
Equilibruim Approach of Asset Pricing under Lévy Process

Jun Fu, Hailiang Yang∗

Department of Statistics and Actuarial Science, The University of Hong Kong, Pokfulam Road, Hong Kong

Abstract

This work considers the equilibrium approach of asset pricing for Lévy process. It derives the equity
premium and pricing kernel analytically for the stock price process, obtains an equilibrium option pricing
formula, and explains some empirical evidence such as the negative variance risk premium, implied volatility
smirk, and negative skewness risk premium by comparing the physical and risk-neutral distributions of the
log return. Different from most of the current studies in equilibrium pricing under jump diffusion models,
this work models the underlying asset price as the exponential of a Lévy process and thus allows nearly an
arbitrage distribution of the jump component.
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1 Introduction

As is known to all, it has been long observed that jumps exist in asset prices. And various stock price processes
with jump components have been proposed in the past literature, such as pure jump process by Cox and Ross
(1976), jump diffusion process by Merton (1976) and Kou and Wang (2004), and jump diffusion process with
short noise by Altmann et al. (2008) and Morenno et al. (2011). A very general jump diffusion model, which has
been commonly used, is Lévy process, since it allows the jump component to have infinite activity and admits
nearly an arbitrary distribution. Some special cases of this kind of jump component include the inverse Gaussian
model of Barndorff-Nielsen (1997), the generalized hyperbolic class of Eberlein et al. (1998), the variance-gamma
(VG) model of Madan et al. (1998), the CGMY model of Carr et al. (2002), and the finite moment log-stable
model of Carr and Wu (2003). The jump component can capture the rare-event risk and make the asset return
non-Gaussian distributed, and the study of option pricing with this rare-event risk and risk measure for the
non-Gaussian distributed returns can be referred to Martzoukos and Trigeorgis (2002) and Rossello (2008).

By using a jump diffusion model in the production economy of Cox et al. (1985), a pricing kernel can
be obtained and it provides the analytical relation between the physical and risk-neutral distributions of the
log return. And regarding this relation, there are some important phenomena which have been observed and
studied. First, the risk-neutral variance is larger than physical one. This phenomenon is referred to as the
negative variance risk premium in Coval and Shumway (2001), Bakshi and Kapadia (2003), and Carr and Wu
(2009), since it means that the long position in a variance swap contract is expected to lose rather than to gain.
Second, the risk-neutral skewness is negative as observed by Rubinstein (1994) and Ait-Sahalia and Andrew
(1998). This asymmetric distribution can result in the downward slope of the implied volatility smirk. Lastly,
the risk-neutral skewness is more negative than the physical skewness, or called negative skewness risk premium,
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as studied by Bakshi et al. (1997). Similar to the first phenomenon, it means that the return of a skewness
contract is negative.

The purpose of this paper is to establish a general equilibrium model with both diffusion and jump risks,
under which an analytical form of the pricing kernel can be obtained, and the above mentioned empirical
evidence can be explained through the relation between the physical and risk-neutral measures implied from
the pricing kernel. Many similar questions have also been studied in the past, such as in Pan (2002), Liu and
Pan (2003), and Liu et al. (2005), but they all impose some strict assumptions on the distribution of the jump
component, such as constant jump size, zero mean of jump size, or normally distributed jump size. Removing
these assumptions, Zhang et al. (2010) allows an arbitrary distribution for the jump size, but just uses the
increment of a Poisson process to model the jump intensity. Therefore, compared to these past works, our study
under Lévy process is more general in the sense that it uses the Lévy kernel to model the jump component,
allowing not only an arbitratry distribution but also infinite activity for the jump intensity. Furthermore, in
Zhang et al. (2010), although the pricing kernel and equilibrium option pricing formula can be obtained without
imposing any assumption on the distribution of the jump size, the explanation of the empirical evidence, which
is the most important part of the article, only focuses on the simplest case where the jump size is a constant. In
constrast to this, in this article, an arbitrary Lévy kernel is always used for the jump component not only in the
theoretical results but also in the study of the empirical phenomena. Therefore, it generalizes the explanantion
of the empirical evidence to a more advanced model.

