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In this paper we analyze the interval availability of a two-echelon, multi-item spare part inventory sys-
tem. We consider a scenario inspired by a situation that we encountered at Thales Netherlands, a man-
ufacturer of naval sensors and naval command and control systems. Modeling the complete system as a
Markov chain we analyze the interval availability and we compute in closed and exact form the expec-
tation and the variance of the availability during a finite time interval [0,T]. We use these characteristics
to approximate the survival function using a Beta distribution, together with the probability that the
interval availability is equal to one. Comparison of our approximation with simulation shows excellent
accuracy, especially for points of the distribution function below the mean value. The latter points are
practically most relevant.
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1. Introduction

Nowadays, the aftersales service business represents a consid-
erable part of the economy and, moreover, is continuously growing
(Aberdeen Group, 2005; Deloitte., 2006). Advanced capital goods
such as MRI scanners, lithography systems, baggage handling sys-
tems, and radar systems, are highly downtime critical. The high
criticality in these cases is due to lost production, missions that
need to be aborted, patients that cannot be treated, and flights that
are delayed or canceled. So the customers of these advanced goods
are not just interested in acquiring these systems at an affordable
price, but far more in a good balance between the resulting Total
Cost of Ownership (TCO) and system productivity throughout the
life cycle, including the limitation of downtime. It is often the case
that the system upkeep costs during the life cycle of the system
constitute a large part of the TCO. However, the core business of
customers is the usage of the system and not its upkeep. Therefore,
a major part of the system upkeep is preferably outsourced to the
manufacturer or to an intermediate service provider that can offer
a good balance between the downtime and costs. For that reason,
service contracts are made between the service provider and cus-
tomers. These contracts specify the services provided by the sup-
plier with their corresponding Service Level Agreements (SLAs),
such as the time between system failure and time of fault resolu-
tion, and the system availability.

The SLAs are measured over a predetermined time window, e.g.,
a quarter or a year. For the service providers, it is essential that the
ll rights reserved.

bali).
service levels are attained, because in some cases penalties apply if
an SLA target is violated. In case of a large scale service contract
(the average performance over many systems is measured), the
average performance should meet the target. If the number of sys-
tems covered by a contract is relatively small, we have inherent
statistical variability and we need an additional buffer in perfor-
mance to assure that the probability of not meeting the SLAs over
the time window is still acceptable. We encountered such a situa-
tion at Thales Netherlands, a manufacturer of naval sensors and na-
val command and control systems. There, a service contract
typically covers a few systems only. In the literature, this issue is
usually neglected. In this paper, we are mainly interested in the
logistical delay due to the unavailability of spare parts, since this
is the basis of current service contracts at Thales Netherlands.
Moreover, the focus will be on SLAs that are based on the system
availability during a predetermined period of time.

In service parts logistics there is usually a tradeoff between the
cost involved in keeping the stocks very close to the customers
sites or at a central depot, which can supports multiple customers
at the same time. Due to the risk pooling effect, it is more desirable
for a service provider to position the stocks of spare parts centrally.
However, having a strict SLA, e.g., 99% availability in a quarter,
forces the service provider to move some spare parts closer to
the customer sites. In addition, in order to reduce the system
downtime and its critical consequences, the repair of a failed sys-
tem is usually done by replacing the failed part with a new part.
The failed part is sent to the repair shop, i.e., the inventory is man-
aged using one-for-one replenishment, so an (s � 1,s)-policy. This
policy is justified by the fact that most parts are slow movers for
which a replenishment order of size one is usually (near) optimal.

http://dx.doi.org/10.1016/j.ejor.2013.02.009
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Sherbrooke (1968) was among the first to tackle the spare part
optimization problem. He proposed the METRIC model that is
based on the maximization of system availability subject to a con-
straint on the invested budget in spare parts. The main decision in
METRIC is how much to keep in stock at each of the locations in the
supply network. The METRIC model provides good approximations
for multi-echelon spare part networks, especially in case of a high
availability. Graves (1985) and Slay (1984) extended the METRIC
model and proposed an improved approach called the VARI-MET-
RIC. We note that the VARI-METRIC model is the approach used
in most commercial software tools on spare parts optimization.

