the nk PI index values {θPI
k (xk) : 0 6 xk <

nk} in O(nk) time, yet provided λ∗
k and φ∗

k are available.
We next give a new result showing that, for the case in Proposition 4.5 of equal buffer (nk ≡ n) and

server-pool (mk ≡ m) sizes at all queues, the PI index policy is insensitive to service rates µk, reducing to SQ
routing.

Proposition 4.6. If nk ≡ n and mk ≡ m for each k, then the index θPI
k (xk) is equal for each k, and hence the

PI policy reduces to the SQ routing rule.

Proof. Proposition 4.5 ensures that, for each queue k, λ∗
k = λµk/

∑
l µl, and hence r∗

k ≡ r∗ , λ/
∑

l µl. Now,
the formulae for the PI index in (38)–(39) ensure that θPI

k (xk) is the same for each k, which yields the result.
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5 Numerical Experiments

This section reports on the results of a small scale numerical study to benchmark the proposed RB second-order
index policy, both against the optimal performance and against four alternative routing index policies that
have been proposed in the literature: SQ, SED, PI, and the Never Queue (NQ) policy discussed in Shenker
and Weinrib (1989). Note that the routing indices corresponding to the SQ and the SED policies are given,

respectively, by θSQ
k (xk) , xk, and θSED

k (xk) , 1/µk if 0 6 xk < mk, with θSED
k (xk) , 1/µk + (xk + 1 −

mk)/(mkµk) = (xk + 1)/(mkµk) if mk 6 xk < nk. Recall that xk is the number of jobs present in queue k,
including the ones getting service.

As for the NQ policy, which is a myopic policy that seeks to maximize the instantaneous throughput rate, it
is defined in Shenker and Weinrib (1989) for the case of single-server queues as follows: “The NQ policy chooses
the fastest server that has an empty queue; if there are no empty queues, the queue with minimal xk/µk is
selected.” Noting that the term xk/µk is the expected remaining work and, also, the expected wait prior to
entering service under FCFS for a job joining queue k when it holds xk jobs, waiting or being served, we can
generalize such an NQ policy to the case of a queue with mk servers, as follows: choose the queue with the fastest
servers that has some idle server; if there are no idle servers at any queue, select the queue with the minimal
expected wait prior to entering service under FCFS, which is given by (xk −mk +1)/(mkµk). The NQ index for

queue k can hence be formulated as θNQ
k (xk) , 1/µk if 0 6 xk < mk, with θNQ

k (xk) , c + (xk + 1 − mk)/(mkµk)

if mk 6 xk < nk, where c , maxk 1/µk.
The study further assesses two lower bounds on the minimum loss performance: that resulting from the

relaxation in the RB index method, which we denote by LBR, and the lower bound obtained by pooling all
buffer and service resources into a single-buffer single-server queue, which we denote by LBP.

The study considers instances with K = 3 queues. For each base instance, the nominal load ρ , λ/
∑

k mkµk

was made to range over the interval [0.7, 1.2], from moderate load to overload, by varying the arrival rate λ. For
each instance, the minimum loss probability (zOP) was computed by solving with CPLEX the LP formulation
of the optimality equations for the problem obtained from (5) by dropping the factor λ from the objective. Such
equations are: for every system state 0 6 x 6 n,

zOP + h(x) =





min
k∈K : xk<nk

−
∑

l∈K : 1≤xl6nk

µ̄l(xl)∆lh(x) + λ∆kh(x + ek), if x 6= n

1 −
∑

l∈K : 1≤xl6nk

µ̄l(xl)∆lh(x), if x = n,
(41)

where the h(x) represent the relative costs, and we write ∆lh(x) , h(x) − h(x − el), with el being the lth unit
coordinate vector in R

K . Further, the loss probabilities zSQ, zSED, zPI, zNQ, and zRB under the SQ, SED, OBS,
PI, NQ, and RB policies, were computed by solving with MATLAB the corresponding evaluation equations.
Finally, the lower bounds zLBP and zLBR on zOP were computed.

The results show both (a) the percent deviation from the minimum loss performance for each policy and
bound considered, e.g., 100(zPI − zOP)/zOP and 100(zOP − zLBP)/zOP; and (b) the percent performance im-
provement of the RB index policy against each of the other policies, e.g., 100(zPI − zRB)/zPI.

The experiments focus on two highly asymmetric instances, as the author has found in other experiments
that it is on such instances that the largest differences between the performances of alternative policies are
obtained.

5.1 Experiment 1

The base instance for the first experiment has server pool sizes m = (1, 4, 10), service rates µ = (80, 15, 5), and
buffer sizes n = (16, 12, 10). Such a buffer size dimensioning ensures that the largest expected delay (including
the service time) of a job routed to any queue does not exceed nk/(mkµk) ≡ 0.2 time units.