In the production economy of Cox et al. (1985) with only a single physical good used for both consumption
and investment, we model the single production process as an ordinary exponential of a Lévy process. Under
this model, firstly, the equity premium and pricing kernel can be obtained from an investment and consumption
optimization problem for a representative investor with constant-relative-risk-averse (CRRA) utility. Then,
from this pricing kernel, the equilibrium option pricing formula is derived, and it can be shown to be equivalent
to the Bakshi and Madan (2000)’s inverse Fourier transformation formula which is based on the risk-neutral
distribution of the log return. Lastly, which is the most important part, we analytically compare the risk-neutral
and physical distributions, and explain the empirical evidence mentioned above including the negative variance
risk premium, implied volatility smirk, and negative skewness risk premium. Moreover, an empirical application
to the S&P 500 index is also provided. In summary, this paper analyzes the effect of the jump component on the
equity risk premium and on the link between the physical and risk-neutral measures, and furthermore studies
the cause of the empirical phenomena from the perspective of jump risk.

The following sections of this paper are organized as follows. Section 2 introduces the exponential Lévy
model for the single production process. Section 3 deriveds the equity premium and pricing kernel. Based on
these results, the equilibrium option pricing is presented in Section 4. And Section 5 explains the empirical
evidence. Section 6 concludes this paper.

2 The Price Model

In the production economy of Cox et al. (1985) with only a single physical good used for both consumption
and investment, there is only one production process. And we assume that the production process {St}t≥0
transforms like an exponential of a Lévy process. Let {Xt}t≥0 be this Lévy process on R, νX its Lévy kernel,
and JX its jump measure, which is a Poisson random measure on [0,∞)×R with intensity measure νX(dx)dt,
and denote a one-dimensional standard Brownian motion by {Bt}t≥0. If νX is a Radon measure on R \ {0} and
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satisfies ˆ

|x|<1

|x|2 νX(dx) <∞
ˆ

|x|≥1

νX(dx) <∞,

then {Xt}t≥0 admits the following Lévy-Itô decomposition

Xt = µt+ σBt +X l
t + lim

ε→0
X̃ε
t , (1)

where

X l
t =

ˆ t

0

ˆ
|x|≥1

xJX(dx, ds),

X̃ε
t =

ˆ t

0

ˆ
ε≤|x|<1

x{JX(dx, ds)− νX(dx)ds}.

Furthermore, if the jump component has finite variation, i.e.
ˆ

|x|<1

|x|νX(dx) <∞,

then (1) can be rewritten as

Xt =

µ− ˆ
|x|<1

xν(dx)

 t+ σBt +

ˆ t

0

ˆ
R
xJX(dx, ds). (2)

Let St = S0 exp(Xt), Itô formula leads to the following stochastic differential equation

dSt
St−

=

[
µ+

1

2
σ2 +

ˆ
R

(ex − 1− x · 1|x|<1)νX(dx)

]
dt+ σdBt +

ˆ
R

(ex − 1) [JX(dx, dt)− νX(dx)dt]

= (r + φ)dt+ σdBt +

ˆ
R
(ex − 1) [JX(dx, dt)− νX(dx)dt] , (3)

where we let
φ = µ+

1

2
σ2 +

ˆ
R

(ex − 1− x · 1|x|<1)νX(dx)− r (4)

denote the equity premium. Additionally, there is a money market account {Mt}t≥0 which allows both borrowing
and lending at a risk-free rate r, and it follows

dMt

Mt
= rdt. (5)

3 Equity Premium and Pricing Kernel

3.1 Equilibrium Approach of Asset Pricing

To apply the equilibrium approach, we consider a representative investor trading in both of the risky asset and
the risk-free money account and consuming over the time horizon [0, T ] as well. Let {ct}t≥0 be the consumption
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rate, and {Wt}t≥0 be the wealth process of the representative investor with Wt written as

Wt = W1t +W2t,

where W1t = ωWt and W2t = (1 − ω)Wt denote the wealth invested in the risky stock and risk-free money
account respectively. Hence, (3) and (5) lead to

dWt

Wt−
=

[
r + ωφ− ω

ˆ
R

(ex − 1)νX(dx)− ct
Wt−

]
dt+ ωσdBt + ω

ˆ
R

(ex − 1)JX(dx, dt), (6)

where both of the percentage of wealth invested in the stock ω and the consumption rate ct are control variables.
Subject to (6), the object of the investor is to maximize the expected utility function of his consumption

max
(ω,ct)

Et

[ˆ T

t

p(s)U(cs)ds

]
, (7)

where p(t) denotes the time preference function with p(t) ≥ 0 on [0, T ], and U(·) is a utility function with U
′
> 0

and U
′′
> 0. Here we consider the constant relative risk aversion (CRRA) utility function

U(c) =

{
c1−γ

1−γ , γ > 0, γ 6= 1,

ln c, γ = 1,

where γ is called the relative risk aversion coefficient.

3.2 Equity Premium

By solving the problem of (7) and applying the market clearing condition ω = 1, we can obtain the equilibrium
equity premium φ, and furthermore analyze the effects of the diffusive risk and jump risk on this φ.

