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Abstract

This paper deals with the service parts end-of-life inventory problem in a circumstance

that demands for service parts are differentiated. Customer differentiation might be due to

criticality of the demand or based on various service contracts. In both cases, we model the

problem as a finite horizon stochastic dynamic program and characterize the structure of the

optimal policy. We show that when customers are differentiated based on the demand criticality

then the optimal structure consists of time and state dependent threshold levels for inventory

rationing. In case of differentiation based on service contracts, we show that in addition to

rationing thresholds we also need contract extension thresholds by which the system decides

whether to offer an extension to an expiring contract or not. By numerical experiments in

both cases, we identify the value of incorporating such decisions in service parts end-of-life

inventory management with customer differentiation. Moreover, we show that these decisions

not only result in cost efficiency but also decrease the risk of part obsolescence drastically.

Keywords: End-of-life inventory, spare parts, customer differentiation
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1 Introduction

With the rapid technology development, life cycles of products have become shorter. As a conse-

quence, managing the inventories of service parts in order to fulfill service obligations and avoid

obsolescence risk becomes a major challenge for companies. This becomes even more crucial as

the production of a service part is discontinued when the part enters its final phase of service life

cycle. One of the main tactics adopted by various industries to cope with the end-of-life inventory

problem is placing a “final order quantity” at the beginning of the final phase. The final order

should be placed in a quantity such that it balances the risk of obsolescence at the end of horizon

versus the risk of failure to meet service agreements.

The service agreements oblige the company to provide its customers with a certain service

level. It has been common in practice that companies offer different service levels versus differ-

ent prices. As a result, customers are segmented according to the service level they choose. This

introduces the idea of rationing available inventories for some customer classes. The practice of ra-

tioning inventory (or capacity) among different customer classes is an increasingly important tool

for balancing supply with demand in environments where requirements for service vary widely.

Basically a rationing policy issues stock to some customers while refuses or delays demand ful-

fillment for others. It is analogous to the highly successful yield management policies adopted by

airlines and hotels. In capital-intensive goods industry there are several examples of implement-

ing a customer differentiation scheme. For example defense systems (Deshpande et. al. 2003a

and 2003b), semiconductor manufacturing equipment (Kranenberg and Van Houtum 2008), and

mobile phone operating systems (Möllering and Thonemann 2008). Essentially, there are various

situations that illustrate the importance of customer differentiation for inventory control, namely

demand criticality based differentiation or service contract based differentiation. The criticality of

the demand for the spare parts can be due to various reasons. First, a spare part can be critical in

one place and non-critical in another. For example, breaking down of a mainframe computer at

a stock exchange has more severe financial impact than when a mainframe computer in a library

goes down. Another example is given by Dekker et. al. (1998). They consider the case of a
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petrochemical plant in which one could distinguish between vital, essential and auxiliary equip-

ments. Demands for service parts originating from equipments in each of these classes are given a

different level of criticality. Another situation wherein demand criticality arises is identified where

demands happen for both regular replenishment and emergency orders. Obviously, a demand for

an emergency order is given a higher priority than a regular replenishment order.

In environments in which manufacturers of complex goods sell directly to customers, service

parts are distributed primarily through service contracts. For OEMs and service providers that

handle performance-based service contracts for customers, service payments are based on up-time

performance or equipment availability, rather than actual support cost. This includes companies

in the aerospace and defense, industrial chemical, semi-conductor equipment, and networking and

telecom industries (Aberdeen Group, 2005). Service providers offer an array of service contracts

for a single product. These service contracts impose different service requirements for service

providers against different prices. Murthy and Blischke (2005) discuss the factors that form the

distinction among various service contracts. In general one could argue that the distinctions are

induced by varying: 1) Service responses and/or repair time commitments; and 2) Price and/or

cost structures. The response times vary significantly from situation to situation. For example

in mission critical situations, the service provider is always present on-site whereas in the same

day delivery, the response time varies from 2 to 24 hours. Cohen et al. (2006) highlight that

consumer products such as TVs and PCs have lower response time requirements. On the other

hand, businesses computing machines, construction equipment and aircraft have typically very

high response time requirements. The failure to meet service obligations may results in penalties

that are negotiated during the contract formalization. In such a setting, service contract based

differentiation has been an increasing trend for after-sale service providers.

With the technology developments and shortening of products life cycles, service parts enter

the end-of-life phase sooner. Consequently, companies face a huge service responsibility while the

parts are in the final phase and parts provisioning is not guaranteed any longer. Therefore, compa-

nies are mandated to take into account various types of service obligations they have while making
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the final order quantity decisions. Considering this aspect, in the sequel of this paper, we study

the inventory control problem of a capital-intensive product service part when the part production

is discontinued. We proceed by characterizing the structure of an optimal inventory control policy

in the final phase where customers are differentiated. We consider both demand criticality based

differentiation and contract based differentiation schemes. Using Markov decision processes, we

show that in these settings inventories should be controlled according to time dependent thresh-

old levels that consider the level of available inventory. Moreover, we study the advantages of

incorporating the critical level policies in this problem.

