
 

 

 

Subgame-perfection in free transition games

Citation for published version (APA):

Flesch, J., Kuipers, J., Schoenmakers, G., & Vrieze, K. (2011). Subgame-perfection in free transition
games. METEOR, Maastricht University School of Business and Economics. METEOR Research
Memorandum No. 047 https://doi.org/10.26481/umamet.2011047

Document status and date:
Published: 01/01/2011

DOI:
10.26481/umamet.2011047

Document Version:
Publisher's PDF, also known as Version of record

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can
be important differences between the submitted version and the official published version of record.
People interested in the research are advised to contact the author for the final version of the publication,
or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these
rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above,
please follow below link for the End User Agreement:
www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:

repository@maastrichtuniversity.nl

providing details and we will investigate your claim.

Download date: 08 May. 2024

https://doi.org/10.26481/umamet.2011047
https://doi.org/10.26481/umamet.2011047
https://cris.maastrichtuniversity.nl/en/publications/077e54bc-7242-489c-abdb-a0d088486dbe


J. Flesch, J. Kuipers,  
G. Schoenmakers, K. Vrieze 
 
Subgame-Perfection in Free 
Transition Games 
 
RM/11/047 
  
 
 



Subgame-Perfection in Free Transition Games
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Abstract

We prove the existence of a subgame-perfect ε-equilibrium, for every ε > 0, in a class of
multi-player games with perfect information, which we call free transition games. The
novelty is that a non-trivial class of perfect information games is solved for subgame-
perfection, with multiple non-terminating actions, in which the payoff structure is
generally not semi-continuous. Due to the lack of semi-continuity, there is no general
rule of comparison between the payoffs that a player can obtain by deviating a large
but finite number of times or, respectively, infinitely many times. We introduce new
techniques to overcome this difficulty.

Our construction relies on an iterative scheme which is independent of ε and ter-
minates in polynomial time with the following output: for all possible histories h, a
pure action a1

h or in some cases two pure actions a2
h and b2h for the active player at h.

The subgame-perfect ε-equilibrium then prescribes for every history h that the active
player plays a1

h with probability 1 or respectively plays a2
h with probability 1 − δ(ε)

and b2h with probability δ(ε). Here, δ(ε) is arbitrary as long as it is positive and small
compared to ε, so the strategies can be made “almost” pure.
Keywords: perfect information game, recursive game, subgame-perfect equilibrium,
average payoff.

1 Introduction

In many practical situations, decision makers have to make a number of choices sequen-
tially, with perfect knowledge of all past decisions. To model and to analyse such situ-
ations, the mathematical framework of non-cooperative games with perfect information
has served as a useful tool. In those games, a widely accepted solution concept is the one
of Nash equilibrium, which is a collection of strategies, one for each player, such that no
player can profit by individually deviating from his strategy. In other words, in a Nash
equilibrium, every player plays a strategy that is a best response to the strategies of his
opponents. Yet, if a player or some players make choices, either on purpose or by mistake,
that differ from the prescriptions of their strategies, the continuation strategies may no
longer enjoy the above mentioned equilibrium property in the remaining subgame. Hence,
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in certain cases the strategies may prescribe non-credible behavior for the players, who
consequently may become reluctant to follow them. Realizing this shortcoming, Selten
[13] and [14] proposed the notion of a subgame-perfect (Nash) equilibrium, as a selection
criterion amongst the Nash equilibria of the game. A subgame-perfect equilibrium re-
quires that, in every subgame, the continuation strategies must form a Nash equilibrium.
Due to the lack of existence of such exact solutions, we often need to allow for a positive
error term ε. While, in fairly general perfect information games, the existence of a Nash
ε-equilibrium, for every ε > 0, has long been known due to Mertens and Neyman, cf.
Mertens [9], and later to Thuijsman and Raghavan [18], Flesch et al. [5] have recently
shown that not all perfect information games admit a subgame-perfect ε-equilibrium. It
is still an open question which classes of perfect information games do.

Given the large number and the diversity of applications of subgame-perfect equilibrium,
also in perfect information games, this existence question is relevant for both theory and
practice, and has received notable attention in recent years. Areas where subgame-perfect
equilibria play an important role include bargaining (cf. e.g. Osborne and Rubinstein
[11], Muthoo [10], Weg and Zwick [20]), coalition formation (cf. Bloch [1], Vartiainen
[19]), entry deterrence (cf. Selten [15]) and political science (cf. Bueno de Mesquita and
Lalman [2]).

In this paper we examine a natural class of perfect information games, which we call free
transition games, and prove that they admit a subgame-perfect ε-equilibrium for all ε > 0.
Moreover, the corresponding strategies are ”almost” pure: either one action is prescribed
with probability 1, or one action with probability 1− δ and another one with probability
δ, where δ > 0 is arbitrarily small.

A free transition game is played as follows: at every period during play, one of the players
is called active. The active player can either terminate the game, or he can announce any
other player, who then becomes the active player. If a player decides to terminate the
game, then depending on the identity of this player, every player receives a payoff. If no
player ever terminates the game, then every player receives payoff zero.

One could think of a group of friends, who want to spend the evening together. Initially,
one of them, say person j, is supposed to organize the evening activities. He can either
organize the evening himself (termination at j), or ask someone else, say person k, to
replace him as the organizer. In the latter case, person k has the following options:
organize the evening (termination at k), reject person j’s request (person k nominates j),
or ask a third person to replace him as the organizer. In the last two cases, the procedure
continues as before. Since the evening activities may depend on the organizer, the payoff
of each person may depend on the identity of the organizer. If no one ever decides to
organize the evening, the friends cannot meet and they all receive payoff zero.