Proposition 1. In the economy where there is a single production process given by (3) and the representative
investor has CRRA utility function, the equilibrium equity premium is given by

φ = γσ2 +

ˆ
R

[
(ex − 1)(1− e−γx)

]
νX(dx), (8)

which is a sum of a diffusion risk premium and a rare-event risk premium.

Proof. Define

V (t,Wt) := max
(ω,ct)

Et

[ˆ T

t

p(s)U(cs)ds

]
, (9)

then it satisfies the following HJB equation

max
(ω,ct)

Et [dV (t,Wt) + p(t)U(ct)dt] = 0, (10)
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where dV (t,Wt) can be obtained as follows by applying Itô formula

dV (t,Wt) = Vt(t,Wt−)dt+ VW (t,Wt−)

{[
r + ωφ− ω

ˆ
R

(ex − 1)νX(dx)− ct
Wt−

]
Wt−dt+ ωσWt−dBt

}
+

1

2
VWW (t,Wt−)ω2σ2W 2

t−dt+

ˆ
R

[V (t,Wt− (1 + ω (ex − 1)))− V (t,Wt−)] JX(dx, dt),

where the subscripts are used to denote the partial derivatives. By considering the expectation on the left hand
side of (10), we have the following first-order condition for this maximization problem{
−VW + p(t)U

′
(ct) = 0,[

φ−
´
R(ex − 1)νX(dx)

]
WVW + ωσ2W 2VWW +

´
R [VW (t,W (1 + ω(ex − 1))) ·W · (ex − 1)] νX(dx) = 0,

(11)
where we have suppressed the dependence of V (t,Wt−) on t and Wt−, and the market clearing condition ω = 1

implies

φ = − 1

VW

{
σ2WVWW +

ˆ
R

[VW (t,Wex) · (ex − 1)] νX(dx)

}
+

ˆ
R
(ex − 1)νX(dx). (12)

The substitution of (12) and ω = 1 into (10) results in

0 = Vt + rWVW −
1

2
σ2W 2VWW −W

ˆ
R

[VW (t,Wex) · (ex − 1)] νX(dx)

+

ˆ
R

[V (t,Wex)− V (t,W )] νX(dx)− ctVW + p(t)U(ct), (13)

and, by considering the two cases of γ > 0, γ 6= 1 and γ = 1 separately and appropriate conjecture, we can
solve this partial integro-differential equation (PIDE) and finally obtain (8) by substituting the solution of this
PIDE into (12).

For further analysis, we introduce the following notations for the diffusion risk premium and jump risk
premium

φD = γσ2, φJ =

ˆ
R

[
(ex − 1)(1− e−γx)

]
νX(dx).

Remark 2. In constrast to Zhang et al. (2010) which uses a compound Poisson process, the jump risk premium
φJ given in the above allows an arbitrary distribution even with infinite activity for the jump intensity.

Remark 3. Since γ > 0, the integrand (ex − 1)(1− e−γx) in the φJ is always positive for any value of x, which
can be either positive or negative. And it means that both of a positive and a negative jump can result in a
positive part of the risk premium. Furthermore, for any x, (ex − 1)(1 − e−γx) is an increasing function of γ,
which is consistent with the fact that the more risk-averse is the investor, the higher is the risk premium.

Remark 4. We can rewrite the jump risk premium φJ as follows by using Taylor’s formula

φJ =

ˆ
R

[
(ex − 1)(1− e−γx)

]
νX(dx) = γ

ˆ
R
x2νX(dx) +O

(
x4
)
,

therefore when the jump size x is small enough, the total risk premium can be approximated as follows

φ ≈ γ
(
σ2 +

ˆ
R
x2νX(dx)

)
= γ

V ar(ln (St/S0))

t
,

which shows that the total risk premium, given by the annual variance of the log return multiplied by the risk
aversion coefficient, does not tell the difference between the risk premium contributed by the diffusion risk and
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the one due to the jump risk with small jump sizes. This is nearly the same as mentioned in the corollary 3.7
in Zhang et al. (2010).