It is worth to mention that both METRIC and VARI-METRIC and
most spare parts management theory are based on finding an opti-
mal balance between the initial spare part investment and the
steady state system availability, i.e., the fraction of time the system
is operational during a very long (infinite) period of time. However,
in practice we often see that the agreed upon availability SLA is the
average availability during a finite period, e.g., month, quarter, or
year. Moreover, if the availability during a period of time is lower
than a specific percentage, penalty rules apply. This motivates us
to analyze the availability during a finite period of time, the so-
called interval availability that is defined in reliability theory as
follows, see, e.g., (Nakagawa & Goel, 1973):

Definition. The system interval availability is defined as the frac-
tion of time a system is operational during a period of time [0,T].

Note that in (Barlow, Proschan, & Hunter, 1965; Hosford, 1960)
the interval availability is defined as the expected fraction of time a
system is operational during [0,T]. To avoid confusion in this paper
and according to the previous definition the interval availability is
a random variable that has a distribution. In addition, this proba-
bility distribution has a finite support between zero and one with
probability masses at the points zero and one: There are strictly
positive probabilities that (i) an operational system will not face
any lack of spare parts during [0,T], and (ii) a failed system waiting
for a specific spare part will not be repaired by replacement during
[0,T]. In practical instances, the first probability will be significant,
and the second probability will be close to zero.

Our main contribution in this paper consists of the following
points:

� We propose a computational efficient and accurate approxi-
mation for the interval availability of a multi-item system
supported by a two echelon supply network. More specifi-
cally, our approximation is accurate in the practical case of
systems with high average availability.

� As part of this approximation, we derive in closed-form the
variance and the third moment of the cumulative sojourn
time in a subset of states of Markov chain in a finite interval.
In principle, we can also derive all the higher moments using
the same approach.

� Using simulation we show that the survival function of the
interval availability is not very sensitive to the order-and-
ship time distribution at the points of survival function that
are below the expected availability. This justifies our Mar-
kovian approach, specifically, the assumption of exponential
order-and-ship times.

The paper is organized as follows. In Section 2 we briefly review
the related literature. Section 3 describes our model and the
assumptions used to analyze the interval availability distribution
of a two echelon, multi item supply network. In Section 4 we report
our approximation where our key results are reported in a set of
Theorems. In Section 5 we validate our approximation using simu-
lation and evaluate the impact of the order-and-ship time on the
interval availability. Finally, in Section 6, we conclude the paper
and give some directions for further research.
2. Related literature

In this section we shall review the existing literature on interval
availability. Takács (1957) is among the first to analyze the interval
availability distribution function of an on–off stochastic process.
Takács result is in the form of an infinite sum of terms, each con-
sisting of multiple convolutions. This result is hard to compute
numerically. van der Heijden (1988) approximates the interval
availability distribution using two-moment approximations for
the on and off periods, which yields accurate results within small
computation times. Another approximation based on fitting the
approximated first two moments, the hundred percent, and the
nil probability of the interval availability in a Beta distribution is
proposed in (Smith, 1997). For an on–off two states Markov chain
the first two moments of the interval availability are derived ex-
actly in (Kirmani & Hood, 2008). We note that in all these previ-
ously mentioned studies the underlying assumption is that the
on periods are independent and the off periods are independent,
moreover, all the on and off period are independent of each other,
i.e., the on–off process can be represented by a renewal process.

De Souza e Silva and Gail (1986) derive in closed-form the cumu-
lative sojourn time distribution in a subset of states of a Markov
chain during a finite period of time. The subset of states can, for
example, represent the operational states of a system. Therefore,
the division of the cumulative sojourn time by the period length
gives right away the system interval availability. We note that com-
puting the full curve of the interval availability distribution using the
method of De Souza e Silva and Gail (1986) or its improved version in
(Rubino & Sericola, 1995) is time consuming. Carrasco (2004) pro-
poses an efficient algorithm to compute the interval availability dis-
tribution for the special case of the systems which can be modeled
by an absorbing Markov chain. In the latter three papers the renewal
assumption of the on–off process is not necessary.