We remark that such a game can be viewed as a special type of multi-player stochastic
game with the following properties: (1) it is a game with perfect information (i.e., in every
state, only one of the players is to choose an action), (2) the payoffs are recursive (i.e., the
only payoffs are upon termination), (3) all the transitions are deterministic.

In this paper we prove that every free transition game admits a subgame-perfect ε-
equilibrium for every ε > 0. In view of an instructive example in Solan & Vieille [17],
this result cannot be strengthened to pure strategies or to ε = 0. Our construction uses
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an iterative method that results in a non-empty collection of plays that can be a part of
a subgame-perfect ε-equilibrium, for every ε > 0. The main difficulty arises by negative
termination payoffs, which may dissuade certain players from terminating the game.

For free transition games with only non-negative termination payoffs, the one-deviation
principle applies, cf. Kuipers et al. [6]: if with respect to a strategy profile, no player can
improve his payoff in any subgame by deviating exactly once, then this strategy profile
is a subgame-perfect 0-equilibrium. Indeed, this property implies that a finite number
of deviations cannot be profitable either, and because the termination payoffs are non-
negative, no player can profit from deviating infinitely many times (that can only happen
if play never terminates). By making use of this one-deviation principle, Kuipers et al. [6]
showed the existence of a pure subgame-perfect 0-equilibrium.

Within the more general framework of perfect-information games, there has been signifi-
cant development in recent years on the existence of subgame-perfect ε-equilibria. Solan
[16], Mashiah-Yaakovi [7] and [8] proved the existence of (approximate) subgame-perfect
ε-equilibria in different subclasses in which the active player has only one non-terminating
action. When multiple non-terminating actions are allowed, the game becomes strategi-
cally more complex. Iterative methods have been proven useful in a number of subclasses.
Kuipers et al. [6] and Flesch et al. [3] applied such methods, but in both cases it is crucial
to assume that the termination payoffs are non-negative. These results have been general-
ized by Flesch et al. [4], who proved the existence of subgame-perfect ε-equilibria, provided
that the transitions are deterministic and that the payoff functions of the players, defined
as a function of the whole play, are bounded and lower-semicontinuous. The assumption
of lower-semicontinuity guarantees that deviating infinitely many times is never better,
up to a small error-term, than deviating a large but finite number of times, and hence
the one-deviation principle still applies. Subsequently, Purves & Sudderth [12] proved the
same result, by using a different approach, when upper-semicontinuity is assumed instead.
Due to upper-semicontinuity, the opposite is true here: deviating a large but finite number
of times is never better, up to a small error-term, than deviating infinitely many times.

Our model of free transition games, with possibly negative termination payoffs, differs
from the above mentioned classes with multiple non-terminating actions, because the
payoff functions are generally not semi-continuous. Consequently, there is no general rule
of comparison between deviations finitely many respectively infinitely many times, and
this issue requires a delicate treatment.

2 Game model and strategic concepts

A free transition game is given by a triple Gj = (N, r, j), where N = {1, . . . , n} is a set of
players with n ≥ 2, j ∈ N , and r : N → IRn is a function that associates a payoff vector
r(t) ∈ IRn with each player t ∈ N . The game is played at periods in IN as follows. At
every period, one of the players is called active, with j being the active player at period
1. The active player, say t, always has the option to terminate the game. In this case, the
players receive payoffs according to r(t). The active player can also announce any player
other than himself, who then becomes the active player at the next period, and so on. If
no player ever terminates the game, each player’s payoff is zero.
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Note that the set of states in a free transition game is exactly the set of players N . We
will use the term player or state depending on the context.

For convenience, we assume that (i) the active player can terminate the game by announc-
ing himself as the next active player, and (ii) if he does so, then play goes on, but this
player has to announce himself at all further periods. So, play is always infinite and results
in a sequence (tm)m∈N of active players such that if tM = tM+1 for some M ∈ N then
tm = tM for all m ≥ M . If a player s ∈ N announces himself, we say that termination
occurs at s.

The history at some period is the sequence that consists of the active players at all previous
periods and the current active player, in chronological order. Note that every history in
the game Gj starts with j. For Gj , we denote by Hj the set of all possible histories, and
by Hji the set of all possible histories in which i is the current active player. A strategy σi

for player i ∈ N is a map that assigns to every history h ∈ Hji a probability distribution
σi(h) on N such that if termination has occurred in h at i then σi(h) places probability
1 on i. The interpretation is that σi prescribes for player i to choose the next active
player according to σi(h), after every h ∈ Hji. A vector of strategies σ = (σi)i∈N , one for
each player, is called a strategy profile. For a strategy profile σ, we denote by φi(σ) the
expected payoff for player i ∈ N if every player s ∈ N plays according to σs.

A strategy profile σ is called a (Nash) ε-equilibrium in Gj , for some ε ≥ 0, if no player
can gain more than ε by individually deviating from his strategy, i.e. for every player i
and every strategy σ̃i of player i we have

φi(σ1, . . . , σi−1, σ̃i, σi+1, . . . , σn) ≤ φi(σ) + ε.