3.3 Pricing Kernel

Proposition 5. In the jump diffusion economy given by (3) and if the representative investor has CRRA utility
function, the pricing kernel {πt}t≥0 is given by the following stochastic differential eqation

dπt
πt−

=

[
−r −

ˆ
R

(ez − 1)νZ(dz)

]
dt− γσdBt +

ˆ
R

(ez − 1)JZ(dz, dt), (14)

where the jump component of π is modeled by another jump process Z with jump measure JZ and Lévy kernel
νZ , rather than the jump component of X, but the B is the same Brownian motion as in X. To make πS a
martingale, i.e. πtSt = Et[πTST ], π also needs to satisfy the following condition

ˆ
R

(ex − 1)e−γxνX(dx) =

ˆ
R2

ez(ex − 1)νX,Z(dx× dz). (15)

Proof. First, it is obvious that the above π can lead to πtMt = Et(πTMT ). Second, the dynamics of πS can be
obtained as

d(πtSt)

πt−St−
=

[
−
ˆ
R

(ez − 1)νZ(dz)−
ˆ
R

(ex − 1)e−γxνX(dx)

]
dt+ γσdBt

+

ˆ
R

(ez − 1)JZ(dz, dt) +

ˆ
R
(ex − 1)JX(dx, dt) +

ˆ
R2

(ex − 1)(ez − 1)JX,Z(dx× dz, dt),

and to make is a martingale, we need
ˆ
R

(ex − 1)e−γxνX(dx) =

ˆ
R2

ez(ex − 1)νX,Z(dx× dz).

Remark 6. In Pan (2002), Liu and Pan (2003) and Liu et al. (2005), strict assumptions are imposed on the
distribution of the jump size for deriving the pricing kernel under jump diffusion model, and although Zhang
et al. (2010) removes these restrictions, it only uses a compound Poisson distribution for the jump component.
Therefore, this result is comparatively general.

Remark 7. Obviously, the distribution of the jump process Z, satisfying the conditon of (15), is not unique,
and this is due to the the presence of the jump component in X which makes the market incomplete.

4 Option Pricing

In this section, we will first provide the equilibrium option pricing formula by using the pricing kernel derived
above, and then show that this equilibrium result is actually equivalent to the risk-neutral result obtained by
Bakshi and Madan (2000).
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4.1 Equilibrium Approach

Let C(S, t) denote the time-t value of a European call option with spot price S, then based on that C(S, t)πt is
a martingale, we have the following proposition which contains a PIDE and an explicit formula for the option
price.

Since in the subsequent sections we have to use the Lévy kernel under the risk-neutral probability Q, before
introducing the following proposition we first define the risk-neutral probability Q as

dQ
dP

∣∣∣∣
Ft

= ertπt = exp

{[
−1

2
γ2σ2 −

ˆ
R

(ez − 1)νZ(dz)

]
t− γσBt +

ˆ t

0

ˆ
R
zJZ(dz, ds)

}
, (16)

where the pricing kernel or the distribution of Z is not unique in this incomplete market, and thus the risk-
neutral measure Q is also not unique. Under the measure Q, {B̃t = Bt + γσt}t≥0 is a standard Brownian
motion, and the distribution of the jump component in X can be derived as

EQ
{

exp

[
θ

ˆ t

0

ˆ
R
xJX(dx, ds)

]}
= exp

[ˆ
R2

ez(eθx − 1)νX,Z(dx× dz) · t
]
,

therefore it follows that
νQX(dx) =

ˆ
R
ezνX,Z(dx× dz), (17)

and based on (15) we have ˆ
R
(ex − 1)e−γxνX(dx) =

ˆ
R

(ex − 1)νQX(dx). (18)

Proposition 8. In the above jump diffusion economy, the price of a European call option satisfies the following
PIDE

Ct +

[
r −
ˆ
R

(ex − 1)νQX(dx)

]
SCs +

1

2
σ2S2Css − rC +

ˆ
R

[C(Sex, t)− C(S, t)] νQX(dx) = 0 (19)

with a terminal condition
C(S, T ) = max(S −K, 0),

where νQX is the Lévy kernel under the risk-neutral probability Q defined by (16) and (17).
And an explicit result, called as modified Merton (1976)’s formula for the call option price, can be obtained

as
C(S, t) = E

{
exp

[
Z̃τ

]
· CBS

(
S · exp

(
X̃τ

)
, t
)}

, (20)

where

τ = T − t,

X̃τ =

ˆ τ

0

ˆ
R
xJX(dx, ds)− τ

ˆ
R

(ex − 1)νQX(dx),

Z̃τ =

ˆ τ

0

ˆ
R
zJZ(dz, ds)− τ

ˆ
R
(ez − 1)νZ(dz),

and CBS(·, ·) is the Black-Scholes formula for the European call option.

