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a b s t r a c t

In the field of after sales service logistics for capital goods, generally, METRIC type methods are used to
decide where to stock spare parts in a multi-echelon repair network such that a target availability of
the capital goods is achieved. These methods generate a trade-off curve of spares investment costs versus
backorders. Backorders of spare parts lead to unavailability of the capital goods. Inputs in the spare parts
stocking problem are decisions on (1) which components to repair upon failure and which to discard, and
(2) at which locations in the repair network to perform the repairs and discards. The level of repair analysis
(LORA) can be used to make such decisions in conjunction with the decisions (3) at which locations to
deploy resources, such as test equipment that are required to repair, discard, or move components. Since
these decisions significantly impact the spare parts investment costs, we propose to solve the LORA and
spare parts stocking problems jointly. We design an algorithm that finds efficient solutions. In order for
the algorithm to be exact and because of its computational complexity, we restrict ourselves to two-
echelon, single-indenture problems. In a computational experiment, we show that solving the joint prob-
lem is worthwhile, since we achieve a cost reduction of over 43% at maximum (5.1% on average) compared
with using a sequential approach of first solving a LORA and then the spare parts stocking problem.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

In this paper, we discuss the maintenance of capital goods.
Examples of capital goods are baggage handling systems at air-
ports, radar systems on board naval vessels, MRI-scanners in hos-
pitals, and wafer steppers that are used in the semiconductor
industry. Capital goods can be defined as expensive and technolog-
ically advanced systems that are used to manufacture products or
services. Because they are critical in the primary process of their
users, their unavailability may lead to high costs. In other cases,
their unavailability may lead to dangerous situations, e.g., in the
case of naval radar systems (military mission failure) or MRI-scan-
ners (patients that cannot be treated).

To prevent downtime, capital goods are generally repaired by
replacement, which means that a defective component is quickly
taken out of the system and replaced with a functioning spare part.
These spare parts may be located both close to the installed base,
to reduce replacement times, and at more distant locations at a
higher echelon level, to use risk pooling effects: one spare part
can be used for various systems at various locations. To enable
an exact analysis, we consider in this paper two-echelon distribu-
tion networks, so networks consisting of one central depot and a
ll rights reserved.
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number of bases (sometimes referred to as a one warehouse, mul-
tiple retailer system).

Some defective components can only be discarded and replaced
with a newly purchased component. For example, mechanical
parts that wear or small parts such as screws cannot be repaired
economically. Other parts may be either repaired or discarded. Re-
pairs may be performed by replacing a subcomponent for which
spare parts may be stocked. To facilitate an exact analysis, we do
not consider such subcomponents here (i.e., we consider single-
indenture product structures). The tactical problem (solved when
the product is designed or deployed in the field) of determining
which components to repair upon failure and which to discard is
referred to as the level of repair analysis (LORA) problem in the mil-
itary world (see, e.g., MIL-STD-1388-1A, United States Department
of Defense, 1993). To be precise, it determines:

1. which components to repair upon failure and which to discard;
2. at which locations in the repair network to perform the repairs

and discards;
3. at which locations to deploy resources required to repair, dis-

card, or move components.

We refer to this set of decisions as the LORA decisions and to the
first two decisions as the repair/discard decisions. The goal is to
achieve the lowest possible costs, consisting of both fixed costs
and costs that are variable in the number of failures. Fixed costs
are due to the resources. They result from the LORA decisions,
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but do not depend on the annual number of failures. Examples are
training of service engineers and depreciation of repair equipment.
Variable costs may include transportation costs, working hours of
service engineers, and usage of bulk items.

In the spare parts literature and in practice, the LORA is gener-
ally solved first and next the spare parts stocking problem is
solved: which spare parts to stock at which locations in which
amounts, in order to achieve a target availability of the installed
base. In the context of capital goods, generally METRIC type models
and methods are used. A key idea in the METRIC type models is
that the focus is not directly on the maximization of the availabil-
ity, but instead, the focus is on the minimization of the expected
number of backorders of components at the bases. A backorder oc-
curs if a component is requested, but cannot be delivered immedi-
ately. As a result of a backorder, a system is unavailable waiting for
spares. When referring to optimality in the spare parts stocking
problem, it is meant that efficient solutions are found: at the cor-
responding (or lower) cost levels, it is not possible to achieve a
lower expected number of backorders. The METRIC type models
use a system approach, which means that spare parts for all compo-
nents are considered jointly so that less expensive components can
be stocked at relatively high levels, whereas more expensive com-
ponents can be stocked at relatively low levels.

A problem with the sequential approach of first performing a
LORA and then solving a spare parts stocking problem is that the
decision (in the LORA) to repair or discard is based purely on the
costs to perform a repair or discard, disregarding the fact that
the lead times of both decisions may differ. If the lead time for dis-
card is much higher than the lead time for repair (i.e., if purchasing
a new component takes more time than repairing a component),
then choosing discard may lead to higher number of spare parts
to stock to achieve the same availability of the installed base.
Although discarding may seem interesting in the LORA, consider-
ing the spare parts costs may mean that repairing turns out to be
better. Unfortunately, having good estimates of the spare parts
costs in the LORA is difficult, since it is hard to mimic a METRIC
type system approach. As a result, many authors see the integra-
tion of spare parts stocking decision into the LORA problem as an
important research direction (see, e.g., Brick and Uchoa, 2009; Bas-
ten et al., 2011a).

Our contribution is that we propose an algorithm to solve the
problem of LORA and spare parts stocking jointly. This so-called
integrated algorithm finds efficient solutions for two-echelon (or
single-echelon), single-indenture problems. Using this algorithm,
we show in a numerical experiment that solving the two problems
jointly opposed to solving them sequentially leads to a cost reduc-
tion of over 43% at maximum and about 5.1% on average. Since a
few percent cost reduction is already worth millions over the life
time of capital goods, this means that it is worthwhile to consider
the problem of LORA and spare parts stocks jointly. For general
multi-echelon, multi-indenture problem instances it will be neces-
sary to develop another algorithm, because of the computational
complexity of our algorithm.