Consider a history h = (tm)L
m=1 ∈ Hjs. We denote by Hh

si the set of all histories h′ =
(t′m)L′

m=1 ∈ Hsi such that (h, h′) := (t1, . . . , tL−1, t
′
1, . . . , t

′
L′) is a history in Hji. Note that

Hh
si is empty exactly when termination occurred in h at s and i 6= s. For a strategy σi, the

continuation strategy σh
i for h is defined as the map that assigns to every history h′ ∈ Hh

si

the probability distribution σi(h, h′). Intuitively, the recommendation by σh
i after h′ is

just as if h had happened before h′.

A strategy profile σ is a subgame-perfect ε-equilibrium in Gj , for some ε ≥ 0, if for every
history h ∈ Hj , with some final state s, the continuation strategy profile σh = (σh

i )i∈N is
an ε-equilibrium in Gs, i.e. for every player i and every strategy σ̃i of player i we have

φi(σh
1 , . . . , σ

h
i−1, σ̃i

h, σh
i+1, . . . , σ

h
n) ≤ φi(σh) + ε.

A deterministic game-plan, or simply plan, is an infinite sequence g = (tm)m∈N with
tm ∈ N for all m ∈ N and with the property

[ ∃M ∈ N : tM = tM+1 ] ⇒ [ ∀m ≥M : tm = tM ] .

If tM = tM+1 = s then g corresponds to a plan or play where player s eventually terminates
the game. We say that plan g terminates at s. Otherwise, i.e., if tm 6= tm+1 for all m ∈ N,
we say that g is non-terminating, which corresponds to a plan or play, where no player
ever terminates the game. We say that g is a plan for t if t1 = t. We write t ∈ g if m ∈ N
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exists with tm = t. If t ∈ N is such that t 6= t1, then the sequence (t, t1, t2, . . .) is also a
plan, and we will denote this plan as (t, g).

For every plan g, let φ(g) denote the corresponding payoff vector in IRn. Formally, φ(g) =
r(t) if g terminates at t and φ(g) = (0, . . . , 0) if g does not terminate.

Define Ω as the set of real vectors α ∈ IRn with αt ≥ rt(t) for every t ∈ N . Now take
α ∈ Ω. We say that a plan g is α-viable if φt(g) ≥ αt for all t ∈ g. This means that,
whenever play is in some state t, and play is according to g, the active player t will receive
a payoff of at least αt. For t ∈ N , let Vt(α) denote the set of plans for t that are α-viable.
Say that t ∈ N is α-positive if αt > 0 and that t is α-terminating if αt = rt(t). Say that t
is α-safe at u ∈ N \ {t} if φt(g) ≥ αt for all g ∈ Vu(α). Say that t is α-vulnerable if αt ≤ 0
and if at least one of the following holds:

V1. a plan g ∈ Vu(α) exists for some u ∈ N \ {t} such that g terminates at t and there
is x ∈ g, x 6= t, with rt(x) ≤ αt;

V2. an α-terminating state x ∈ N \ {t} exists with rt(x) ≤ αt.

The motivation behind this definition is that, if player t is α-vulnerable, then he can
be persuaded to terminate by the threat of either switching to g and terminating at x
(according to V1) or terminating at x (according to V2).

The following lemma establishes some fairly intuitive relationships between the concepts
we just introduced.

Lemma 1 Let α ∈ Ω and let t, u, s ∈ N with u 6= t, s 6= t, and s 6= u.

1. If t is α-safe at u and u is α-safe at s, then t is α-safe at s.

2. If αt ≤ 0 and t is not α-vulnerable, then t is α-safe at s.

Proof. Let α ∈ Ω and let t, u, s ∈ N with u 6= t, s 6= t, and s 6= u.

Proof of 1: Assume that t is α-safe at u and that u is α-safe at s. To prove that t is α-safe
at s, choose an arbitrary plan g ∈ Vs(α). Since u is α-safe at s, we have φu(g) ≥ αu, hence
(u, g) ∈ Vu(α). Then, since t is α-safe at u, we have φt(u, g) ≥ αt, hence φt(g) ≥ αt. Since
g was chosen arbitrarily in Vs(α), it follows that t is α-safe at s.

Proof of 2: Assume that αt ≤ 0 and that t is not α-vulnerable. Choose an arbitrary plan
g in Vs(α). If g terminates at t, then the α-viability of g ensures that φt(g) ≥ αt. If g
terminates at s′ 6= t, then rt(s′) > αt, since condition V2 does not hold. Hence, φt(g) ≥ αt.
If g does not terminate, then φt(g) ≥ αt follows from αt ≤ 0. This shows that t is α-safe
at s. �

We say that the plan g = (tm)m∈N is α-safe if

S1. g is α-viable;

S2. for all m ∈ N such that tm 6= tm+1, it holds that tm is α-safe at tm+1;

S3. if g terminates at s, then s is α-positive or s is α-vulnerable.
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We say that α ∈ Ω is stable if for every t ∈ N , an α-safe plan for t exists. The following
lemma demonstrates that stable vectors exist.

Lemma 2 The vector ρ = (rt(t))t∈N is stable.