The rest of this paper is structured as follows. Section 2 proceeds by a brief overview of the

literature on end-of-life inventory decisions and inventory problems with customer differentiation.

Next, in section 3 we describe the problem. Section 4 formulates the problem when customers are

differentiated based on demand criticality. Section 5 considers a service contract-based differenti-

ation and section 5 concludes the paper.

2 Literature Review

In this paper, we consider the inventory control of service parts of a capital good manufacturer

in the final phase of their service life cycle. The primary trade-off in this phase is balancing the

risk of obsolescence and that of unmet service obligations. To do so, one of the main tactics used

in practice is placing a final order. This problem is called final buy problem (FBP), or the end

of production problem (EOP). There are three streams of research on the final phase inventory

problem differentiated by the approach taken, namely cost driven, service driven and forecasting

based approaches.

In a service-driven approach a service level should be optimized regardless of the cost in-

curred by the system. Fortuin (1980, 1981) describes a service level approach and addresses non-

repairable items or consumable spare parts. He derives a number of curves by which the optimal

final order quantity for a given service level can be obtained. Another service driven approach is
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developed by van Kooten and Tan (2009) for a system in which parts are subject to the risk of

condemnation. They build a transient Markovian model by which the corresponding optimal final

order quantity can be obtained for a given service level.

Basically, a cost-driven approach decides on the quantity purchased by weighing the cost of

ordering too many against the cost of buying too few or in other words a news-vendor problem

approach. Among this category of works there are Teunter and Fortuin (1999), Teunter and Klein

Haneveld (2002), Cattani and Souza (2003), Bradley and Guerrero (2009), Krikke and van der

Laan (2010) and Pourakbar et. al. (2010, 2011). The latter also provides a general review on this

subject.

Forecasting based approaches focus on forecasting demand for a discontinued product instead

of dealing with the production or inventory problem. Moore (1971) is the first one to propose

this approach followed by Ritchie and Wilcox (1977). Hong et. al. (2008) develops a stochastic

forecasting model using the install-based information to forecast final order quantity.

The focus of the previously mentioned works are on spare parts planning. However, there are

similar problems in the context of new product introduction that deal with placing a final order for

products rather than parts. In other words, this category of works deals with the production and

inventory planning when a product is replaced by its next generation counterpart. The main issues

are related to the inventory planning of old and new generations of the product together with the

timing of the release of the new product. We refer the interested readers to Li et. al. (2010) and

Xu et. al. (2010) and references there in for an overview of this stream of literature.

Another stream of research related to this work is the issue of customer differentiation. In

traditional inventory systems all customer demands are treated equally and fulfilled based on a

first come first serve policy. However, in practical settings, managers often differentiate customers

by assigning a priority based on the level of service customers are expecting. A very common

approach employed in this setting is critical level policy. According to a critical level policy the

system reserves some inventory for the higher priority customer. In other words, given the current

level of inventory, the system may deliberately decide to deny some lower priority customers access
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to the inventory in anticipation of higher priority demand arriving in the future. It is shown that

this type of policy has considerable advantage over the traditional inventory policies in which it is

assumed that all customers receive the same level of service. These types of problem have been

studied extensively under various assumptions, see for example Veinott (1965), Topkis (1968), Ha

(1997), Cattani and Souza (2002), Dekker et. al. (2002), De Vericourt et. al. (2002), Deshpande

et. al. (2003), Frank et. al. (2003), Kranenburg and Van Houtum (2007, 2008), Teunter, Klein

Haneveld (2008) and Benjaafar et. al. (2010).

However, to the best of our knowledge the issue of a customer differentiated inventory system

in the final phase has not been dealt with in the literature. There are certain aspects that make this

problem paramount. First of all, the end-of-life phase is considered the longest in the service parts

life cycle. Therefore, we expect that service responsibilities are mostly stretched to this phase

as well. However, another major complication in this phase is that the opportunity of ordering

parts is not guaranteed and therefore companies should consider various service obligations at the

moment the final order is placed. What distinguishes our work from the rest of the literature is

that first, we consider customer differentiation in the final phase of the service life cycle. Next, we

characterize the structure of the optimal inventory policy in this phase for demand criticality based

differentiation and service contract based differentiation. Using a finite horizon Markov decision

process, we show that in case of demand criticality based differentiation inventories should be

controlled according to some time and state-dependent criticality levels. Moreover, for service

contract based differentiation we show that we also need some time dependent contract extension

thresholds. Characterizing the optimal policy structure, we study the value of the optimal policy

by investigating similar systems without critical level or contract extension thresholds.