In this paper, we propose a numerically efficient approach to
compute the distribution function of the interval availability. Our
approach builds on the result of De Souza e Silva and Gail (1986)
extensively in order to compute in closed-form the first two mo-
ments of the interval availability. These two moments have not
been derived previously in the literature for a Markov chain with
more than two states. Moreover, we follow a similar approach to
(Smith, 1997) to approximate the interval availability by a Beta
distribution using the first two moments in addition to the hun-
dred percent probability of the interval availability.

Finally, we note that the analysis of a service level over a finite
period of time is not only of interest in reliability theory, but also in
inventory management of fast moving products where demand is
typically modeled by a Normal distribution. See, e.g., (Banerjee &
Paul, 2005; Chen, Lin, & Thomas, 2003) in which the interest is
on the expected fill rate over a finite period of time T for a single
site, single item system. In these papers, it is proven that the ex-
pected fill rate over a finite period is larger than over the infinite
period case. Thomas (2005) evaluate the impact of T and the de-
mand distribution on the fill rate distribution over T. In the latter
paper, simulation is used due to the difficulty in explicitly comput-
ing the fill rate distribution during T. Tactical decisions on stock le-
vel to meet the time-based SLA in the case of multi-echelon, single
item scenario are considered in (Cohen, Kleindorfer, & Lee, 1986)
and for the multi-item scenario in (Ettl, Feigin, Lin, & Yao, 2000).
The restriction in the analysis is that the time period should be
equal to the supply lead time of the part. More recently, the model
in the latter two papers is extended and a scalability analysis is
added in (Caggiano, Jackson, Muckstadt, & Rappold, 2007).
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3. Model

We consider a two-echelon, multi-item supply network. There
is a single depot that supports multiple identical systems which
are located at different bases. There is a single system per base. A
system consists of multiple items that are subject to breakdown.
These items are repairable and belong to the class of expensive
slow-movers, i.e., they have low failure rates. The depot and the
bases hold stocks of spares for each item. Upon an item failure,
the item is immediately sent to the depot for repair and at the
same time a replenishment order is issued according to the
(s � 1,s) policy, where s denotes the order-up-to level. The unsatis-
fied demand of parts is backordered. When the replenishment or-
der arrives at the base it is used to fill backorders, if any. Otherwise,
it is added to stock. The time needed to transfer a spare from the
depot to the base is assumed to be exponentially distributed.
Although these transfer times tend to show little variation in prac-
tice, we need this assumption to facilitate Markov analysis. More-
over, it is known that the steady state availability tends to show
little sensitivity to the distributional form of repair times and or-
der-and-ship times only, see (Alfredsson & Verrijdt, 1999). In
Section 5, we use simulation to explore whether the same holds
for the interval availability distribution. It turns out that the sur-
vival function of the interval availability is not very sensitive to
the order-and-ship time distribution at the points of survival func-
tion that are below the expected availability. We say that the sys-
tem is operational if all the items are operational. Obviously, if an
item fails and no spare is available at the base, the system will be
malfunctioning and unavailable for use.