In Section 2, we give an overview of the related literature, and
we outline our model in Section 3. In Section 4, we summarize
key results on spare parts stocking that we need in Section 5,
where we present our algorithm. In Section 6, we design a numer-
ical experiment and discuss its results. In Section 7, we give con-
clusions and recommendations for further research.
2. Literature review

We first discuss the related literature on LORA, then that on
spare parts stocking, and finally one paper on the joint problem
of LORA and spare parts stocking.
To the best of our knowledge, Barros (1998) presents the first
LORA model. She assumes that the same decisions are taken at
all locations at one echelon level and that resources required to
perform repairs are uncapacitated. Furthermore, all components
at one indenture level require the same resource in order to be re-
paired. Barros (1998) models the problem as an integer linear pro-
gramming model that she solves using CPLEX, a commercial solver.
Barros and Riley (2001) consider the same model as Barros (1998)
does, but solve it using a branch-and-bound method. Saranga and
Dinesh Kumar (2006) propose a model that differs from the model
by Barros (1998) in that each component requires its own unique
resource. Saranga and Dinesh Kumar (2006) solve the model using
a genetic algorithm. Basten et al. (2009) propose a formulation that
generalizes the models by Barros (1998) and Saranga and Dinesh
Kumar (2006) in that components may require any number of re-
sources and resources may be shared by components. Basten et al.
(2011a) then generalize the model by Basten et al. (2009) in that
different decisions may be taken at various locations at the same
echelon level. Basten et al. (2011a) model the problem as a mini-
mum cost flow model with side constraints, which leads to a much
lower computation time compared with Basten et al. (2009). Bas-
ten et al. (2011b) model various practically relevant extensions
to the LORA model, using Basten et al. (2011a) as a basis. Brick
and Uchoa (2009) combine the LORA problem with the decision
of which facilities to open. They assume a two-echelon network
structure and effectively assume a two-indenture product struc-
ture. In the last four papers, CPLEX is used to solve the model.

A vast amount of literature exists on the spare parts stocking
problem. The seminal paper in this field is the work by Sherbrooke
(1968) in which he develops the METRIC model (Multi-Echelon
Technique for Recoverable Item Control). He considers a two-ech-
elon distribution network with each location using one-for-one, or
(S � 1,S) replenishment. He further considers a multi-item, single-
indenture problem. Sherbrooke (1968) proposes an approximate
evaluation of the number of backorders at the bases and a greedy
heuristic to optimize the base stock levels. Muckstadt (1973) ex-
tends the work by Sherbrooke (1968) by allowing for two inden-
ture levels, leading to the so-called MOD-METRIC model. Graves
(1985) proposes a more accurate approximation for the two-eche-
lon, single-indenture problem, the VARI-METRIC model, which
Sherbrooke (1986) extends to two indenture levels. We refer to
the books by Sherbrooke (2004) and Muckstadt (2005) for exten-
sive overviews of these and related models and methods. There
are also exact evaluations of these models: Simon (1971) considers
the two-echelon, single-indenture, single-item problem, which is
later extended to the general multi-echelon problem by Kruse
(1979). Graves (1985) gives another exact evaluation of the same
model. Axsäter (1990) provides an exact evaluation and enumera-
tive, but relatively efficient optimization of the same model, but
with penalty costs instead of a service level constraint. Rustenburg
et al. (2003) give both an exact and approximate evaluation for the
general multi-echelon, multi-indenture problem. They also give an
extensive overview of the related literature.

To the best of our knowledge, there is only one paper in the lit-
erature in which a method is presented to solve the two problems
of LORA and spare parts stocking jointly: Alfredsson (1997). The
author considers two-echelon, single-indenture problems. Each
component requires one specific tester (resource), which is re-
quired by one component only. Furthermore, one multi-tester ex-
ists that can be used for the repair of one component. Adapters
can be added in a fixed order to enable the multi-tester to be used
for the repair of additional components. Alfredsson (1997)’s re-
sources have finite capacity, so system downtime includes waiting
times for resources, repair times, and waiting times for spares. We
base our optimization method on the method by Alfredsson
(1997). However, since we assume that resources have infinite
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capacity, we are able to proof that our algorithm finds efficient
solutions. Furthermore, we allow for more practically realistic
component-resource relations: each component may require mul-
tiple resources and resources may be shared by multiple
components.

3. Model

We model the joint problem of LORA and spare parts stocking.
This means that we have to decide whether defective components
should be discarded or repaired, and whether to do that at the base
or at the central depot. Furthermore, we should decide where to lo-
cate resources and where to stock spare parts (in which amounts).
The goal is to achieve the lowest possible costs, subject to a con-
straint on the availability. The costs include the variable and fixed
LORA costs, as mentioned in Section 1, and the spare parts holding
costs. In Section 3.1, we give our assumptions and in Section 3.2,
we present the mathematical model formulation.

3.1. Assumptions

We use the assumptions underlying the METRIC type models
(see, e.g., Muckstadt, 2005; Sherbrooke, 2004):

� Components fail according to a Poisson process with constant
rate.
� For each component at each location, an (S � 1,S) continuous

review inventory control policy (one-for-one replenishment)
is used.
� Replacement of a defective component by a functioning compo-

nent takes zero time (implying that our availability measure
considers the downtime waiting for spares only).
� The repair lead time includes the time used for sending the

defective component to the repair location and for diagnosing
the failure cause. The repair lead times for each component at
each location are i.i.d. random variables (implying that
resources are uncapacitated). See Fig. 1 for an overview of the
lead times in the network.
� The replenishment lead times (for discarded components) for

each component are i.i.d. random variables.
� The move lead times (to move a functioning component from

the depot to a base) are deterministic.
� There are no lateral transshipments between bases, or emer-

gency shipments from the central depot.
� Components may be stocked at both echelon levels only if com-

ponents are repaired at the central depot, or if they are dis-
carded. This is a common assumption in the METRIC type
models. Stocking components at the central depot while repair-
ing at base is undesirable for two reason. First, it is then proba-
bly better to also perform the repair at the central depot, thus
reducing the number of required resources. Second, it would
Fig. 1. Lead times in the network.
lead to streams of functioning components going in both direc-
tions between the base and the central depot.