Proof. Trivially, we have ρ ∈ Ω. Let t ∈ N . Notice that termination is ρ-viable for t.
So, if t is ρ-positive or if t is ρ-vulnerable, we choose the plan (t, t, . . .). Otherwise, ρt ≤ 0
and t is not ρ-vulnerable. Take an arbitrary u ∈ N \ {t}. By lemma 1.2, t is ρ-safe at
u. Therefore, if u is ρ-positive or if u is ρ-vulnerable, (t, u, u, . . .) is the required plan.
Otherwise, ρu ≤ 0 and u is not ρ-vulnerable. By lemma 1.2 once more, u is ρ-safe at t,
and therefore (t, u, t, u, . . .) is the required plan. �

3 Proof of the main result

In this section, we first provide a method for updating a stable vector α ∈ Ω, such
that the updated vector, say δ(α), is also a stable vector in Ω, and satisfies δ(α) ≥ α
coordinatewisely. This will imply the existence of a stable vector α∗ ∈ Ω with the property
δ(α∗) = α∗. This property ensures that a deviation, say by player t, from a prescribed α∗-
viable plan g can be answered by prescribing a new α∗-viable plan g′ such that φt(g′) ≤ α∗t .
If the prescribed plans during play do not terminate or terminate at α∗-positive states, this
actually constitutes a subgame perfect 0-equilibrium. However, if termination at a state
s with α∗s < 0 is precribed, it may be necessary to have a secondary threat plan available
that is played with small probability ε to enforce termination at s. Now, the properties of
α∗ will be shown to be such that s is α∗-vulnerable, and hence an appropriate threat plan
is indeed available.

For t, u ∈ N with u 6= t, and α ∈ Ω, we define

β+
t (u, α) = min{φt(v) | v ∈ Vu(α)},

β−t (u, α) = min{φt(v) | v ∈ Vu(α) and v does not terminate at t},

and further

βt(u, α) =
{
β−t (u, α) if αt ≤ 0 and t is not α-vulnerable,
β+

t (u, α) otherwise

βt(t, α) = rt(t).

Finally, for t ∈ N and α ∈ Ω, we define

δt(α) = max{βt(u, α) | u ∈ N},

and

Bt(α) = {u ∈ N | βt(u, α) = δt(α)}.

We use the convention min ∅ =∞, so that βt(u, α) and δt(α) are well defined. Moreover,
by the definition of δt(α), the set Bt(α) is always nonempty.
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Lemma 3 Let α ∈ Ω be stable and let t ∈ N . Then αt ≤ δt(α) <∞.

Proof. First we show that αt ≤ δt(α). Since α is stable, an α-safe plan for t exists. If
(t, t, . . .) is an α-safe plan for t, then αt = rt(t) = βt(t, α) ≤ δt(α). Otherwise, u ∈ N \ {t}
exists such that t is α-safe at u, which implies

αt ≤ min{φt(v) | v ∈ Vu(α)} ≤ βt(u, α) ≤ δt(α).

Now we prove that δt(α) < ∞. Choose u ∈ Bt(α). If u = t, then δt(α) = βt(t, α) =
rt(t) < ∞. So assume further that u 6= t. Let v denote an α-safe plan for u. If αt > 0
or if t is α-vulnerable, then δt(α) = β+

t (u, α) ≤ φt(v) < ∞. Otherwise, if αt ≤ 0 and t is
not α-vulnerable, then by definition of an α-safe plan, v does not terminate at t. Thus
δt(α) = β−t (u, α) ≤ φt(v) <∞. �

Notice that if δt(α) < ∞ holds for some α ∈ Ω and t ∈ N , then βt(u, α) < ∞ for every
u ∈ N . Hence, lemma 3 has the following corollary.

Corollary 4 Let α ∈ Ω be stable. Then, Vu(α) is non-empty for every u ∈ N . Moreover,
if for t ∈ N it holds that αt ≤ 0 and t is not α-vulnerable, then for every u ∈ N with u 6= t
there exists a plan v ∈ Vu(α) that does not terminate at t.

Lemma 5 Let α ∈ Ω be stable, let t ∈ N , and let δ be the vector that results from α when
coordinate αt is replaced with δt(α). Then

1. Vu(δ) ⊆ Vu(α) for all u ∈ N .

2. If s, u ∈ N with s 6= t, and if s is α-safe at u, then s is δ-safe at u.

Proof. By lemma 3, we have δ ≥ α. Then, if a plan is δ-viable, it is obviously also
α-viable. This proves part 1.

Let s, u ∈ N with s 6= t, and assume that s is α-safe at u. Choose an arbitrary plan
g ∈ Vu(δ). Then g ∈ Vu(α) by part 1, and since s is α-safe at u, it follows that φs(g) ≥ αs.
Since s 6= t, we have αs = δs, hence φs(g) ≥ δs. This proves part 2. �

Lemma 6 Let α ∈ Ω be stable, let t ∈ N , and let δ be the vector that results from α when
coordinate αt is replaced with δt(α). Then δ is stable.

Proof. We may assume δt > αt, as otherwise the lemma is trivially true. To prove the
lemma, we need to demonstrate the existence of a δ-safe plan for every u ∈ N . In part A
of the proof we show how a δ-safe plan for t can be constructed, and in part B we give a
construction for u 6= t.

A: Choose u ∈ Bt(α). Notice that the assumption δt > αt implies t /∈ Bt(α), hence u 6= t.
We first show that t is δ-safe at u. To see this, let g be a δ-viable plan for u (if there is
no such plan, then t is δ-safe at u by definition). If t ∈ g, then φt(g) ≥ δt follows by the

7



δ-viability of g. If t /∈ g, then obviously g does not terminate at t. Since g is also α-viable,
it follows that φt(g) ≥ β−t (u, α) ≥ βt(u, α) = δt. So indeed, t is δ-safe at u.

Since α is stable, there exists an α-safe plan g for u. We now argue that g does not
terminate at t. Suppose by way of contradiction that g terminates at t. Then, since g is
an α-safe plan, αt > 0 or t is α-vulnerable. Hence, δt = β+

t (u, α) ≤ φt(g) = rt(t), which
contradicts our assumption that δt > αt. Thus, g does not terminate at t as claimed. We
distinguish two cases.