Proof. Firstly, for the PIDE (19), the dynamics of C(St, t)πt can be derived as
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d (C(St, t)πt) = C(St−, t)dπ
c
t + πt−dC

c(St, t) + (dπct · dCc(St, t)) +4 (C(St, t)πt)

= C(St−, t)πt−

[(
−r −

ˆ
R

(ez − 1)νZ(dz)

)
dt− γσdBt

]
+πt−Cs(St−, t)St−

[
(r + φ)dt+ σdBt −

ˆ
R

(ex − 1)νX(dx)dt

]
+πt−

[
Ct(St−, t)dt+

1

2
Css(St−, t)S

2
t−σ

2dt

]
− γσ2πt−Cs(St−, t)St−dt

+πt−

ˆ
R2

[ezC(St−e
x, t)− C(St−, t)] JX,Z(dx× dz, dt),

where the superscript c stands for the corresponding process without jump, and 4 (C(St, t)πt) represents the
jump component of the dynamics of C(St, t)πt at time t. Since it is a martingale, by substituting (8) we have

Ct +

[
r −
ˆ
R

(ex − 1)e−γxνX(dx)

]
SCs +

1

2
σ2S2Css − rC +

ˆ
R2

ez [C(Sex, t)− C(S, t)] νX,Z(dx× dz) = 0,

and the PIDE (19) follows from the condition (17) and (18).
Secondly, for the explicit result (20), according to (14) and (3) we have

πT
πt

= exp

{[
−r − 1

2
γ2σ2 −

ˆ
R

(ez − 1)νZ(dz)

]
τ − γσ(BT −Bt) +

ˆ T

t

ˆ
R
zJZ(dz, ds)

}
, (21)

ST
St

= exp

{[
r + φ− 1

2
σ2 −

ˆ
R

(ex − 1)νX(dx)

]
τ + σ(BT −Bt) +

ˆ T

t

ˆ
R
xJX(dx, ds)

}
(22)

= exp

{[
r − 1

2
σ2 −

ˆ
R
(ex − 1)νQX(dx)

]
τ + σ(B̃T − B̃t) +

ˆ T

t

ˆ
R
xJX(dx, ds)

}
, (23)

where
B̃t = Bt + γσt,

and then we can calculate Et
[
πT
πt

(ST −K)
+
]
as

C(S, t) = Et
[
πT
πt

(ST −K)
+

]
= exp

{[
−
ˆ
R

(ez − 1)νZ(dz)

]
τ

}

× Et

exp

[ˆ T

t

ˆ
R
zJZ(dz, ds)

]
· dH
dP

∣∣∣∣
Ft
· e−rτ

[
SBST · exp

(ˆ T

t

ˆ
R
xJX(dx, ds)− τ

ˆ
R

(ex − 1)νQX(dx)

)
−K

]+
= E

{
exp

[
Z̃τ

]
· CBS

(
S · exp

(
X̃τ

)
, t
)}

,

where

dH
dP

∣∣∣∣
Ft

= exp

{
−1

2
γ2σ2τ − γσ (BT −Bt)

}
,

SBST = St exp

{(
r − 1

2
σ2

)
τ + σ

(
B̃T − B̃t

)}
,
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and under the measureH, {B̃t} is a standard Brownian motion whereas the distributions of the jump components
in X and Z remain the same as in P, and this allows the application of the Black-Scholes formula CBS(·, ·).

4.2 Risk-Neutral Approach

By using the inverse Fourier transformation, Bakshi and Madan (2000) provides a general pricing formula for
the European call option, which is represented in terms of the risk-neutral distribution of the log return. In
our setting, where the underlying price is modeled as the exponential of a Lévy process, we can show that this
risk-neutral approach is equivalent to the above equilibrium approach with its result given by (20).

Proposition 9. The call option price given by (20) is equivalent to the Bakshi and Madan (2000)’s result,
which shows that the price of a European call option can be given by

C(S, t) = SΠ1 −Ke−rτΠ2, (24)

where

Π1 =
1

2
+

1

π

ˆ +∞

0

Re
[
e−iθ ln(K/S) × fQ(θ − i, τ)

iθfQ(−i, τ)

]
dθ,

Π2 =
1

2
+

1

π

ˆ +∞

0

Re
[
e−iθ ln(K/S) × fQ(θ, τ)

iθ

]
dθ,

fQ(θ, τ) = EQ {exp [iθ ln (ST /St)]} .

Proof. Note that

ST
St

= exp

{[
r − 1

2
σ2 −

ˆ
R

(ex − 1)νQX(dx)

]
τ + σ

(
B̃T − B̃t

)
+

ˆ T

t

ˆ
R
xJX(dx, ds)

}
,

we can show that
fQ(θ, τ) = EQ

{
exp

[
−1

2
σ2θ2τ + iθ

(
X̃τ + rτ − 1

2
σ2τ

)]}
.