To ease the presentation in the remainder of this paper and to
decrease the problem size, we make some additional assumptions,
which are not critical for our algorithm:

� Repairs are always successful.
� Resources may be required to enable repair only, since

resources that are required to enable discard or movement do
not occur frequently in practice.
� The discard option is available at the central depot only. We do

not consider the discard option at each base, since newly pur-
chased components will in practice usually arrive at the central
depot.

3.2. Mathematical model

Let there be N bases; at each base there is one system
installed. We then define L1 = {1, . . . ,N} as the set of bases (the
locations at echelon level 1) and we indicate the central depot
by 0. We further define L = {0} [ L1 as the set of all locations in
the network. Let C be the set of all components. The set D consists
of the possible decisions that can be made for each component:
D = {discard, repair, move}. Move means that defective compo-
nents will be moved to the central depot so that they can be re-
paired or discarded there. We define Dl as the possible decisions
at location l: Dl = Dn{discard} for l 2 L1 and D0 = Dn{move}. For
each component c 2 C, we define kc,l(>0) as the annual expected
number of failures at base l 2 L1 and kc;0 ¼

P
l2L1

kc;l as the total an-
nual expected number of failures at all bases, or, equivalently, as
the maximum expected number of failures that may be repaired
or discarded at the central depot. Let R be the set of resources.
Xr # C is the set of components that require resource r 2 R in
order to be repaired.

We define the following decisions variables:

Xc;l;d ¼ the expected number of failures of component c

2 C at location l 2 L for which we make decision d 2 Dl:

Yr;l ¼
1; if resource r 2 R is located at location l 2 L;

0; otherwise:

�

Sc;l ¼ the number of spare parts of component c 2 C located
at location l 2 L:

For ease of notation, let Xc be a two-dimensional vector with
entries Xc,l,d.

We define three cost types. For component c 2 C at location
l 2 L, vcc,l,d(P0) are the variable costs per expected failure if
we make decision d 2 D. Since we have chosen, without loss of
generality, to minimize the total annual costs with our definition
of kc,l, we define fcr,l(P0) to be the annual fixed costs to locate
resource r 2 R at location l 2 L and we define hcc,l(>0) to be the
annual costs of holding one spare of component c 2 C at location
l 2 L.

The target availability that should be achieved is denoted by A.
With EBc;lðSc;0; Sc;l;XcÞ we denote the expected number of backor-
ders for component c 2 C at base l 2 L1, given that there are Sc,0

and Sc,l spare components c located at the central depot and at base
l, respectively, and given the repair/discard decisions for compo-
nent cðXcÞ. We will not explain here how to calculate this value,
but we refer to, e.g., Graves (1985), Sherbrooke (2004), or Mucks-
tadt (2005). Notice that the various lead times (for which we have
not introduced notation) are taken into account when calculating
the expected number of backorders.
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We define our model as follows:

minimize
X
c2C

X
l2L

X
d2Dl

vcc;l;d � Xc;l;d þ
X
r2R

X
l2L

fcr;l � Yr;l þ
X
c2C

X
l2L

hcc;l

� Sc;l ð1Þ

subject to:

Xc;l;repair þ Xc;l;move ¼ kc;l 8c 2 C; 8l 2 L1 ð2Þ

Xc;0;discard þ Xc;0;repair ¼
X
l2L1

Xc;l;move 8c 2 C ð3Þ

Xc;l;repair 6 Yr;l � kc;l 8r 2 R; 8c 2 Xr; 8l 2 L ð4Þ

1
N

X
l2L1

Y
c2C

1� EBc;lðSc;0; Sc;l;XcÞ
� �

P A ð5Þ

Xc;l;d P 0 8c 2 C; 8l 2 L; 8d 2 D ð6Þ

Yr;l 2 f0;1g 8r 2 R; 8l 2 L ð7Þ

Sc;l 2 N0 ¼ N [ f0g 8c 2 C; 8l 2 L ð8Þ

Constraints (2)–(4) are the ‘LORA constraints’ and define the
same model as Basten et al. (2011a) use, except that they model
any number of echelon levels and indenture levels. Constraint (2)
assures that for each component a decision is made at the base.
If a component is moved, Constraint (3) assures that a decision is
made for that component at the central depot. Some options are
only available if all resources are present, which is guaranteed by
Constraint (4). The value kc,l in this constraint acts as a big M. Final-
ly, Constraint (5) is the only ‘spare parts stocking constraint’ and it
assures that the target availability is met. Notice that having a
backorder at a base means that a capital good is not available. Since
the availability is a non-linear function of the repair/discard deci-
sions and the spare parts decisions, we have a large non-linear
integer optimization problem that cannot be solved using standard
optimization software such as CPLEX. We therefore propose a dif-
ferent algorithm in Section 5. Since it uses results from the METRIC
theory on spare parts stocking, we first discuss that in Section 4.
Fig. 2. Multiple EBO-costs-curves (data from Sherbrooke (2004, Table 3.3)).
4. Spare parts stocking

As mentioned in Section 1, the goal in the METRIC type methods
is to locate spare parts such that a certain target availability is
achieved against the lowest possible costs. Formally (notice that
the repair/discard decisions are exogenously given here):

minimize
X
c2C

X
l2L

hcc;l � Sc;l

subject to:

1
N

X
l2L1

Y
c2C

1� EBc;lðSc;0; Sc;lÞ
� �

P A Sc;l 2 N; 8c 2 C; 8l 2 L

This is achieved indirectly, by locating spare parts such that for
a given cost level, the expected number of backorders (EBO) at the
bases is minimized. Since having a backorder at a base means that
a capital good is not available, minimizing EBO at bases is approx-
imately equal to maximizing the availability of the capital goods
(see, e.g., Sherbrooke, 2004; Muckstadt, 2005). A greedy algorithm
is used that stocks increasingly more spares. This results in a so-
called EBO-costs-curve Bg (we require the subscript later). The
points bg,i (i 2 {1, . . . , jBgj}) on such a curve represent spare parts
stocking solutions that result in annual spare parts holding costs,
costs(bg,i), and a certain expected number of backorders, EBO(bg,i).
At each step of the greedy algorithm, it is checked whether the tar-
get availability is met and as soon as this is the case, the algorithm
terminates.
Definition 1. An EBO-costs-curve Bg is an ordered set of points bg,i

such that if costs(bg,i) < costs(bg,j), then i < j (if costs(bg,i) =
costs(bg,j), then i = j).