A1: g terminates at some s 6= t. In this case, we prove that g′ := (t, u, s, s, . . .) is a δ-safe
plan.
Proof of condition S1: We have φt(g′) = φt(g) ≥ βt(u, α) = δt, and by the α-viability of g,
we also have φu(g′) = φu(g) ≥ αu = δu and similarly φs(g′) ≥ δs. Hence, S1 holds indeed.
Proof of condition S2: We know already that t is δ-safe at u. Thus, if u = s then S2 holds.
If u 6= s, then by lemmas 1.1 and 5.2, u is δ-safe at s, and S2 holds in this case as well.
Proof of condition S3: As g is α-safe, we have that s is α-terminating, and moreover either
α-positive or α-vulnerable. If s is α-positive, then s is δ-positive too, and S3 holds. So,
assume that s is α-vulnerable. First suppose that s is α-vulnerable due to V1, so that
there exists a plan v ∈ Vy(α) for some y ∈ N \ {s} such that v terminates at s and there
is an x ∈ v, x 6= s with rs(x) ≤ αs. The plan (x, s, s, . . .) when x 6= t and respectively the
plan g′ when x = t show that s is δ-vulnerable (due to V1 in both cases). Finally, assume
that s is α-vulnerable due to V2, so that an α-terminating state x ∈ N \ {s} exists with
rs(x) ≤ αs. If x 6= t, then s is δ-vulnerable (due to V2), and if x = t, then the plan g′

shows that s is δ-vulnerable (due to V1).

A2: g does not terminate. In this case, g′ := (t, g) is δ-safe when t /∈ g, and g′′ =
(t, u, t, u, . . .) is δ-safe when t ∈ g. Indeed, condition S1 holds for either case because
δt = βt(u, α) ≤ φt(g) = 0, and because g is α-viable. Condition S2 is valid due to t
being δ-safe at u, and additionally to lemma 5.2 for g′ and to lemmas 5.2 and 1.1 for g′′.
Condition S3 needs no verification.

B: We construct a δ-safe plan for u with u 6= t as follows. If u is δ-safe at t, then choose a
δ-safe plan ṽ for t and (u, ṽ) is the required δ-safe plan for u. So assume from here that u
is not δ-safe at t. Let v denote an α-safe plan for u. We claim that v is the required δ-safe
plan. Observe that t /∈ v: otherwise u is α-safe at t by lemma 1.1, hence u is δ-safe at t
by lemma 5.2, contradicting our assumption that u is not δ-safe at t. Therefore αx = δx
for all x ∈ v, which shows that v is δ-viable, so condition S1 holds for v and δ. Also,
v consists entirely of δ-safe moves by lemma 5.2, so condition S2 also holds for v and δ.
Condition S3 for v and δ is satisfied when v does not terminate, or when v terminates at
an α-positive state. So assume that v terminates at s such that αs ≤ 0. Since v is α-safe,
s must be α-vulnerable. Notice that s is not δ-safe at t: if s = u then s is not δ-safe at
t due to our assumption that u is not δ-safe at t, whereas if s 6= u then s is not δ-safe at
t because u is δ-safe at s and u is not δ-safe at t, and because of the transitivity of safe
moves (cf. lemma 1.1). Hence, g ∈ Vt(δ) exists with φs(g) < δs = αs ≤ 0. Notice that
g must terminate, since φs(g) 6= 0, and g does not terminate at s, since g is δ-viable and
φs(g) < δs. This implies that a δ-terminating state x ∈ N \ {s} exists with rs(x) < δs. It
follows that s is δ-vulnerable, and condition S3 for v and δ is satisfied. So indeed, v is the
required plan. �
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Lemma 7 A stable vector α∗ ∈ Ω exists such that δt(α∗) = α∗t for all t ∈ N . Moreover,
for all t ∈ N , we have

α∗t < 0⇒ t is α∗-vulnerable.

Proof. For any α ∈ Ω, we denote by N(α) the set of states t ∈ N for which δt(α) > αt.
Let α0 = (rt(t))t∈N . By lemma 2, the vector α0 is stable. If N(α0) = ∅, then define
α∗ = α0. Otherwise, choose an arbitrary t0 ∈ N(α0), and let α1 be the vector that results
from α0 when coordinate α0

t0 is replaced with δt0(α0). In view of lemmas 3 and 6, α1 ∈ Ω
and α1 is stable too, and it is in one coordinate strictly larger than α0, while in all other
coordinates they are equal. If N(α1) = ∅, then define α∗ = α1. Otherwise, we can increase
α1 in one coordinate, just as above, and so on. Since the set of payoffs is finite, lemma 3
guarantees that, in a finite number of steps, we obtain a stable vector α∗ ∈ Ω such that
δt(α∗) = α∗t for all t ∈ N .

Assume that α∗t < 0 for some t ∈ N . We need to show that t is α∗-vulnerable. Suppose
by way of contradiction that t is not α∗-vulnerable. Take an arbitrary state u 6= t, and
let v ∈ Vu(α∗) be such that v does not terminate at t and φt(v) = β−t (u, α∗). Note that
such a plan v exists by the definition of β−t (u, α∗) and by Corollary 4. Since β−t (u, α∗) =
βt(u, α∗) ≤ δt(α∗) = α∗t < 0, the plan v terminates, and by assumption, v terminates at
some s 6= t. Hence, s is α∗-terminating and rt(s) = φt(v) ≤ α∗t . In view of condition V2
of vulnerability, t is α∗-vulnerable, which is a contradiction. �

Theorem 8 A subgame-perfect ε-equilibrium exists, for every ε > 0.