Then by substitution, we can calculate Π2 as follows

Π2 =
1

2
+

1

π

ˆ +∞

0

Re
[
e−iθ ln(K/S) × fQ(θ, τ)

iθ

]
dθ

=
1

2
+

1

π

ˆ +∞

0

EQ
{
Re
{

1

iθ
exp

[
−1

2
σ2θ2τ + iθ

(
ln(S/K) + X̃τ + rτ − 1

2
σ2τ

)]}}
dθ

=
1

2
+

1

π

ˆ +∞

0

E
{
Re
[

1

iθ
exp

(
−1

2
σ2θ2τ + Z̃τ + iθu2

)]}
dθ

=
1

2
+

1

π

ˆ +∞

0

E
[
exp

(
−1

2
σ2θ2τ + Z̃τ

)
sin (θu2)

θ

]
dθ

=
1

2
+ E

[
exp

(
Z̃τ

)
×
(
N (d2)− 1

2

)]
= E

[
exp

(
Z̃τ

)
×N (d2)

]
,
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where N(·) is the cumulative distribution function of the standard normal distribution and

u2 = ln(S/K) + X̃τ + rτ − 1

2
σ2τ

= ln

 S · exp
(
X̃τ

)
K · exp (−rτ)

− 1

2
σ2τ,

d2 =
u2
σ
√
τ
,

and similarly for the calculation of Π1, then the equivalence between (20) and (24) follows.

5 Explanation of The Empirical Evidence

To explain the empirical evidence such as the negative variance risk premium, implied volatility smirk, and
negative skewness risk premium based on the above derived risk-neutral distribution, we first provide the
relations between the physical and risk-neutral mean, variance and skewness of the stock return in the following
proposition, where we use Xt to denote the continuously compounded return within (0, t) since Xt = lnSt/S0.

Proposition 10. The mean, variance, and skewness of Xt under the physical probability are given by

E[Xt] =

[
r + φ− 1

2
σ2 −

ˆ
R

(ex − 1− x)νX(dx)

]
t,

Var[Xt] =

[
σ2 +

ˆ
R
x2νX(dx)

]
t,

Skewness[Xt] =

[´
R x

3νX(dx)
]
t−

1
2[

σ2 +
´
R x

2νX(dx)
] 3

2

, (25)

and under the risk-neutral measure (16), they can be given by

EQ[Xt] =

[
r − 1

2
σ2 −

ˆ
R

(ex − 1− x)νQX(dx)

]
t,

VarQ[Xt] =

[
σ2 +

ˆ
R
x2νQX(dx)

]
t,

SkewnessQ[Xt] =

[´
R x

3νQX(dx)
]
t−

1
2[

σ2 +
´
R x

2νQX(dx)
] 3

2

. (26)

Proof. Based on the expressions for S of (22) and (23) under the physical measure and the risk-neutral measure
respectively, the results follow immediately.

These results allow a general distribution for the jump component of X, and thus can be easily deduced to
the simple cases such as that the jump component follows a compound Poission process, or even that the jump
size is a constant. Now, by using these analytical results, we can explain the empirical evidence mentioned
before. And whether the empirical evidence is consistent with the analytical results is essentially dependent on
the comparison between the physical Lévy kernel νX and the risk-neutral Lévy kernel νQX .

10



Therefore, for any physical distribution of the jump component of X, we can first obtain its risk-neutral
distribution based on (18), and then use the results given in the above proposition 10 to explain the empirical
evidence. In the following, we will first discuss a very simple case with constant jump size, and then a more
general case with the jump component following a CGMY model.

5.1 A Simple Case

In the simplist case where the jump size is a constant x and the jump density is modeled as the increment of a
Poisson process with parameter λ, the condition of (18) can be deduced to

λQ = e−γxλ

{
> λ x < 0

< λ x > 0
,

where λQ is the risk-neutral parameter of the Poisson process. An intuitive explanation is that if the jump
size is negative (positive), which is regarded as a bad (good) event, then it occurs more (less) frequently in the
risk-neutral world than in the physical world due to the presence of the risk aversion. And for a fixed value of
x, the larger is γ, the larger is the difference between the physical and risk-neutral probabilities.

Proposition 11. For the jump component of X which follows a Poisson distribution with constant jump size
x, the variance risk premium for the time horizon [0, t] is given by

x2(1− e−γx)λt,

and thus we have the negative variance risk premium (the risk-neutral variance is larger then the physical
variance) if and only if

x < 0.

And the risk-neutral skewness is negative (implied volatility smirk) if and only if

x < 0.

Proof. The conclusions follows easily from the proposition 10.

This result is consistent with the one given in Zhang et al. (2010), which says that an expectation of a
market crash can explain the two phenomena observed in the market: the negative variance risk premium and
the implied volatility smirk.