We consider a scenario inspired by a situation that we encoun-
tered at Thales Netherlands. There is one naval radar system at
each of the N frigates (bases in our model). A system consists of
M items. We assume that the jth item fails according to a Poisson
process with rate kj, j = 1, . . . , M. Moreover, the failure of item j is
independent of the other items. We assume that the replenishment
lead time of the jth item at the depot is exponentially distributed
with rate lj. The replenishment lead time includes the time to
transport the failed item from the base to the depot and the time
to repair the item at the depot. We model the depot repair shop
as an ample server queueing system, i.e., it has infinite repair
capacity. We also assume that the order-and-ship time of a spare
part from the depot to base i is exponentially distributed with rate
l0i. This means that all items at base i have the same transship-
ment time, however, the transshipment time may depend on the
base where items are located. For sake of simplicity, we shall
consider in the following the case where l0i = l0 for all i. Let sij,
i = 0, . . . , N, j = 1, . . . , M, denote the base stock level of item j at base
i, where i = 0 represents the depot and i = 1, . . . , N represents the
ith base. Under the above assumption it is easily seen that the
behavior of the system over time can be modeled as a continu-
ous-time Markov chain. More precisely, since there is a finite num-
ber of spare parts in the network the continuous-time Markov
chain is of finite size. Compared to (VARI-)METRIC, we use different
assumptions for the order-and-ship times and the replenishment
lead times. In our model both are random variables having an
exponential distribution, whereas they may have a general proba-
bility distribution in VARI-METRIC. We need the exponential
assumption in order to facilitate the Markov chain analysis. In
addition (VARI-)METRIC assumes an infinite population, e.g., the
number of jobs in a repair shop or the number of backorders can
grow infinitely large. This of course occurs with a very small prob-
ability for scenarios of high expected availability. In the contrary
with (VARI-)METRIC, we explicitly model the size of the installed
base and the stock in the supply network, so that the demand for
a spare part stops if the number of items in repair exceeds the total
number of that spare parts in the network. This is more realistic
and also facilitates the model numerical analysis for the interval
availability distribution, since we limit the size of our continu-
ous-time Markov chain.

Let Ai(T), i = 1, . . . , N, denote the interval availability of the sys-
tem at base i during [0,T]. Our objective is to find the survival func-
tion of Ai(T), i.e., the complementary cumulative distribution
function of Ai(T). For this reason, we first compute the mean and
the second moment of the interval availability as well as the prob-
ability that the interval availability equals 1, i.e., P(Ai(T) = 1).
Although we may also compute the probability mass in the point
zero, P(Ai(T) = 0), this is not really useful since for practical relevant
problem instances it will be very close to zero. Next, using the
three performance metrics as mentioned above, we approximate
the survival function of Ai(T) by a mixture of a probability mass
at one and a Beta distribution (so assuming zero probability mass
in the point 0). Throughout this paper, we shall only focus on the
interval availability of a tagged system, since we can analyze each
system separately using the same method. For this reason, we shall
drop the index i in Ai(T) and refer to it as A(T): the interval avail-
ability of a tagged system at one of the bases. In addition, we shall
refer to the stock level of item j in the tagged system as sj.

Since the failure processes of the different items are not cou-
pled, i.e., the failure of an item does not cause the failure of other
items, and the repair capacity is infinite, the different items on
the tagged system can be assumed to behave mutually indepen-
dent over time. Let Xj(t) denote the state of item j in the tagged sys-
tem at time t, i.e., Xj(t) = 1 if the item is operational at time t and
zero otherwise. Note that Xj(t) = 0 if item j fails and there is no
spare part available at the base to replace the malfunctioning item.
Let BOj(t) denote the number of item j backorders of the tagged sys-
tem at the depot. Let TRj(t) denote the number of items of type j in
transport from the depot to the tagged system. Therefore, the pipe-
line of item j in the tagged system, denoted by PLj(t), is equal to
BOj(t) + TRj(t). Note that PLj(t) depends on the stock on-hand at
the depot. Furthermore, the depot stock depends on the failure
processes of item j in all the systems in the installed base including
the tagged system. Let us denote Rj(t) as the total number of failed
items of type j in the depot repair shop. Note that backorders at the
depot are served according to a FIFO discipline. Therefore, if
Rj(t) P s0j, i.e., the on-hand stock in the depot is equal to zero, it
is also necessary to keep track of the position of the tagged system
backorders in the depot backorders list. Moreover, it is also neces-
sary to know how many items of type j are in transport from the
depot to the tagged system. This is a complication that arises when
computing the interval availability distribution which is not
encountered in the (VARI-)METRIC model for the steady state aver-
age availability. The previous complication makes a detailed
Markov chain analysis difficult. For this reason, we shall propose
an approximate three-dimensional finite-size Markov chain to rep-
resent the state evolution of item j over time in the next section.