Proof. Fix an ε > 0 and take a stable vector α∗ as in lemma 7. Take an R > ε large
enough so that all payoffs in the game belong to [−R,R].

Choosing plans: The most important part of the subgame-perfect ε-equilibrium that
we will construct is the specification of how the players should react when some player t
deviates from a prescribed plan by nominating some player u 6= t. We will distinguish two
types of deviations, depending on t and u.

When a deviation of type 1 occurs, the players will react by switching to a plan g1
tu for u.

For a deviation of type 2, however, we define a primary plan g2
tu as well as a secondary

plan h2
tu. These two plans will coincide up to a certain player ytu. The players are

expected to follow these plans until ytu becomes active, who is then asked to play the
action corresponding to g2

tu with probability 1− ε
2R and to play the action corresponding

to h2
tu with probability ε

2R . Subsequently, the players should execute g2
tu in the former

case, and h2
tu in the latter case.

So, consider a pair (t, u) where t, u ∈ N and u 6= t. Choose an α∗-viable plan g for u such
that φt(g) ≤ α∗t . Note that such a plan exists because δt(α∗) = α∗t . If it is possible, choose
g such that t /∈ g.

Case 1: We say that (t, u) is of type 1 if α∗t ≥ 0 or t /∈ g. In this case, we define g1
tu = g.

Case 2: We say that (t, u) is of type 2 if α∗t < 0 and t ∈ g. Note that in this case g
terminates, since φt(g) ≤ α∗t < 0. Then in fact g terminates at t, as otherwise a choice
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of g with t /∈ g would have been possible, due to free transitions. Moreover, by lemma 7,
player t is α∗-vulnerable. There are two subcases.

Case 2.1: Condition V1 is satisfied for α∗ and t, i.e., a plan g′ ∈ Vs(α∗) exists for some
s ∈ N \{t} such that g′ terminates at t and there is an x ∈ g′, x 6= t, with rt(x) ≤ α∗t . Note
that, if s 6= u, the plan (u, g′) is also α∗-viable, since φu((u, g′)) = ru(t) = φu(g) ≥ α∗u.
We may therefore assume that g′ ∈ Vu(α∗). In this subcase, we define g2

tu = g′, we define
h2

tu as the plan that follows g′ up to x and subsequently terminates at x, and we define
ytu = x. (Possibly, x = u.)

Case 2.2: Condition V1 is not satisfied for α∗ and t, but condition V2 is, i.e., an α∗-
terminating state x ∈ N \ {t} exists such that rt(x) ≤ α∗t . In this subcase, we define
g2
tu = g, h2

tu = (u, x, x, . . .), and ytu = u. (Notice that x cannot be the second state of g,
since condition V1 is not satisfied. So indeed, g2

tu and h2
tu coincide up to ytu.)

Properties of these plans: The properties below follow directly from the definitions.
For every t, u ∈ N with u 6= t, we have :

(A) Viability : When (t, u) is of type 1, g1
tu is α∗-viable. When (t, u) is of type 2, g2

tu is
α∗-viable and the part of h2

tu beyond ytu is α∗-viable, i.e., if ytu does not terminate,
then φs(h2

tu) ≥ α∗s for every player s who appears in h2
tu after ytu.

(B) Retaliation of t∗: When (t, u) is of type 1, φt(g1
tu) ≤ α∗t . When (t, u) is of type 2,

φt(g2
tu) ≤ α∗t and φt(h2

tu) ≤ α∗t .

(C) Player t cannot deviate infinitely often: This is true, since for a deviation of type 1,
player t does not appear in g1

tu, and for a deviation of type 2, player t does not
appear in the secondary plan h2

tu.

(D) The executor of a lottery is not t (the deviator) and the executer of the lottery places
high probability on the plan that he prefers: When (t, u) is of type 2, ytu 6= t and
φytu(g2

tu) ≥ φytu(h2
tu).

The profile σ: Now we define a strategy profile σ, and afterwards we show that σ
is a subgame-perfect ε-equilibrium. Suppose that the initial player is s, and choose an
arbitrary α∗-viable plan v for s. Let σ prescribe to play as follows: Follow v as long as all
players choose the action prescribed by v. If some player t deviates from v by terminating,
then play is strategically over. If t deviates from v by nominating another player u, then
determine the type of (t, u) and the corresponding plans, and play according to them as
described above, until some player t′ deviates by choosing an action u′ that he should have
used with probability zero. If t′ deviates in such a way, and by doing so he terminates, i.e.
u′ = t′, then play is strategically over. If u′ 6= t′, then just as above, determine the type
of (t′, u′) and the corresponding plans, and play according to them, until some player t′′

deviates by choosing an action u′′ that he should have used with probability zero, and so
on.

We remark that, if (t′, u′) is of type 2, then player yt′u′ can change the probabilities with
which he chooses between two plans, without retaliation of his opponents. (Property (D)
above makes sure that he cannot substantially improve his payoff by such changes.)
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The profile σ is a subgame-perfect ε-equilibrium: Consider an arbitrary subgame
G(h), after some history h, and a player t. Notice that, according to property (A), player
t’s payoff without deviation would be at least(

1− ε

2R

)
· α∗t +

ε

2R
· (−R) ≥ α∗t − ε. (1)

We distinguish 3 cases for a single deviation by player t:

Case (i): t deviates in G(h) by terminating. In this case, t’s payoff is rt(t) ≤ α∗t , which is
an improvement of at most ε.