5.2 CGMY Model

A more general case can be considered if we use a CGMY model developed by Carr et al. (2002), and the Lévy
kernel is given by

ν(x) =

{
C exp(−G|x|)

|x|1+Y x < 0

C exp(−M |x|)
|x|1+Y x > 0

,

11



Figure 1: Comparison between the physical and the risk-neutral distributions for CGMY model

where C > 0, G > 0, M > 0, and Y < 2. Based on this, the variance and skewness of Xt are given by

Var[Xt] =

[
σ2 + C · Γ(2− Y ) ·

(
1

M2−Y +
1

G2−Y

)]
t, (27)

Skewness[Xt] =

[
C · Γ(3− Y ) ·

(
1

M3−Y − 1
G3−Y

)]
t−

1
2[

σ2 + C · Γ(2− Y ) ·
(

1
M2−Y + 1

G2−Y

)] 3
2

. (28)

Obviously, under the risk-neutral probability, the jump component will still follow the CGMY model but with
different parameters. By using (18), we have the parameters under the risk-neutral measure given by

CQ = C,

Y Q = Y,

GQ = G− γ,

MQ = M + γ,

where we need to impose an additional assumption of G > γ, and this result means that, due to the presence
of the risk aversion, the negative (positive) jump has a smaller (larger) control rate of the exponential decay,
which implies a fatter (thinner) tail and higher (lower) frequency of large jumps in the risk-neutral world than
in the physical world. To illustrate this comparison, in the figure 1 for a CGMY model with C = 0.05, G = 2,
M = 4, and Y = 0.15, we depict the original Lévy kernel under the physical measure and another two risk-
neutral kernels with respect to two values of the risk-aversion, and from which we can observe the effect of
the risk aversion on the difference between the physical and the risk-neutral measures. From this difference, it
follows the conditions equivalent to the negative variance risk premium and implied volatility smirk as given in
proposition 13.

12



Proposition 12. For the jump component of X which follows a CGMY model with C > 0, G > γ, M > 0,
and Y < 2, the variance risk premium for the time horizon [0, t] is given by

C · Γ(2− Y ) ·

[(
1

M2−Y −
1

(M + γ)
2−Y

)
−

(
1

(G− γ)
2−Y −

1

G2−Y

)]
t,

and thus we have the negative variance risk premium if and only if

G < M + γ. (29)

And the risk-neutral skewness is negative (implied volatility smirk) if and only if

G < M + 2γ. (30)

Proof. First, from (27), the expression for the variance risk premium given in this proposition is obviously true.
And the negative variance risk premium is equivalent to

f(M + γ) < f(G),

where
f(x) =

1

(x− γ)
2−Y −

1

x2−Y

is a decreasing function for x > γ, therefore (29) follows. Second, from (28), we have the implied volatility
smirk if and only if

1

(MQ)
3−Y −

1

(GQ)
3−Y < 0,

and this is obviously equivalent to (30).

Remark 13. For both of the simple case and the CGMY model, a careful analysis of the risk-neutral variance
shows that given the negative variance risk premium (under the condition of x < 0 for the simple case and
G < M+γ for the CGMY model), the risk-neutral variance increases with the value of the relative risk aversion
coefficient γ. It means that the more risk-averse is the investor, the larger is the variance risk assumed in its
risk-neutral world compared to the one in the physical world.

Remark 14. We have intuitive explanations for the above proposition. For the negative variance risk premium,
in spite that the positive jump has a thinner tail in the risk-neutral world than in the physical world, the
negative jump does the opposite and if it decays not too fast compared to the the positive jump (G is not
too large comparted to M), then the total variance will still increase when we change from physical world to
the risk-neutral world. And for the implied volatility smirk, the condition (30), equivalent to GQ < MQ, is
consistent with the intuition that if, under the risk-neutral measure, the negative jump has smaller rate of decay
and hence fatter tail than the positive jump, then the distribution is negatively skewed.

Different from these two empirical evidence, the situation for the negative skewness risk premium is a little
bit complex. Due to the expressions of (25) and (26), the risk-neutral skewness is more negative than the
physical one if and only if we have

´
R x

3νQX(dx)[
σ2 +

´
R x

2νQX(dx)
] 3

2

<

´
R x

3νX(dx)[
σ2 +

´
R x

2νX(dx)
] 3

2

< 0,
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which is not only related to the relation between νQX and νX , but also related to the comparison between the
jump risk and diffusion risk. The first two phenomena can be well explained by only using the distribution of
the jump component, and the diffusion term has no contribution, but in constrast to them, we will not have
the negative skewness risk premium by only specifying appropriate parameters for the jump component, since
the diffusion risk is also involved.