3 Problem Description

We consider the End-of-Life inventory decisions associated with a spare part used by different

classes of customers in a finite horizon [0, H]. 0 denotes the time that the last time procurement
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decision for service parts should be made . Parts can be either produced or purchased with a cost

cp per item. After this time, parts acquisition is not guaranteed any more. H signifies the end

of the horizon and it is the time that the last service or warranty contract expires. All parts left

at the end of the horizon are considered obsolete and should be disposed of. While deciding on

the final order quantity, one should note that overage stock of service parts imposes high carrying

and obsolescence costs while underage stock results in service failure. Therefore, one primary

challenge is to balance the risk of obsolescence versus failure to meet service commitments.

We assume that customers are differentiated into S different categories. Demands of each

category arrive according to a non-stationary Poisson distribution with mean value function Λi(t).

The non-stationarity in demand arrival is due to the fact that in this phase, the size of the installed-

base available in the market is shrinking and so does the demand rates for spare parts.

We assume unmet demands are lost with a cost cs where s ∈ {1, 2, . . . , S}. The lost sale

assumption stems from the fact that as long as the system is in the final phase ordering parts is

not guaranteed. Therefore if shortages are backlogged there is no assurance that system could

satisfy them later in the course of final phase. Thus, lost-sale assumption is more reasonable.

Furthermore, the higher the priority of a customer the larger is the lost sale cost, cs > cs+1 for

s ∈ {1, 2, . . . , S − 1}. For each unit of serviceable inventory the system incurs a holding cost of

h per unit per time . Moreover, all cost terms are discounted back to the beginning of the horizon

with a rate α. All the remaining serviceable inventory at the end of the final phase are considered

obsolete and should be disposed of with a cost ds per unit.

One popular tactic in such a case to mitigate the risk of service failure is to ration the serviceable

inventory. According to a rationing scheme the system might decide to deliberately avoid serving

a lower priority customer in order to save the inventory in anticipation of future demand for higher

priority customers. Moreover, if customers are segmented according to service contracts then

denying to offer contract renewal to less valuable customers is another tactic, introduced in this

paper, to ensure higher priority customers demand satisfaction.
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4 Demand Criticality- Based Differentiation

In this setting customers are differentiated based on the criticality of their demands. One example

is the case where a specific part is critical in one equipment and non-critical in another one. An-

other example is identified where there are demands for both emergency and regular replenishment

shipment. Emergency shipment might be due to machine failure and therefore are signified more

critical than regular shipment orders. In our model, we assume there are S different categories of

demand and servicing a type i demand result in a revenue of amount ri. Moreover, higher priority

customers generate a larger revenue than lower priority ones, ri > ri+1 for i ∈ {1, 2, . . . , S − 1}.

Upon arrival of a customer of type i, the system should decide whether to satisfy or decline

service in order to preserve the serviceable items for future demand of higher priority customers.

In the rest of this section we formulate this problem as a finite horizon Markov decision process

and using this formulation we characterize the structure of the optimal policy. First, without loss

of generality we assume that the time interval [0, H] is divided into periods of length one unit such

that the probability of having more than one demand of any type i is negligible. This time unit

can represent a month, a week, a day or an hour. Then the optimality equation at time t for a

specific serviceable inventory level x is denoted by ν(t, x). In a case where x ≥ 1 and t < H , it is

formulated as

ν(t, x) = (1−
�S

i=1 λi(t)) {hx+ αν(t+ 1, x)}

+
�S

i=1 λi(t) {hx+min{αν(t+ 1, x) + ci, αν(t+ 1, x− 1)− h− ri}}
(1)

The first term represents a situation in which no demand occurs during period t, and the second

term explains a situation wherein a demand of type i arrives during t for which the system manager

should decide whether to accept or deny it. In case x = 0 and t < H , all incoming demands are

lost therefore we have

ν(t, 0) = (1−
S�

i=1

λi(t))αν(t+ 1, 0) +
S�

i=1

λi(t) {αν(t+ 1, 0) + ci + ri} (2)
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At time H all available serviceable inventory should be disposed of therefore the terminal value

function is given by

ν(H, x) = dsx (3)

We assume that it is always optimal to use a part to satisfy a demand than to dispose of it, i.e.

h+rS+cS > αds where S corresponds to the least valuable customer. Note when there is on-hand

serviceable stock, i.e. x > 0, at any time t it is optimal to satisfy an incoming class i demand if

the increase in the system costs due to having one less unit of inventory is less than the associated

unit lost sales cost and the generated revenue. The system rejects the class i incoming demand

otherwise. This condition is formulated as

α [ν(t+ 1, x− 1)− ν(t+ 1, x)] ≤ ci + ri + h (4)

This condition identifies the rationing threshold and has a simple interpretation. The system keeps

satisfying demands from customers of type i as long as the discounted future loss from having one

less unit of the serviceable inventory is less than the costs incurred by rationing. The following

lemma is useful in characterizing the structure of the optimal policy.