Case (ii): t is the player who is supposed to execute a lottery between two plans, and t
deviates by taking another probability distribution on the two actions that he should use.
In this case, t’s payoff can increase by at most ε due to property (D).

Case (iii): t deviates by playing a non-terminating action that he should not use at all,
and by doing so he nominates player u. In this case, due to property (B), the new plans
give player t at most α∗t , and hence this deviation improves t’s payoff by at most ε.

Now we examine what happens if t plans to deviate once more. For this purpose, suppose
that, after t’s first deviation, t appears again, and no termination has occurred yet. Then,
t is not assigned to execute a lottery. Indeed, if t’s first deviation belongs to case (ii) then
no new lottery is planned yet, whereas if t’s first deviation belongs to case (iii) then t is
not assigned a new lottery due to property (D) above. Hence, t’s second deviation would
fall into a case similar to case (i) or case (iii) above, and t’s payoff then would be at most
α∗t . In conclusion, in view of (1), player t’s improvement is still at most ε.

Now it follows by induction, that if t decides to deviate only a finite number of times, then
his payoff can only increase by ε.

It only remains to verify what happens if player t deviates infinitely often. This of course
means that play does not terminate and player t receives payoff 0. If α∗t < 0, property
(C) ensures that a plan will eventually be executed that does not contain player t. So,
α∗t ≥ 0 must hold. But then, by (1), player t can only gain at most 0− (α∗t − ε) ≤ ε. This
completes the proof. �

4 Examples

In this section, we illustrate the construction with some examples. We start with an
instructive example from Solan and Vieille [17].

Example 1. Consider the free transition game G which has two players, with respective
payoff-vectors

r(1) = (−1, 2), r(2) = (−2, 1).

The main idea of the game is that player 2 would like termination, and preferably at player
1, who is not easily inclined to terminate due to his negative payoff. Solan and Vieille
provided the following subgame-perfect ε-equilibrium σ, for ε ∈ (0, 1): player 1 always
terminates with probability 1 and player 2 always terminates with probability ε. Notice
that player 1 is forced into termination, as trying to never terminate would eventually
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result in termination by player 2, which would give player 1 only payoff -2. Player 2, on
the other hand, is only playing an ε-best response in σ, as he could improve his payoff by
ε by not terminating at all. Solan and Vieille pointed out that this game does not admit
a subgame-perfect 0-equilibrium.

Let us follow the iterative method given in section 3.

Step 0: Initially, α0 = (−1, 1). Note that only the plans that eventually terminate at
player 1, and (2, 2, . . .) are α0-viable.

First consider player 1. For termination we have β1(1, α0) = −1, whereas moving to player
2 gives β1(2, α0) = −2 due to the terminating plan (2, 2, . . .). In conclusion for player 1,
δ1(α0) = −1 = α0

1.

Now consider player 2. We have β2(1, α0) = 2 and β2(2, α0) = 1, hence δ2(α0) = 2. So,
we update player 2 in step 1 and obtain α1 = (−1, 2).

Step 1: We continue with α1 = (−1, 2). The only α1-viable plans for either player are the
plans that eventually terminate at player 1. It is easy to verify that δ1(α1) = −1 = α1

1

and δ2(α1) = 2 = α1
2. This means that the iterative method terminates at step 1, with

α∗ = α1 = (−1, 2). By following the construction in the proof of theorem 8, we obtain
exactly the subgame-perfect ε-equilibrium that Solan and Vieille found in this game.

Example 2. Consider the free transition game G which has two players, with respective
payoff-vectors

r(1) = (−1,−2), r(2) = (−2,−1).

There are two obvious subgame-perfect 0-equilibria. One is when each player always
terminates with probability 1. Another, and a more natural one, is when no player ever
terminates, inducing payoff 0 to both players.

Let us follow the iterative method given in section 3.

Step 0: Initially, α0 = (−1,−1). Note that only the following plans are α0-viable: the plans
(1, 1, . . .), (2, 2, . . .), and the two non-terminating plans (1, 2, 1, 2, . . .) and (2, 1, 2, 1, . . .).

First consider player 1. For termination we have β1(1, α0) = −1, whereas moving to player
2 gives β1(2, α0) = −2 due to the terminating plan (2, 2, . . .). Hence, δ1(α0) = −1 = α0

1.
Due to symmetry, we also obtain for player 2 that δ2(α0) = −1 = α0

2.

This means that the iterative method terminates at step 0, with α∗ = α0 = (−1,−1).
By following the construction in the proof of theorem 8, we obtain both subgame-perfect
0-equilibria that we mentioned above (depending on the initially chosen α∗-viable plan).