The tagged system is operational at time t if Xj(t) = 1, for all
j = 1, . . . , M. Let O(T) denote the total sojourn time of the joint
process (X1(t), X2(t), . . . , XM(t)) in state (1, . . . , 1) during [0,T]. The
interval availability of the tagged system can be seen as the
fraction of time that the tagged system is operational, i.e.,
A(T) = O(T)/T. Note that the processes Xj(t), for j = 1, . . . , M, are
mutually independent by approximation and can be modeled as
a Markov chain. Therefore, the joint process (X1(t), X2(t), . . . , XM(t))
is also a Markov chain.

A word on notation: Given that A is a matrix, A(i, j) denotes the
(i, j)-entry of A. We use I to denote the identity matrix of an appro-
priate size, and use � as the Kronecker product operator defined as
follows. Let A and B be two matrices then A� B is a block matrix
where the (i, j)-block is equal to A(i, j)B. If A is a square matrix,
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we denote its number of rows by ||A||. We use e to denote a column
vector with an appropriate size and with all entries equal to one.

4. Approximation

In this section, we first approximate Xj(t) with a three-dimen-
sional continuous-time finite-state Markov chain. The main advan-
tages of this approximation are that it gives accurate results and
that it can be solved efficiently, see Section 5. Second, we represent
the transition generator of the joint process (X1(t), X2(t), . . . , XM(t))
as function of the generators of Xj(t), j = 1, . . . , M. The main approx-
imations are as follows:

a. All the systems in the installed base, excluding the tagged
system, have a constant annual demand for spare parts. This
means, regardless of the state of these systems, each item
failure rate is constant over time. We note that the latter fail-
ure rate can be adjusted by the availability of item j, but
numerical experiments show that this yields a minor
improvement of the results.

b. A depot repair completion at time t of an item of type j that
is used to replenish a backorder of the tagged system occurs
with a rate equal to Rj(t)lj

� BOj(t)/(Rj(t) � s0j)+, where
(�)+ = max(�,0). Note that Rj(t)lj is the depot repair comple-
tion rate at time t and (Rj(t) � s0j)+ is the total number of
backorders of item j at the depot at time t.

Let us consider the finite-state three-dimensional approximate
Markov chain fðBOjðtÞ; TRjðtÞ;RjðtÞÞ : t P 0g, referred to as AMCj.
We note that the chain has a finite state space because of the finite
number of stocks in the network. Recall that the pipeline of item
j in the tagged system equals PLj(t) = BOj(t) + TRj(t), and that Rj(t)
is the total number of type j items in the depot repair shop. Note
that PLj(t) e {0, . . . , sj + 1}, Rj(t) e {0, . . . , s0j + s1j + � � � + sMj + M}, and
BOjðtÞ 6 ðRjðtÞ � s0jÞþ, the total number of depot backorders of item
j. The process AMCj has the following transitions:

1. A failure of item j in the tagged system if the on-hand stock at
the depot is positive, i.e., Rj(t) < s0j. It represents the transition
from (0,TRj(t),Rj(t)) to (0,TRj(t) + 1,Rj(t) + 1) with rate kj.

2. A failure of item j in the tagged system if no on-hand stock is
available at the depot, i.e., Rj(t) P s0j. It represents the transi-
tion from (BOj(t),TRj(t),Rj(t)) to (BOj(t) + 1,TRj(t),Rj(t) + 1)
with rate kj.

3. A failure of item j in one of the systems in the installed based
excluding the tagged system. It represents the transition
from (BOj(t),TRj(t),Rj(t))to (BOj(t),TRj(t),Rj(t) + 1), which
occurs, by approximation a, with rate (N � 1)kj.

4. A depot repair completion of item j if the on-hand stock at
the depot is non-negative, i.e., Rj(t) 6 s0j. It represents the
transition from (0,TRj(t),Rj(t)) to (0,TRj(t),Rj(t) � 1) with rate
Rj(t)lj.