Lemma 1 ν(t, x)− ν(t, x− 1) is non-decreasing in x.

Proof. We prove this by induction. First, for the ease of exposition we define ∆xν(t, x) = ν(t, x)−

ν(t, x − 1) we note that ∆xν(t, x) non-decreasing in x is equivalent to ν(t, x) being discretely

convex. We also define ∆xν(t, 0) = α/(ci+ri+h). From the terminal value definition, ν(H, x) =

dsx, we have ∆xν(H, x) = ds. From the assumption (h + rS + cS > αds) we immediately have

∆xν(H, x) > ∆xν(H, 1) > ∆xν(H, 0), x ≥ 1. Therefore, ∆xν(H, x) is non-decreasing in x.

Following the induction, we assume that ∆xν(t, x) is non-decreasing in x, then we need to

show that ∆xν(t − 1, x) is non-decreasing in x. Relation (4) implies that ∃ri(t) such that it is

optimal to deny an arriving demand of type i if x < ri(t) and fulfill it otherwise. Then using
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equation (1) we have

∆xν(t− 1, x) = (1−
�S

i=1 λi(t)) [h+ α∆x(t, x)]

+
�S

i=1 λi(t)






h+ α∆xν(t, x) x < ri(t)

h+ α∆xν(t, x− 1) x ≥ ri(t)

(5)

Given that ∆xν(t, x) is non-decreasing in x, it is clear from the above relation that ∆xν(t − 1, x)

is also non-decreasing in x at any time t. �

This lemma establishes that the value function ν(t, x) is convex in x for all time t. This lemma

together with condition (4) leads to the optimality of a time-varying threshold policy as follows:

Theorem 2 The optimal end-of-life inventory control policy when customers are differentiated

based on demand criticality is a time-varying threshold policy. It can be characterized as follows:

i. There exist threshold levels r1(t), r2(t), . . . , rS(t) such that if x ≥ rs(t) an incoming demand

of class s is satisfied and rejected otherwise.

ii. At each time t we have 0 = r1(t) ≤ r2(t) ≤ · · · ≤ rS(t)

iii. rs(t) is non-increasing in t, s ∈ {1, 2, . . . , S}

Proof.

i. We note that ν(t, x) is convex. Considering (4) for an arbitrary class i if x ≥ ri(t) the

minimizer of the objective function is to satisfy demand of class i. If x < ri(t) the minimizer is to

reject any arriving demand of class i.

ii. This can be proved using the definition of ri(t) in relation (4). If j ≤ i, j, i ∈ {1, 2, . . . , S}

then α [ν(t+ 1, x− 1)− ν(t+ 1, x)] ≤ ci + ri + h ≤ cj + rj + h. Thus rj(t) ≥ ri(t).

iii. We consider an arbitrary class i and show that ri(t) is non-increasing in t. The induction

assumption in this case is ri(t) ≥ ri(t+1) and ∆xν(t, x) ≥ ∆xν(t+1, x), ∀x ∈ [1, ri(t)]. Then we
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need to show that ri(t−1) ≥ ri(t) and ∆xν(t−1, x) ≥ ∆xν(t, x), ∀x ∈ [1, ri(t− 1)]. Considering

the definition of ri(t) (4), we have α∆x(t, x) ≤ ci + ri + h if x < ri(t).

Using a contradiction approach we assume that ri(t− 1) < ri(t). Then we have α∆x(t, ri(t−

1)) ≤ ci + ri + h if x < ri(t). Then using equation (5), we have

α∆x(t− 1, ri(t))− α∆x(t, ri(t)) = (1−
�S

i=1 λi(t)) [α∆x(t, ri(t))− α∆x(t+ 1, ri(t))]

+
�S

i=1 λi(t)






α∆xν(t, ri(t))− α∆xν(t+ 1, ri(t)) ri(t) < ri(t+ 1)

α∆xν(t, ri(t)− 1)− α∆xν(t+ 1, ri(t)− 1) ri(t) ≥ ri(t+ 1)

(6)

By induction assumption, we know that the terms α∆xν(t, ri(t)) − α∆xν(t + 1, ri(t)) and

α∆xν(t, ri(t)−1)−α∆xν(t+1, ri(t)−1) are non-negative. Thus α∆x(t−1, ri(t))−α∆x(t, ri(t))

is also non-negative. Consequently α∆x(t− 1, ri(t)) > α∆x(t, ri(t)) > ci + ri + h which implies

that ri(t− 1) > ri(t) which is a contradiction. Thus the desired result is shown.