To improve the readability of the remainder of this paper, we

introduce Dg;i;j ¼
EBOðbg;iÞ�EBOðbg;jÞ

costsðbg;jÞ�costsðbg;iÞ
.

In a single-item, single-location problem, if increasingly more
spare parts are stocked, the EBO will keep decreasing, but at a
decreasing rate. In other words, the EBO is a decreasing, convex
function of the number of spare parts (see, e.g., Sherbrooke,
2004; Muckstadt, 2005) (and thus of the annual spare parts hold-
ing costs if those are proportional to the number of stocked spare
parts). Formally: If there are three points bg,i, bg,j, bg,k 2 Bg such that
i < j < k, then Dg,i,j P Dg,j,k. Obviously, the points bg,i on the con-
structed EBO-costs-curve are efficient solutions (meaning that it
is not possible to find a point bg,j such that costs(bg,j) 6 costs(bg,i)
and EBO(bg,j) < EBO(bg,i)). We formalize this well-known result
without proof.

Lemma 1. Applying the greedy algorithm to a single-item, single-
location spare parts stocking problem results in a convex EBO-costs-
curve consisting of efficient solutions.

If there are two echelon levels, the greedy algorithm functions as
follows. Spare parts are first stocked at the central depot as ex-
plained above. For each spare parts level at the central depot (a
point on the resulting EBO-costs-curve), spare parts are stocked
at the bases. At each step in the construction of each of these
EBO-costs-curves, it is checked at which base to stock the next
spare part in order to get the highest backorder reduction per dol-
lar (‘biggest bang for the buck’). This results in as many EBO-costs-
curves as there are points on the curve at the central depot, see
Fig. 2 for an example. Graves (1985) shows how to calculate the
backorder levels at the bases, taking into account the backorder
levels at the central depot. We introduce the lower envelope of a
set of functions fi(x) as the function given by their pointwise min-
imum: f(x) = minifi(x). Taking the lower envelope of the EBO-costs-
curves and removing all non-convex points (convexification) re-
sults in one convex EBO-costs-curve for the two-echelon problem,
see Fig. 3 for an example. This EBO-costs-curve consists of efficient
solutions (not necessarily all efficient solutions). Before formalizing
this result in Lemma 3, we state Lemma 2.

Lemma 2. Taking the convexification of the lower envelope of a set of
EBO-costs-curves, each consisting of efficient solutions, results in one
convex EBO-costs-curve consisting of efficient solutions.
Proof. Let there be a set G of EBO-costs-curves. Taking the convex-
ification of the lower envelope of these curves leads to the set
Bh ¼ fbh;jjbh;j 2

S
Bg2GBg ; costsðbh;iÞ < costsðbh;jÞ < costsðbh;kÞ;Dh;i;j P

Dh;i;k; 8bh;i; bh;k 2
S

Bg2GBgg. If there exist two points bh,i, bh,j 2 Bh such



Fig. 3. Multiple EBO-costs-curves, including the convexification of the lower
envelope.
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that costs(bh,i) = costs(bh,j) and EBO(bh,i) = EBO(bh,j), we remove one
at random. The set Bh represents a convex EBO-costs-curve, con-
sisting of efficient solutions. h

Notice that we do not require the EBO-costs-curve to be related
to either a single or multiple locations and to either a single or
multiple components. Now we are ready to give Lemma 3. We
do not provide the proof, but notice that the proof requires Lemma
2 and a slightly different version of Lemma 1.

Lemma 3. Applying the greedy algorithm to a single-item, two-
echelon spare parts stocking problem results in a convex EBO-costs-
curve consisting of efficient solutions.

If there are multiple components, marginal analysis is used. We
formalize how this is done in the proof of Lemmas 4, and 5 states
the formal result. The idea is to start with constructing an EBO-
costs-curve per component as described above. Next, an EBO-
costs-curve is constructed for the total problem, with the first point
having costs and EBO that are the total of the costs and EBO of the
first points on each of the curves per component. Then, look at each
of the EBO-costs-curves per component and add that spare part to
stock that leads to the largest backorder reduction per invested
dollar (‘biggest bang for the buck’). Because of the convexity of
the curves, such a myopic approach will lead to one convex EBO-
costs-curve.

Lemma 4. Applying marginal analysis to a set G of convex EBO-costs-
curves, each consisting of efficient solutions for a spare parts stocking
problem consisting of a set of components CBg ðBg 2 GÞ, results in one
convex EBO-costs-curve consisting of efficient solutions for the spare
parts stocking problem for the set

S
Bg2GCBg .
Fig. 4. Example: multiple resources per component.
Proof. Consider two convex EBO-costs-curves (B1 and B2), each
consisting of efficient solutions for a spare parts stocking problem
for a set of component CB1 and CB2 , respectively ðCB1 \ CB2 ¼ ;Þ.
These two curves are merged using marginal analysis as follows.
The first point on the resulting EBO-costs-curve (B3) is b3,1 with
costs(b3,1) = costs(b1,1) + costs(b2,1) and EBO(b3,1) = EBO(b1,1) + E-
BO(b2,1). Next, consider the second point on each of the two origi-
nal curves. Two cases can be distinguished:

� If D1,1,2 P D2,1,2, then the second point on the resulting EBO-
costs-curve is b3,2 with costs(b3,2) = costs(b1,2) + costs(b2,1) and
EBO(b3,2) = EBO(b1,2) + EBO(b2,1). Of course, D3,1,2 = D1,1,2. In
the next step, compare D1,2,3 with D2,1,2.
� Otherwise, the second point on the resulting EBO-costs-curve is

b3,2 with costs(b3,2) = costs(b1,1) + costs(b2,2) and EBO(b3,2) = E-
BO(b1,1) + EBO(b2,2). Then, D3,1,2 = D2,1,2. And in the next step,
compare D1,1,2 with D2,2,3.
In either case, because of the convexity of both curves, it is
guaranteed that both fractions that we are comparing in the next
step are smaller than D3,1,2. Therefore, proceeding in this way, we
are certain to get a convex EBO-costs-curve consisting of efficient
solutions for the spare parts stocking problem for the problem
consisting of the set of components CB1 [ CB2 . Notice furthermore
that marginal analysis is an associative operator. This means that
applying marginal analysis to n + 1 sets of components leads to the
same result as applying it first to n sets of components and next to
that result and the n + 1th set of components. Therefore, the result
holds for any number of sets of components. h
Lemma 5. Applying marginal analysis to jCj convex EBO-costs-curves,
each consisting of efficient solutions for a single-item c 2 C, two-
echelon spare parts stocking problem, results in one convex EBO-
costs-curve consisting of efficient solutions for the spare parts stocking
problem for the total set C.
Proof. This follows directly from Lemma 4. h

We formalize a well known, important result (see, e.g., Sher-
brooke, 2004; Muckstadt, 2005).

Theorem 1. Given a set of components, a two-echelon network, and
LORA decisions, applying the greedy algorithm and marginal analysis
to the spare parts stocking problem results in a convex EBO-costs-
curve consisting of efficient solutions.
Proof. This follows directly from Lemmas 3 and 5. h

Since a discrete set of solutions is found, there is usually some
overshoot over the target availability, meaning that a point is found
that corresponds to an availability level that is somewhat higher
than the target availability.

We restrict ourselves in this paper to two-echelon, single-
indenture problems since enumeration is required to find efficient
solutions for two-indenture problems and for general multi-eche-
lon problems. This is too time-consuming to be a realistic approach
for any but very small problems (see Appendix A to see what may
go wrong when using a greedy algorithm).

5. Algorithm

Consider an example problem instance, consisting of a central
depot and two bases and the product structure as depicted in
Fig. 4: there are four components, component c1 requires resource
r1 in order to be repaired, component c2 requires both resources r1

and r2, component c3 requires both resources r2 and r3, and compo-
nent c4 requires no resources ðXr1 ¼ fc1; c2g;Xr2 ¼ fc2; c3g;Xr3 ¼
fc3gÞ. As a result, the decision where to install resource r2 depends
on the decision where to install resource r1 (and vice versa) as well
as the decision where to install resource r3 (and vice versa).

The basic idea of our integrated algorithm is to decompose the
problem in a smart way and to aggregate the results. By fixing a re-
source to certain locations in the repair network, we are able to
solve subproblems independently (e.g., by fixing resource r2 in
the example). We find a convex EBO-costs-curve, consisting of



Fig. 5. Graph of three resources.

1 Notice that some scenarios may consist of many components, whereas others
may consist of a few components only. One may want to incorporate this in the
search for the best way of decomposing the resource group, but for sake of simplicity,
we do not do that.
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efficient solutions for a certain subproblem and we use either mar-
ginal analysis or the convexification of the lower envelope to
merge the results. In this way, we find one convex EBO-costs-
curve, consisting of efficient solutions for the original problem. Be-
low, we proof this result, but first we explain how our algorithm
functions [example between brackets]:

1. Consider one resource and distinguish 2(N+1) scenarios, each
representing the resource being located at a subset of the
locations in the repair network; we say that the resource is
fixed [we choose to fix resource r2, resulting in 23 = 8 scenar-
ios; by fixing this resource, the problem may be decomposed
into two subproblems later on]. We come back to the order
in which resources may be fixed after the proof.

2. If there are still resources that interact, i.e., there exist com-
ponents that require two or more resources that have not
been fixed yet, repeat Step 1 for each of the 2(N+1) scenarios
(resulting in 2(N+1) � 2(N+1) scenarios). Otherwise, proceed [we
proceed; notice that this would not have been the case if we
would have chosen to fix either resource r1 or r3].

3. Split the problem for each scenario into a subproblem con-
sisting of one resource and those components that require
that resource, and a subproblem consisting of the compo-
nents that require no resources that have not been fixed
yet [there are three subproblems: (1) resource r1 and com-
ponents c1 and c2, (2) resource r3 and component c3, (3) com-
ponent c4].

4. In each subproblem, distinguish 2(N+1) scenarios in the same
way as done in Step 1. For the subproblem consisting of no
resources, consider one scenario [there are 23 � (23 + 23 + 1)
scenarios; 23 scenarios for resource r2 and then 23, 23, and
1 scenarios for the three subproblems, respectively].

5. Divide each subproblem into a subproblem per component.
6. For each component consider each of the possible repair/dis-

card decisions (repair at base, repair at depot, or discard) for
each of the demand streams (N demand streams, so 3N com-
binations) and stock spare parts for each of them, resulting
in 3N EBO-curves.

7. Take the convexification of the lower envelope of the curves
per combination of repair/discard decisions, resulting in one
EBO-costs-curve per component.

8. Apply marginal analysis to merge the results per component
into results per scenario, resulting in one EBO-costs-curve
per scenario.

9. Take the convexification of the lower envelope of these
curves, resulting in one EBO-costs-curve per resource.

10. Apply marginal analysis to merge the results per resource
into results per scenario, resulting in one EBO-costs-curve
per scenario.

11. Repeat Steps 9 and 10 until one EBO-costs-curve remains for
the original problem.

There are two things to notice here:

� If there are no resources involved in the original problem, the
algorithm starts at Step 3 and ends at Step 8.
� In Step 6, some repair decisions may not be available due to the

locations of the resources that are required.

Theorem 2. Given a two-echelon problem of LORA and spare parts
stocking, consisting of one or more components and each component
requiring zero or more resources, applying the integrated algorithm
results in a convex EBO-costs-curve, consisting of efficient solutions.