Figure 2 plots the results. The left pane shows that only the RB policy is near optimal, with the remaining
policies being severely suboptimal in moderate traffic, being ranked in the order (from better to worse) NQ,
PI and SQ (with PI and SQ having a similar performance), and SED. The bounds are non-informative except
under overload (ρ > 1), with the LBR bound being better than LBP for large ρ.
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The right pane shows that the gains of the RB policy against the alternative policies are substantial in
moderate traffic, getting smaller as traffic becomes heavier. The close performance of all policies under overload
is to be expected, since in such conditions the system will be full most of the time, leaving little margin to the
system controller for affecting performance.
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Figure 2: Experiment 1: m = (1, 4, 10), µ = (80, 15, 5), n = (16, 12, 10).

5.2 Experiment 2

The second experiment considers the base instance with server pool sizes m = (mk) = (1, 6, 8), service rates
µ = (1440, 160, 100), and buffer sizes n = (18, 12, 10). Such a buffer size dimensioning ensures that the largest
expected delay of a job routed to any queue does not exceed nk/(mkµk) ≡ 0.0125 time units. Figure 3 plots
the results, which are similar to those of the first experiment, except that now the bound LBP is always better
than LBR.

0.7 0.8 0.9 1 1.1 1.2
−40

−30

−20

−10

0

10

20

30

40

ρ

de
vi

at
io

n 
(%

) 
fr

om
 o

pt
im

al

 

 

SED

SQ

PI

NQ

RB

LBR

LBP

0.7 0.8 0.9 1 1.1 1.2
0

20

40

60

80

100

ρ

ga
in

 (
%

) 
of

 R
B

 p
ol

ic
y 

vs
. o

th
er

 p
ol

ic
ie

s

Figure 3: Experiment 2: m = (1, 6, 8), µ = (1440, 160, 100), n = (18, 12, 10).
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5.3 Experiment 3

In experiments 1 and 2, model parameters were chosen to ensure that the largest expected delay of a job did
not exceed a small value, motivated by QoS considerations. To explore the effect of allowing larger maximum
expected delays, we report on a third experiment, which considers the base instance with server pool sizes and
service rates as in the first experiment, but with the larger buffer sizes n = (18, 18, 18), under which the largest
expected delay of a job (0.36 time units) increases by 80% with respect to that in the first experiment. Figure
4 plots the results, which are similar to those of the first experiment, except that now the PI policy shows a
substantially improved performance, becoming the second-best policy. Yet, the RB policy is still the best policy,
being again nearly optimal and substantilly outperforming the other policies while the traffic intensity is not
too high.

A similar behavior is observed when buffer sizes are modified in the second experiment to be n = (18, 18, 18).
Based on this and other experiments not reported here, the effect of increasing the buffer sizes on the

performance of the tested policies (which has the effect of increasing the largest expected delay of a job)
appears to be most apparent in the case of the PI policy, whose performance improves significantly. Yet, in all
the instances considered by the author, the best policy among those considered is still the RB policy, which is
consistently near optimal.
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Figure 4: Experiment 3: m = (1, 4, 10), µ = (80, 15, 5), n = (18, 18, 18).

6 Conclusions

This paper has presented a novel index policy for dynamic routing to parallel multiserver finite-buffer queues,
with a maximum average throughput (or, equivalently, minimum average loss) objective, based on a second-order
RB index that is used to break ties caused by the fact that the conventional first-order RB index is constant.
The proposed RB index is efficiently computed by a first-order linear recursion, and is also given in closed form.
As a state-of-the-art alternative, the paper has considered the previously proposed and more computationally
demanding index policy obtained by performing one step of the PI algorithm on a base policy given by the
OBS. New results of algorithmic and theoretical interest are presented, including the result that the PI index
policy reduces to SQ routing in the case of equal buffer and server-pool sizes.

A small scale numerical study is reported showing that, on the instances considered, the proposed RB index
policy is consistently near optimal and can substantially outperform each of four alternative index policies,
which are the SQ, SED, NQ, and PI. The study, though small in scale, provides evidence for arguing that, in
highly heterogeneous systems, it may not suffice with naive index policies to attain a near optimal throughput
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performance. The RB index policy, though relatively sophisticated, can nevertheless be efficiently evaluated in
linear time on the number of index values to be computed, and is also given in closed form.

It would be interesting for future work to try to establish theoretically the observed near-optimality of the
RB index policy, or to identify a parameter range where it performs poorly, if any. In the experiments performed
by the author, including those not reported here, the RB index policy was found to be consistently near optimal.
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