Next, we show that ∆xν(t−1, x) ≥ ∆xν(t, x), ∀x ∈ [1, ri(t− 1)]. Given that ri(t−1) ≥ ri(t),

we can distinguish the following cases

Case I. 1 ≤ x ≤ ri(t+ 1)

In this case, we have

α∆x(t− 1, ri(t))− α∆x(t, ri(t)) = (1−
�S

i=1 λi(t)) [α∆x(t, ri(t))− α∆x(t+ 1, ri(t))]

+
�S

i=1 λi(t) [α∆xν(t, ri(t))− α∆xν(t+ 1, ri(t))]

(7)

The right-hand side is non-negative therefore, α∆x(t− 1, x)−α∆x(t, x) ≥ 0 which shows the

desired result.

Case II. ri(t+ 1) < x ≤ ri(t)

The results can be shown similar to the previous case.

Case III. ri(t) < x ≤ ri(t− 1)

In this case we have according to the definition of the rationing levels, equation (4),
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Figure 1: rationing threshold for a system with three classes of customers

α∆xν(t, x) ≤ ci+ ri+h and α∆xν(t− 1, x) ≥ ci+ ri+h therefore ∆x(t− 1, x)−∆x(t, x) ≥ 0.

We also need to show that the results hold for t = H . It is straightforward since intuitively

0 = ri(H) ≤ ri(H − 1). �

Figure 1. demonstrates the optimal rationing policy for a system with three different customer

classes. As it is observed the state space is divided into three different regions. The contour of

each region is the rationing threshold. We observe that, when it is closer to the end of the horizon,

the system tends to set a lower rationing level. The system just denies the demand from a lower

priority class if the level of inventory is very low. In other words, the rationing levels are non-

increasing in time. Moreover, if class i is more critical than class j, then the system sets a lower

rationing threshold for class i than class j.
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4.1 Final Order Quantity

So far the procurement and production costs are not accounted in the formulation since these can be

considered sunk cost in making the rationing decisions. However this cost needs to be considered

when we make decision over the final order quantity. The unit provisioning cost which is either the

cost of purchasing or production is denoted by cp. Then the net total cost at time 0 is defined by

TV (x) = ν(0, x) + cpx (8)

As an immediate result from convexity of ν(t, x), we have TV (x) is also convex and the optimal

final order quantity can be obtained using a simple search algorithm.

4.2 Numerical Analysis

By conducting this numerical analysis we aim at quantifying the value of having a rationing deci-

sion in the course of the final phase. To do so, we consider a system without rationing. In other

words, in case of available serviceable inventory the system always fulfill demands from all types of

customers. For the base case scenario, we assume there are three different equipment criticality lev-

els for which the associated total shortage and lost sale costs are c1 = 250, c2 = 150 and c3 = 50.

Holding cost is set as 0.05 per unit per time. Moreover, demand is a non-homogenous Poisson pro-

cess with rates λ1(t) = 0.45/(1+exp(0.025(t−200))), λ2(t) = 0.25/(1+exp(0.025(t−200))) and

λ3(t) = 0.20/(1 + exp(0.025(t− 200))) respectively for class 1, 2 and 3 customers and H = 400.

In order to study the value of rationing we compare the results of the system with rationing with

the results of of a similar system without rationing. To do so the cost of a system with rationing

is denoted by Cr and the one without rationing is denoted by Copt. Then, the value of a rationing

decision is calculated according to

∆% =
Cr − Copt

Copt
× 100 (9)
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Figure 2: the value of a rationing option and its effect on final order quantity

Figure 2. depicts the effect of holding cost rate on the value of rationing and also the final

order quantity. As we observe in this case, the final order quantity decreases as it becomes more

expensive to hold inventory. Moreover, a system with rationing tends to place a smaller final

order quantity than a system without rationing. As holding cost rate increases at first the value

of rationing increases. It is due to the fact that the more expensive the items are to hold, the less

inventory level is preferred and as a consequence rationing plays a more vital role. However, as the

holding cost rate becomes higher it might become more advantageous to stock less and therefore

deny demands for service rather than satisfying them thus, rationing loses its value.

Furthermore, as intuition dictates when the lost-sale ratio c1/c2 increases, the importance of

meeting class 1 demands becomes more vital. As a consequence, having a rationing decision gains

more value. We again observe that a system without rationing places a much larger order than a

system with rationing. Therefore, an inherent consequence of a rationing option in the final phase

would be an alleviated risk of obsolescence. By placing a smaller final order quantity while we

have rationing, the system not only avoids extra carrying cost but also hedges upon the risk of

obsolescence at the end of the final phase.
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Figure 3: the value of rationing and its effect on final order quantity

5 Service Contract-based Differentiation

As mentioned earlier, over the past few decades, after-sale service contracts have become a com-

mon practice in service industries. It is due to the fact that in a highly competitive environment

with increased and differentiated customer demands, service organizations pay more attention to

service contracts as a source of predictable and renewable revenue streams. Once customers have

signed or renewed their contracts, the service organization must meet its commitments consistently

and cost effectively. In this setting, customers are differentiated based on the service contracts they

choose. The service provider offers S different types of contracts such that type i contract gener-

ates a revenue of magnitude Ri and R1 ≥ R2 ≥ · · · ≥ RS for a specific duration (for example

a year). Customers with a more valuable service contract are given a higher priority. In such a

setting the revenue is generated not per service given to the customer but per contract that runs for

a certain period.