Proof. In Steps 1–5, the problem is increasingly divided into sub-
problems. Lemmas 3 and 2 state that Steps 6 and 7 result in a con-
vex EBO-costs-curve, consisting of efficient solutions for one
component. Taking Steps 8–10 (9 and 10 possibly multiple times)
leads to a convex EBO-costs-curve, consisting of efficient solutions
for the total problem, using repeatedly the results stated in Lem-
mas 4 and 2. h

Notice that for our claim of finding efficient solutions, it does
not matter in which order resources are fixed (Step 1). However,
it does matter for the computation time. That is why we now dis-
cuss how to decompose a general problem with shared resources
into independent subproblems so that the total problem can be
solved in an efficient way. To this end, we represent the interaction
between the resources in a graph, which we will call a resource
graph: a vertex represents a resource, and an edge between two
vertices exists if there exists a component that uses both resources.
Fig. 5 represents the resource graph for the example. Below, we
first give a number of definitions, then we explain how we use
the graph representation of the interaction between the resources.
We assume a familiarity with basic graph theory; for further defi-
nitions, we refer to any book on general graph theory (e.g., Godsil
and Royle, 2001).

A graph G = (V,E) consists of vertices v 2 V and edges between
vertices (v,w) 2 E. A graph G0 = (V0,E0), with V0 # V and
(v,w) 2 E0 , (v,w) 2 E, v 2 V0, w 2 V0, is called an induced subgraph
of G. A graph is connected if any two of its vertices are linked by
a path (the graph consisting of one vertex is connected as well).
A maximal connected subgraph G0 = (V0,E0) is an induced subgraph
of G = (V,E), such that adding any more vertices v 2 VnV0 (and the
required edges (v,w) 2 EnE0 to keep an induced subgraph) leads
to a disconnected graph. A maximal connected subgraph is also
called a connected component or just component; we will use the
term graph component to avoid confusion. A depth first search
can be used to identify the graph components in a graph (see,
e.g., Hopcroft and Tarjan, 1973). A graph is complete if an edge ex-
ists between any two vertices: if for all vertices v1, v2 2 V with
v1 – v2 it holds that (v1,v2) 2 E, then the graph G = (V,E) is
complete.

We now define a resource group as the set of all resources rep-
resented by the vertices in one graph component in the resource
graph. Let jRgroupj be the number of resources in such a resource
group. Since fixing the locations for one resource leads to 2(N+1) sce-
narios, we know that the number of possible combinations of loca-

tions for the resources in a resource group is 2ðNþ1ÞjR
group j

. The goal is
to decompose any resource group in such a way that the smallest
number of scenarios remains.1 Notice that decomposition of the re-
source group is useful only if it is represented by a graph component
that is not complete. We decompose the problem using a recursive
approach on the graph representation of the resource group as
follows.



Table 1
Fixed values.

Parameter Value (s)

# Bases 5
# Components 100
# Resources 10

Table 2
Values that vary over a range.

Parameter Range (s)

Annual demand of component [0.01;0.1]
Net cost of component [1000;10,000] and [1000;100,000]
Discard costs [75%;125%]
Repair costs [25%;75%]
Move costs [1%;1%]
Annual holding costs [20%;20%] and [20%;40%]
Annual cost of resource [10,000;100,000] and [10,000;500,000]
Repair time (in years) [0.5/52;4/52] and [2/52;4/52]
Move time (in years) [2/365;4/52] and [1/52;4/52]
# Components per resource [2;3] and [2;6]
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1. Check whether the graph component, representing a resource

group, is complete. If so, the number of scenarios is 2ðNþ1ÞjR
group j

.
Otherwise, go to Step 2.

2. For each vertex in the graph component, representing a
resource, remove the vertex from the graph component.2

Using a depth-first search, find the graph components in the
new subgraph. For each of the new graph components, go to
Step 1. The total number of scenarios is 2(N+1) times the sum-
mation of the number of scenarios in each new graph compo-
nents. Go to Step 3.

3. Over all the vertices that can be removed, choose the vertex
that leads to the smallest number of scenarios. This vertex
represents the resource that should be fixed.

6. Computational experiment

In this section, we use an extensive computational experiment
to compare solving the joint problem using the integrated algo-
rithm with solving the two problems sequentially. In Section 6.1,
we give the most important characteristics of the problem in-
stances that we use; a more extensive explanation of how the
problem instances are generated can be found in Appendix B.
Section 6.2 gives the results. We have implemented our work in
Delphi 2007 and solve problems instances on an Intel Core 2 Duo
P8600@2.40 GHz, with 3.5 GB RAM, under Microsoft Windows XP
SP 3.

6.1. Generator

In order to obtain insights into the impact of using a joint ap-
proach instead of a sequential approach and to obtain insights into
the various parameter settings, we have chosen to eliminate the im-
pact of a-symmetrical networks. We thus restrict ourselves to sym-
metrical repair networks only, which means that the parameters
are identical for all bases (e.g., kc,l = kc,k for all l, k 2 L1). With a sim-
ilar reasoning, we take the same decisions at all bases (e.g., Sc,l = Sc,k

for all l, k 2 L1). Notice that this strategy is optimal for symmetrical
networks, except that the overshoot increases, see Section 4.

There are seven parameters that get two different values or
ranges in our set of problem instances, the other parameters get
a fixed value or range (see Tables 1 and 2 for the exact values).
We generate ten problem instances per parameter combination
to avoid basing conclusions on one exceptional case only. In total
this leads to 10 � 27 = 1280 problem instances in the computa-
tional experiment.

6.2. Results

Table 3 gives an overview of the results: compared with solving
the two problems sequentially, solving them using the integrated
algorithm results in a cost reduction of 5.07% on average and 43%
at maximum. The two key reasons why cost reductions result are:

� Some components that require resources in order to be
repaired, are repaired in the solution of the integrated approach,
whereas they are discarded in the solution of the sequential
approach. As the repair lead time is considerably less than the
resupply lead time in our experiments, we need less spare parts
if we repair. In rare cases, components are repaired at the bases
instead of at the central depot in order to reduce the lead time.
� Components that do not require resources in order to be

repaired, are always repaired at the base in the sequential
2 Do not remove a vertex that is connected to one other vertex only, since that does
not help in decomposing the graph component.
solution, because there is no reason to induce move costs in
order to repair the components at the central depot (notice that
usually some resources will be required for a repair, but only
the expensive, specific resources are considered in the LORA
problem since other resources will be available anyhow). How-
ever, in our model (and generally in the METRIC type models),
spare parts may only be stocked at locations where the spare
parts are repaired or downstream in the network, which means
that if repairs are performed at the bases, spare parts may only
be stocked there. In the integrated solution, quite some of these
repairs are performed at the central depot so that risk pooling
effects can be used by stocking spare parts there.