5.3 An Empirical Application

To observe the above mentioned empirical evidence, we apply a jump diffusion process with the jump component
following the CGMY model to the daily log returns of the S&P 500 index from January 2, 1985 to December
30, 2011. By estimating the parameters, we can determine the coefficient of the risk aversion and make a
comparison between the estimated physical and risk-neutral distributions.

By the inverse Fourier transformation, the probability density function of the daily log return Xτ =

ln(St+τ/St) with τ = 1
252 can be given by

p(x) =
1

π

ˆ ∞
0

Re [exp (−iθx) · f(θ, τ)] dθ,

where f(θ, τ) = E {exp [iθXτ ]} is the characteristic function of Xτ , and it can be shown that

f(θ, τ) = exp

{
iθ(r + φ− 1

2
σ2)τ − 1

2
σ2θ2τ + τ

ˆ
R

[
(eiθx − 1)− iθ(ex − 1)

]
νX(dx)

}
,

where we take r = 0.0492 which is the average 3-month yield, and for the integral we note that
ˆ
R

(eiθx − 1)νX(dx) = C · Γ(−Y ) ·
[
(M − iθ)Y −MY + (G+ iθ)Y −GY

]
,

and p(x) can be calculated by using fast Fourier transform.
Given the daily log returns {xn}Nn=1, we define the log likelihood function as

L(φ, σ, C,G,M, Y ) =

N∑
n=1

ln [p(xn)] .

By maximizing this function, we can obtain the maximum likelihood estimators (MLE) as:

φ σ C G M Y

0.0438 0.1421 0.4672 24.4013 29.8832 0.2200
,

and in the following figure 2, we depict the estimated density function with the observed density.
Based on these estimated parameters, we can obtain the risk aversion coefficient as follows:

φ = γσ2 +

ˆ
R

[
(ex − 1)(1− e−γx)

]
νX(dx) =⇒ γ ≈ φ

σ2 + C · Γ(−Y ) ·
[

1
M2−Y + 1

G2−Y

] = 1.9308,

and obviously we can have the conditions of (29) and (30) satisfied, which are consistent with the phenomena of
the negative variance risk premium and implied volatility smirk. Furthermore, by using the previously derived
relation between the physical and risk-neutral distribution, we can depict both of the physical and risk-neutral
densities of the annual log return in the following figure 3.
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Figure 2: The density fit for a jump diffusion model (Brownian Motion and CGMY Model)

Figure 3: Comparison between the physical and the risk-neutral distributions of the annual log return
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Although, as mentioned in section 5.2, the condition for the negative skewness premium is more complex
than the ones for the negative variance risk premium and the implied volatility smirk, by substituting the
estimated parameters into (28), we can calculate the annual physical and risk-neutral skewnesses as

Skewness[X1] = −0.0166, SkewnessQ[X1] = −0.0309,

which indicate a more negative risk-neutral skewness than the physical one, and this phenomenon can also be
observed in the figure 3.

6 Conclusion

As confirmed by previous studies, both of a continuous and a jump component exist in asset prices. And
further observations support the evidence of negative variance risk premium, implied volatility smirk, and
negative skewness risk premium. Therefore, this paper targets to explain these empirical phenomena under a
comparatively general equilibrium model with both diffusion and jump risks.

In the production economy of Cox et al. (1985) where the single production process is modeled as the
exponential of a Lévy process, we have successfully derived the equity premium and the pricing kernel with the
jump component following an arbitrary distribution. By using this pricing kernel, an equilibrium option pricing
formula can be obtained, and it can be regarded as a modified Merton (1976)’s result for the call option price
by incorporating the risk-neutral distribution of the jump component. Moreover, this pricing formula can be
shown to be equivalent to the Bakshi and Madan (2000)’s formula. In addition to that, the pricing kernel can
also imply the transformation from the physical measure to the risk-neutral measure, and based on which, we
can analyze the effect of the risk aversion on the difference between the two measures: the larger is the relative
risk aversion coefficient, the higher (smaller) is the frequency of the negative (positive) jump in the risk neutral
world than in the physical world. And this difference in the distribution of the jump component can perfectly
explain the negative variance risk premium and implied volatility smirk, without any contribution from the
diffusion risk. However, in contrast to this, the negative skewness risk premium is attributable to both of the
jump and the diffusion risks.

Our model can be further extended to incorporate a stochastic volatility by using the time-changed Lévy
process developed by Carr and Wu (2004), where the instantaneous rate of volatility is allowed to jump and
even the volatility can be correlated with the log returns.
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