At the end of the service period the system should decide whether to offer a contract extension

to a customer of type i or terminate this type of contract. Essentially the system should make

this decision according to the level of serviceable inventory and the time remaining to the end of

the horizon. If the inventory level is seen as critically low to satisfy the forthcoming demands

for all active service contracts then it might be beneficial to consider not renewing lower priority
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service contracts in order to preserve the inventory for higher priority ones. If it is decided not

to extend a specific type of contract then the corresponding customers are not offered a renewal

option once their contracts are expired. The times at which these decisions are made is denoted by

T = {t1, t2, . . . , tn}. Moreover, we should note that if the system decides not to extend a certain

type of contract then from that time on, the demand rate for service decreases accordingly. In

addition to the contract extension decision, the system also needs to decide whether to deny an

arriving demand even if the associated service contract is running or satisfy it. In other words, the

system needs to make rationing decision as well.

During the service period the service provider is mandated to satisfy customers demands. De-

mands which are unmet or denied, while the corresponding contract is active, are considered lost

and a penalty cost is incurred. Moreover, failure to service higher priority customers leads to a

higher lost sale cost, i.e. c1 ≥ c2 ≥ · · · ≥ cS .

The demand originated from each category of service contracts follows a non-homogenous

Poisson process with intensity function λs(t), s ∈ {1, 2, . . . , S}. It is worth mentioning that,

similar to the previous model we assume that satisfying a demand is always more beneficial than

disposing of an item, i.e. cs > αds.

The optimality equation at time t, νs(t, x, s), is a function of inventory level, x and the status of

various contract types, s, where s is a binary vector and si = 1 if the type i contract is active and 0

otherwise. The optimality equation at t ∈ T where x > 0 is formulated as

ν(t, x, s) = min
1≤j≤φ(s)

�
(1−

�j
i=1 λi(t))

�
hx−

�j
k=1 Rk + αν(t+ 1, x, s−

�φ(s)
h=j+1 eh)

�

+
�j

i=1

�
λi(t)

�
h(x− 1)−

�j
k=1 Rk +min

�
αν(t+ 1, x, s−

�φ(s)
h=j+1 eh) + ci + h,

αν(t+ 1, x− 1, s−
�φ(s)

h=j+1 eh)
����

(10)

where φ(s) = max{ i | si = 1, 1 ≤ i ≤ S} finds the active type of contract with the lowest priority.

The first term deals with the decision of which contract types to extend in period t where no

demand arrives. The second term deals with the same decision together with a rationing decision.

16



Meaning that whether an arriving demand of type i should be denied or admitted even though the

corresponding contract is still running. Furthermore, for x = 0 we have

ν(t, 0, s) = min
1≤j≤φ(s)

�
(1−

�j
i=1 λi(t))

�
−
�j

k=1 Rk + αν(t+ 1, 0, s−
�φ(s)

h=j+1 eh)
�

+
�j

i=1

�
λi(t)

�
−
�j

k=1 Rk + αν(t+ 1, 0, s−
�φ(s)

h=j+1 eh) + ci

���

(11)

Moreover, ν(t, x, s) where t ∈ [0, H] and t �∈ T is defined similar to (1) and (2) as follows

where x ≥ 1

ν(t, x, s) = (1−
�φ(s)

i=1 λi(t)) {hx+ αν(t+ 1, x, s)}

+
�φ(s)

i=1 λi(t) {hx+min{αν(t+ 1, x, s) + ci, αν(t+ 1, x− 1, s)− h}}
(12)

and when x = 0 we have

ν(t, 0, s) = (1−
φ(s)�

i=1

λi(t))αν(t+ 1, 0, s) +
φ(s)�

i=1

λi(t) {αν(t+ 1, 0, s) + ci} (13)

In this setting we need a condition similar to (4) to assure that the system keeps satisfying

incoming demand of type i as long as the discounted future loss from having one less unit of

serviceable inventory is less than the lost sale cost, i.e.