The second reason seems to be the most important reason why
cost reductions are achieved. To see this, look at the results for the
problem instances in which each resource is required by 2–3 com-
ponents ([2;3]) in Table 4. Using the integrated approach, more re-
pairs are performed at the central depot (echelon level 2) and in
total, compared with using the sequential approach. However,
the increase in the total number of repairs is only minor (the in-
crease in installed number of resources is also minor; this is not
shown in the tables); the main difference results from changing
the repair location from echelon level 1 to echelon level 2 for many
components.

Since there are more components that do not require any re-
source when 2–3 components require each resource, than when
2–6 components require each resource (the number of resources
is not changed), the repair strategy of many more components is
changed in the former case than in the latter case, leading to an
average cost reduction of 9.2% and 0.9%, respectively.

Another interesting thing to notice is that the cost reduction
that may be achieved is especially large if the move lead time is
low, see Table 5. If this lead time is drawn from a uniform distribu-
tion on the interval [2/365;4/52], the average cost reduction is
7.6%, whereas it is only 2.5% when the interval [1/52;4/52] is used.
The reason is that if the move lead time is low, then the increase in
lead time is small when a component is repaired at echelon level 2
(in the solution of the integrated algorithm) instead of at echelon
level 1 (in the solution of the sequential approach). This means that
the advantage of being able to use risk pooling effects more easily
outweighs the disadvantage of a higher lead time.

The effects of the other parameter settings are much smaller.
The next biggest effect results from a change in the repair lead
time, which is shown in Table 5. Two last remarks:



Table 3
Overview of the results.

Algorithm used Optimization time in seconds Cost reduction compared with sequential Average availability (%)

Average Maximum Average Maximum

Sequential 0.02 0.13 – – 95.14
Integrated 0.11 0.64 5.07% 43.26% 95.11

Table 4
% Of demand that is repaired.

# Components per resource Sequential Integrated

Ech. 1 (%) Ech. 2 (%) Total (%) Ech. 1 (%) Ech. 2 (%) Total (%)

[2;3] 78.6 0.1 78.8 62.7 16.8 79.5
[2;6] 67.1 1.1 68.2 65.5 4.3 69.8

Table 6
Cost reduction of joint approach compared to sequential approaches.

No estimate
(%)

Alternative 1
(%)

Alternative 2
(%)

Average cost reduction 5.07 5.02 5.34
Maximum cost

reduction
43.26 43.26 43.26

Table 5
Results for the move and repair lead times.

Lead time Setting Cost reduction

Average (%) Maximum (%)

Move [2/365;4/52] 7.62 43.26
[1/52;4/52] 2.52 18.07

Repair [0.5/52;4/52] 4.33 35.82
[2/52;4/52] 5.81 43.26
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� We have tried to improve the sequential approach by incorpo-
rating an estimate of the spare parts holding costs in the LORA
building block, but have not been able to do this in such a way
that the results of the sequential approach did actually improve.
We compare the results for two such alternative sequential
approaches with the sequential approach that we have used
(without an estimate) in Table 6 (notice that the lower the cost
reduction that the joint approach achieves, the better the per-
formance of the sequential approach). See Appendix C for an
explanation of these alternative approaches.
� The optimization times that we show in Table 3 are low, but

notice that due to the computational complexity of our algo-
rithm (see Section 5), they would increase drastically when
the problem would become more complex, e.g., when bases
are not identical. However, as mentioned in Section 6.1, we
have chosen to focus on symmetrical networks only so that
we can clearly see how repair strategies change as a result of
using the joint approach instead of the sequential approach,
and to see the impact of various parameter settings.

7. Conclusions and further research

We have presented an algorithm that finds optimal solutions for
the joint problem of LORA and spare parts stocking. Solving the
problem using our integrated algorithm leads to a cost reduction
of 5.07% on average and more than 43% at maximum in our numer-
ical experiment compared with solving the two problems sequen-
tially, which is done usually in both the literature and in practice.
Therefore, we conclude that it is worthwhile to solve this problem
integrally, especially if the lead time between the echelon levels is
low. The cost reduction is achieved mainly by performing repairs at
the central depot instead of at the bases (for parts that do not re-
quire resources) so that spare parts may be stocked at the central
depot and thus risk pooling effects may be used. Performing repairs
instead of discards and performing repairs at base instead of at the
central depot has a much smaller effect on the achieved cost
reduction.

For further research, it would be interesting to extend the mod-
el to multi-echelon, multi-indenture problems and find good heu-
ristic procedures. The integrated algorithm that we have presented
will not find efficient solutions anymore, but may still serve as a
benchmark.
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Appendix A. Counter example optimality single-site, multi-
indenture problem

To understand the calculations in the example below, a basic
knowledge of METRIC models is required. We refer to the books
by Sherbrooke (2004) or Muckstadt (2005) for a detailed explana-
tion. We also require some notation: Let P{Xc 6 k} denote the
probability that over the repair or replenishment lead time of com-
ponent c, the number of demands for component c is less than or
equal to k. These Poisson probabilities are easily calculated.

Consider a single stock point where spare parts are stocked for a
component (c1) and its two subcomponents (c2 and c3). So, we aim
to construct a curve of EBO of component c1 versus total spare
parts costs resulting from stocking components c1, c2, and c3. The
failure rate per unit time of component c1 is 4. Each failure can
be repaired by replacing either one of the two subcomponents.
Out of the four failures, on average 1.5 are caused by component
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c2 and 2.5 are caused by component c3. Replacement of the defec-
tive subcomponent (so, repair of component c1) takes zero time.
Repair of components c2 and c3 both take 1 unit time. If no spare
parts are stocked of any of the three components, we will thus have
expected number of backorders of component c1 of 1 � 1.5 +
1 � 2.5 + 0 � 4 = 4.