5 Concluding remarks

1. The distinction between β+
t (u, α) and β−t (u, α): Notice that, for any t, u ∈ N

satisfying t 6= u and for any α ∈ Ω, we have β+
t (u, α) ≤ β−t (u, α). Moreover, if t is

not α-terminating, i.e., αt > rt(t), then no α-viable plan can terminate at t and hence
β+

t (u, α) = β−t (u, α). Thus, regarding the iterative procedure in section 3, the distinction
between β+

t (u, α) and β−t (u, α) is only relevant as long as t is an α-terminating state.
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2. Monotonicity of δt(·): The operator δt has the useful property that δt(α) ≤ δt(α̂)
whenever α, α̂ ∈ Ω satisfy α ≤ α̂ in a coordinatewise sense. We will now prove this.
Suppose that α ≤ α̂ for some α, α̂ ∈ Ω. It suffices to prove that βt(u, α) ≤ βt(u, α̂) for
every u ∈ N \ {t}. Take an arbitrary u ∈ N \ {t}. Recall that, as mentioned in the first
concluding remark, β+

t (u, α) ≤ β−t (u, α), and similarly for α̂. We distinguish 3 cases:

Case 1: βt(u, α) = β+
t (u, α). In this case,

βt(u, α) = β+
t (u, α) ≤ β+

t (u, α̂) ≤ βt(u, α̂).

Case 2: βt(u, α̂) = β−t (u, α̂). In this case,

βt(u, α) ≤ β−t (u, α) ≤ β−t (u, α̂) = βt(u, α̂).

Case 3:

β+
t (u, α) < βt(u, α) = β−t (u, α) (2)

β+
t (u, α̂) = βt(u, α̂) < β−t (u, α̂). (3)

We prove that this case is impossible. In view of the first concluding remark, (2) and (3)
imply rt(t) = αt = α̂t. Thus, by the definition of βt(u, α) and βt(u, α̂), we may conclude
that t is not α-vulnerable and that t is α̂-vulnerable. Due to the latter, either V1 or V2
holds with respect to α̂.

Case 3.1: V1 holds with respect to α̂. In this case, as Vu(α) ⊇ Vu(α̂) and αt = α̂t, condition
V1 also holds with respect to α. This is a contradiction, as t is not α-vulnerable.

Case 3.2: V2 holds with respect to α̂. In this case, as α ≤ α̂ and αt = α̂t, condition V2
also holds with respect to α. This is a contradiction, as t is not α-vulnerable.

3. The uniqueness of α∗: For a free transition game G, let ∆(G) denote the set of stable
vectors α ∈ Ω such that δt(α) = αt for all t ∈ N . In lemma 7 we proved, for every G, that
∆(G) is non-empty, which was the crucial step in the construction of a subgame-perfect
ε-equilibrium for G. We remark that ∆(G) is not necessarily a singleton, as the following
example demonstrates. Consider the free transition game Ĝ which has only two players,
with respective payoff-vectors

r(1) = (1, 2), r(2) = (2, 1).

We argue that (1, 1), (1, 2) ∈ ∆(Ĝ). First, α = (1, 1) and α′ = (1, 2) are both stable, be-
cause the plan (1, 1, . . .) for player 1 is both α-safe and α′-safe, whereas the plan (2, 1, 1, . . .)
for player 2 is both α-safe and α′-safe. Since it is straighforward that δt(α) = αt and
δt(α′) = α′t for all t = 1, 2, we have (1, 1), (1, 2) ∈ ∆(Ĝ) indeed. In fact, due to symmetry,
(2, 1) ∈ ∆(Ĝ) holds as well.

Take an arbitrary free transition game G. All inequalities between two vectors below are
meant coordinatewisely, just as the terms non-decreasing sequence and minimal element.
Recall that the iterative procedure in the proof of lemma 7 produces a non-decreasing
sequence of stable vectors, starting with r = (rt(t))t∈N and terminating with α∗ ∈ ∆(G).
We will now show that α∗ ≤ α̂ for every α̂ ∈ ∆(G), which means that α∗ is the minimal
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element of ∆(G). Let α̂ ∈ ∆(G). Notice that if α is stable and α ≤ α̂, then δt(α) ≤
δt(α̂) = α̂t holds because of the second concluding remark. This means that the iterative
procedure only generates stable vectors that are at most α̂. In particular, α∗ ≤ α̂ indeed.
Thus, α∗ is the minimal element of ∆(G) as claimed.

As a consequence, the iterative procedure in section 3 terminates at the same α∗, irrespec-
tively of the order in which the players are updated. The only important point is that at
every step a player is updated whose coordinate strictly increases by this update.

4. Extensions.

4.1. Subgame-perfect 0-equilibria and subgame-perfect ε-equilibria in pure
strategies: Example 1, which is a game by Solan and Vieille, demonstrated that our
main result cannot be extended in these directions.

4.2. Stationary strategies: Within the class of stationary strategies, subgame-perfect
ε-equilibria fail to exist in certain free transition games. Consider the following example.
There are 3 players, with payoff-vectors

r(1) = (2, 1, 4), r(2) = (4, 2, 1), r(3) = (1, 4, 2).

It is shown in Kuipers et al. [6] that this game has no stationary subgame-perfect 0-
equilibrium, and similar arguments can be used to prove the non-existence of stationary
subgame-perfect ε-equilibrium for small ε > 0.

4.3. Games without free transitions: It is an interesting question if the main result
can be extended to similar games without the assumption of free transitions. Once the
players are allowed to have more than one state and have restrictions in choosing the
next state, the problem becomes more difficult. Because our construction heavily relies
on the transition structure of the game, it is evident that more advanced combinatorial
techniques are needed to tackle such games.

5. A polynomial algorithm. It is obvious from the iterative method that α∗ can be
calculated in polynomial time. Subsequently, the plans g1

tu, g2
tu and h2

tu in the proof of
Theorem 8 can also be determined in polynomial time. Hence, we obtain a polynomial
time algorithm whose output directly yields a subgame-perfect ε-equilibrium for every
ε > 0. Note that the algorithm itself is independent of ε.
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