α [ν(t+ 1, x− 1, s)− ν(t+ 1, x, s)] ≤ ci + h , i ∈ {1, 2, . . . , S} , t ∈ [0, H] (14)

Moreover, at contract extension decision times, t ∈ T , a specific contract of type i is extended only

if the revenue generated is more than the future discounted cost of renewing the contract. This

condition implies the contract extension thresholds and is formulated as

α [ν(t+ 1, x, s)− ν(t+ 1, x, s− ei)] ≤ Ri i ∈ {1, 2, . . . , S} , t ∈ T (15)
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Lemma 3 ν(t, x, s) is convex in x ∀t ∈ [0, H].

Proof. In order to show this lemma we follow an induction approach similar to lemma 1. Thus,

at time t = H the result holds. We assume that the ν(t, x, s) is convex at time t and inductively

establish the result for time t − 1. if time tj < t − 1 < tj+1 then the proof is similar to lemma

1. Therefore we assume that t − 1 ∈ T . ∆xν(t, x, s) = ν(t, x, s) − ν(t, x − 1, s) similar to the

previous definition. Using (10) we assume that an arbitrary index j is the minimizer, therefore we

have

∆xν(t, x, s) = (1−
�j

i=1 λi(t))
�
h+ α∆xν(t+ 1, x, s−

�φ(s)
h=j+1 eh)

�

+
�j

i=1 λi(t)






h+ α∆xν(t+ 1, x, s−
�φ(s)

h=j+1 eh) x < ri(t)

h+ α∆xν(t+ 1, x− 1, s−
�φ(s)

h=j+1 eh) x ≥ ri(t)

which establishes the convexity property at time t− 1. �

Having established that the value function is convex in x, together with conditions (14) and (15)

we can show that a set of time dependent rationing and contract extension thresholds characterize

the optimal policy as stated in the following theorem.

Theorem 4 The optimal end-of-life inventory control policy when customers are differentiated

based on service contracts is characterized by time-varying thresholds as follows:

i. There exists threshold levels r1(t), r2(t), . . . , rS(t) such that if x ≥ rs(t) an incoming de-

mand of class s is satisfied and rejected otherwise.

ii. There exists threshold levels e1(t), e2(t), . . . , eS(t) such that if x ≥ es(t) a contract of type s

is extended and expired otherwise at time t ∈ T .

iii. At each time t we have 0 = r1(t) ≤ r2(t) ≤ · · · ≤ rS(t)

iv. At each time t ∈ T we have 0 = e1(t) ≤ e2(t) ≤ · · · ≤ eS(t)
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Figure 4: contract extension thresholds for a system with three classes of customers

v. rs(t) is non-increasing in t, s ∈ {1, 2, . . . , S}

vi. es(t) is non-increasing in t, s ∈ {1, 2, . . . , S}

Proof. The proof is similar to the proof of theorem 2. �

In this setting, the optimal policy can be characterized by a set of rationing and a set of contract

extension thresholds. The contract extension thresholds are shown in figure 4 for an instance of the

problem. It is assumed that at every 50 periods the system has to revisit the decision of contract

extensions. If at time t the serviceable inventory is above the blue contour and s = (1, 1, 1) then

the contracts of type 2 and 3 are extended and if the level of serviceable inventory is below the blue

threshold then the contracts os type 3 should not be extended any more and s becomes (1, 1, 0) .

The red contour represents the contract extension threshold for contracts of type 2. If at any time

t serviceable inventory on-hand falls below this contour then the system does not offer contract

renewal to both types 2 and 3. We observe that when it becomes closer to the end of the horizon,

the system decides to stop extending contracts if the level of serviceable inventory is very low. In

other words, the contract extension thresholds are non-increasing in time.

Moreover, the rationing thresholds are used to decide whether to service or decline a customer

of type s when the corresponding service contract is still active. These rationing thresholds are also
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dependent on the remaining time to the end of the horizon and the level of serviceable inventory

and show similar behavior as in the previous model.

5.1 Numerical Analysis

The cost parameters are considered similar to the customer differentiation based on equipment

criticality. Every 50 periods the system should decide which contracts to renew. The revenues

associated with the extension of different service contracts are R1 = 150, R2 = 100 and R3 =

50. In order to study the value of having a contract extension decision included in the model we

consider a similar system but without contract extension decision in which service contracts are

always extended. If we denote the expected total cost of the optimal policy by Copt and that of the

policy without contract extension decision with Cnce then the value of having a contract extension

decision in the model can be calculated according to

∆% =
Cnce − Copt

Copt
× 100

As we observe in figure 6, with the increase of the holding cost rate the value of contract

extension decision increases significantly. It is because, when the items are more expensive to hold

the system decides to keep less items available in stock and resorts to not extending less profitable

contracts when inventory level diminishes. Therefore, having a contract extension decision is more

valuable for higher values of holding cost rate. Moreover, having a contract extension decision

leads to setting a lower final order quantity inherently and together with rationing can be considered

as tools to tame the risk of obsolescence. In figure 6 we also observe a jump down in the final order

quantity diagram . This point represents the value of holding cost rates in which the system decides

not to extend some contracts at the beginning of the final phase. Therefore, there is a step down in

the size of the final order quantity.