Consider two possible spare parts stocking solutions for the
subcomponents, having the same holding costs per unit time (the
holding costs per unit time for component c2 are two third of those
for component c3):

1. Stock 1 spare component c2 and 4 spare components c3, result-
ing in expected number of backorders for the subcomponents of
0.8939 (0.7231 and 0.1708 for component c2 and c3, respec-
tively). These backorders delay repairs of the parent component
c1.

2. Stock 4 spare components c2 and 2 spare components c3, result-
ing in expected number of backorders for the subcomponents of
0.8935 (0.0242 and 0.8694 for component c2 and c3,
respectively).

Constructing a convex EBO-curve would lead to removal of
solution 1 (since it has a higher EBO than solution 2 and the same
costs). If we do not stock any spare components c1, this is fine.
However, if we stock one spare component c1, solutions 1 and 2
would lead to an expected number of backorders of component
c1 of 0.39 and 0.43, respectively. Solution 1 clearly dominates solu-
tion 2. This shows that generally, it is not possible to solve a sub-
problem for subcomponents first and use the resulting convex
EBO-curve to solve the problem for the parent component. Instead,
we should enumerate all possible solutions for the two subcompo-
nents, construct an EBO-curve for the parent for each resulting
solution, and take the lower envelope of the resulting curves. The
computation time clearly explodes if the number of subcompo-
nents per component increases.

A similar problem occurs in the case of general multi-echelon
problems (more than two echelon levels). Although these results
are often mentioned, both for the multi-indenture and general
multi-echelon problems, we have never seen an example such as
we have provided here.
Appendix B. Problem instances generator

We explain how we generate the problem instances that we use
in our experiments. For each parameter that we use to generate
these instances, we use the default setting in the text. Tables 1
and 2 give a complete overview of the possible settings. Some val-
ues are set to a certain value, others are drawn from a given distri-
bution. These random values are the same for all settings of the
other parameters. We use a full factorial design and we generate
10 problem instances for each combination of parameters to de-
crease the risk of basing conclusions on one odd problem instance.
As a result, there are 1280 problem instances in total.

We use a two-echelon repair network that is completely sym-
metrical in the cost factors, the demand rates, and the throughput
times. It consists of a central depot and five bases. The product
structure consists of 100 components. The annual demand for a
component is drawn from a uniform distribution on the interval
[0.01;0.1]. The component’s price is drawn from a shifted expo-
nential distribution with shift factor 1000 and rate parameter 7/
(10,000 � 1000). As a result, we do not have components with a
price below 1000, since they are typically discarded by default.
Furthermore, there are considerably more cheap components than
expensive ones. On average 1‰ of the components get a value lar-
ger than 10,000, but we draw a new price for these components to
avoid odd problem instances. Using the calculated prices, we calcu-
late the variable costs as follows:

� Repair costs as a fraction of the component price are drawn
from a uniform distribution on the interval [0.25;0.75].
� The discard costs as a fraction of the component price are drawn

from a uniform distribution on the interval [0.75;1.25]. These
costs include the costs of purchasing a new component and
the disposal costs or residual value of the defective component.
� The move costs as a fraction of the component price are 1%.
� The annual costs of holding one spare part of a component are

20% of the gross component price.

For each component, we draw a repair time from a uniform dis-
tribution on the interval [2/52;4/52]. The discard time, the time it
takes to order a component and receive it at the central depot, is
drawn from a uniform distribution on the interval [1/10;1/2]. Both
the discard and the repair times vary over the components, but are
the same at both echelon levels. The replenishment lead time be-
tween the two echelon levels is drawn from a uniform distribution
on the interval [2/362;4/52]. This value is the same for all
components.

There are ten resources and their annual costs are drawn from a
shifted exponential distribution with shift factor 10,000 and rate
parameter 7/(100,000 � 10,000). We draw a new price for the re-
sources that get a price higher than 100,000 to avoid odd problem
instances. The number of components that requires a certain re-
source is drawn from a uniform distribution on the range [2;3].
These components are chose randomly.
Appendix C. Alternative sequential solutions

In our numerical experiment, we compare our joint approach
with a sequential approach. The LORA building block in this
sequential approach does not incorporate the spare parts holding
costs that may result from a LORA decision. To improve the results
of the sequential approach, we have therefore tried to incorporate
an estimate of the spare parts holding costs in the LORA. We have
done this by adding an estimate to the variable costs in two differ-
ent ways:

1. Our first estimate covers the average pipeline only, so this can
be seen as a lower bound on the actual spare parts require-
ments. Consider a repair/discard decision for a certain compo-
nent, e.g., repair at the central depot. Take the total lead time
that is related to this decision. For our example, this is the repair
lead time at the central depot plus the lead time to move a
repaired component back to the base. The estimate of the spare
parts holding costs per failure for the component and repair/
discard decision is now this total lead time times the annual
holding costs of this spare part.

2. For our second estimate we assume that the total target
unavailability over all components may be distributed evenly
over all components. In a system approach, such as METRIC,
more expensive parts will achieve a lower component target
availability than less expensive parts. As a result, our estimate
can be seen as an upper bound on the actual spare parts
requirements.
If the availability target is, say, 0.95, then this target is achieved
if each component achieves an availability of 0:95ð

1
jCjÞ (with jCj

being the number of components in each system). The per com-
ponent target availability can be achieved as follows: take the
total lead time for a repair/discard option (as explained above)
and calculate the average pipeline by multiplying this lead time
by the failure rate. The expected number of backorders (EBOs) is
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equal to this average pipeline if there are no spare parts in the
network. Keep adding spares at the base until the EBO is
reduced such that 1-EBO is below the component target avail-
ability. Multiplying the resulting number of spare parts by the
annual holding costs of these spare parts and dividing that by
the failure rate gives our estimate of the spare parts holding
costs per failure for the component and repair/discard decision.
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