In order to study the effect of Ri and ci on the value of service contract extension decision, we

define a coefficient k. Then all Ri and ci are multiplied by k and the results are shown in figures
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Figure 5: value of contract extension decision and its effect on final order quantity

6 and 7. Figure 6 shows that with the increase of Ri the contract extension decision loses its value

due to the fact that the system tends to extend all contracts. As a result, the system places a larger

final order quantity in order to assure sufficient serviceable items available during the course of

the final phase. As intuition dictates, the final order quantity does not show any sensitivity to the

service contract revenues where the system always extends the service contracts.

Figure 7 shows the value of having a contract extension decision with respect to different

values of lost sale cost. With the increase of the lost sale costs, the value of having a contract

extension decision first intuitively increases and then starts to decrease slowly. The reason for the

contracts extension decision losing its value is that the shortage cost becomes so expensive that the

system decides not to extend low priority contracts very early in the final phase. As a result, less

contract extension decisions are made during the course of the final phase and therefore, the value

of contract extension decision diminishes slowly with the increase of shortage costs. Moreover, as

we expect with the increase of the lost sale cost the system places a higher final order quantity to

avoid the shortage risk.
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Figure 6: value of contract extension decision w.r.t. to Ri
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Figure 7: value of contract extension decision w.r.t. to ci
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5.2 Service Contracts for Multiple Parts

In practice, service contracts might apply to a certain equipment. For example, OEM agrees a

certain uptime for a machine or is obliged to meet a specific availability for a specific machine

service parts. In such a situation, the system manager needs to deal with a multiple part problem.

Accordingly, while deciding upon extension of a specific contract we need to take into account

the level of serviceable inventory on-hand for all parts. In other words, the system might resort

to terminate a low priority contract because of low inventory level of some parts even though the

on-hand stock of some other service parts abounds. We assume that the equipment considered has

M different parts each one cost hm, m ∈ {1, 2, . . . ,M} to hold per unit per time. λm
i denotes the

demand intensity function of service contract of type i for part m. The state of the system is denoted

by a m-dimensional vector, x where the m-th element represent the inventory level of m-th part.

The rest of the notations is similar to the previous model. In this setting the optimality equation is

denoted by ν(t,x, s) and is expressed according to (16), which can be obtained following the same

logic as the previous case.

ν(t,x, s) = min
1≤j≤φ(s)

�
(1−

�M
m=1

�j
i=1 λ

m
i (t))

��M
m=1 hmxm −

�j
k=1 Rk + αν(t+ 1,x, s−

�φ(s)
h=j+1 eh)

�

+
�M

m=1

�j
i=1

�
λ
m
i (t)

�
hm(xm − 1)−

�j
k=1 Rk

+min
�
αν(t+ 1,x, s−

�φ(s)
hm=j+1 eh) + ci + hm, αν(t+ 1,x− em, s−

�φ(s)
h=j+1 eh)

��
1{xm>0}

+
�
−
�j

k=1 Rk + αν(t+ 1,x, s−
�φ(s)

hm=j+1 eh) + ci + hm

�
1{xm=0}

�

(16)

In this case it can be shown that at each time t the inventory should be controlled according to

threshold levels rmi (t) and ei(t), as rationing and contract extension thresholds, respectively. rmi (t)

and ei(t) are defined similar to relations (13) and (14).

Figure 8 shows an instance of contract extension thresholds at times 0 and 100. As it is observed

at each time the state space is divided into three regions. When the inventory levels of both parts

are low the optimal decision is just to extend the highest priority contract type. In rather higher
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inventory levels the second highest priority contract is also renewed. In higher inventory levels

all types of contracts are offered an extension. Furthermore, when it becomes closer to the end of

the horizon, these contract extension thresholds are set lower. In other words, it is observed that

contract extension thresholds are non-increasing in x1 and x2.

6 Conclusion

In this paper we study the end-of-life inventory problem while customers are differentiated. Nowa-

days, technology development happens with a fast pace that leads to shorter product life cycle. As

a result, parts and products enter their final phase earlier and system managers need to make a

final order decision to mitigate the risk of obsolescence at the end of this phase. Customers dif-

ferentiation has become a common practice in order to fulfill customer demands more efficiently.

With the shortened product life cycle we expect a prominent share of service obligations be met

while the production of parts is discontinued. Therefore, considering customer differentiation in

the final phase can be of vital importance. We consider customer differentiation for both demand-

criticality and service contracts-based differentiation. We show that inventory should be optimally
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controlled according to threshold levels that consider both remaining time to the end of the hori-

zon and the level of serviceable inventory. We show that considering these decisions in the final

phase inventory management leads to remarkable cost improvements as well as obsolescence risk

mitigation.
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