5. A depot repair completion of item j that is used to replenish a
backorder of the tagged system, i.e., Rj(t) > s0j. It represents
the transition from (BOj(t),TRj(t),Rj(t)) to (BOj(t) � 1,
TRj(t) + 1,Rj(t) � 1), which occurs, by approximation b, with
rate Rj(t)lj

⁄ BOj(t)/(Rj(t) � s0j)+.
6. A depot repair completion of item j that is used to fill a back-

order of the systems in the installed based excluding the
tagged system. It represents the transition from (BOj(t),TRj(-
t),Rj(t)) to (BOj(t),TRj(t),Rj(t) � 1), which due to approxima-

tion b occurs with rate RjðtÞlj � 1� BOjðtÞ
ðRjðtÞ�s0jÞþ

� �
.

7. An arrival of an item j from the depot to the base of the
tagged system. It represents the transition from (BOj(t),TRj(-
t),Rj(t)) to (BOj(t),TRj(t) � 1,Rj(t)) with rate TRj(t)lO.
We emphasize that some transition rates are approximations.
We evaluate the accuracy of these approximations numerically in
Section 5 using simulation.

Let Gj denote the transition generator of AMCj, which represents
the evolution over time of item j that is used in the tagged system.
Note that AMCj is a continuous-time finite-state Markov chain that
is irreducible, because all states are connected directly or indirectly
via other states. Moreover, it is positive recurrent in the sense that,
starting in any state, the mean time to return to that state is finite.
Therefore, we deduce that AMCj has a steady state probability dis-
tribution. Let pm,n,l(j) denote the steady state probability that AMCj

is in state (m,n, l). Let p(j) denote the steady state probability dis-
tribution vector of AMCj. The tagged system is operational if
m + n 6 sj for all items j = 1, . . . , M, since there is no backorder of
any item at the base then. On the other hand, when m + n = sj + 1,
there is one item j backorder at the base, and so item j is not avail-
able in the tagged system. Let Xj denote the state space of AMCj.
We split Xj into to two disjoint subsets: Xo

j is the subset of opera-
tional states with (m + n 6 sj), and Xm

j is the subset of malfunction-
ing states (m + n = sj + 1). Note that Xj ¼ Xo

j [Xm
j .

The steady state probability that item j is operational in the
tagged system equals

PðXj ¼ 1Þ ¼
Xsj

n¼0

XMþs0jþ
PM

l¼1
s0j

l¼0

Xminðsj�n;ðl�s0jÞþÞ

m¼0

pm;n;lðjÞ;

where Xj is the steady state of the process Xj(t), i.e., Xj = limt?1Xj(t).
Note that the upper bound of m in the previous equation is due to
the fact that m + n should be smaller than sj and the number of item
j backorders at the depot destined for the tagged system cannot ex-
ceed the total number of backorders at the depot (l � s0j)+. Through-
out this paper, we shall assume that the AMCj starts in steady state
at time 0. Therefore, for all t e [0,T] the chain AMCj, j = 1, . . . , M, will
remain in steady state, i.e., P(Xj = x) = P(Xj(t) = x), "t e [0,T].

In the following, we shall use the uniformization method, which
is extremely useful for computational purposes. The uniformiza-
tion method transforms a continuous-time Markov chain with
non-identical state leaving rates to an equivalent process in which
the transition epochs are generated by a Poisson process at a uni-
form rate over all states. This is done by introducing additional vir-
tual transitions from a certain state to the same state with the
required rate. For more details see (Tijms, 2003) and the references
therein. Let Pj denote the transition probability matrix of the uni-
formized process of Xj(t), t P 0. The matrix Pj reads

Pj ¼ I þ 1
m

Gj;

where I is the identity matrix of size equal to the size of Gj, and m is
given by:

m > maxðjGjðl; lÞj; l ¼ 1; . . . ; jjGjjjÞ;

where ||Gj|| is the number of rows in square matrix Gj.
Finally, let PS denote the transition probability matrix of the

joint uniformized process ((BO1(t), TR1(t), R1(t)), . . . , (BOM(t),
TRM(t), RM(t))). As an approximation, we consider that PS is equal
to P1 � � � � � PM , see, e.g., (Rausand & Høyland, 2004). The latter
approximation is accurate and very attractive from a computation
point, see Section 5.
4.1. Performance metrics

In this section, we first derive closed form expressions for
E[A(T)], Var[A(T)], and P(A(T) = 1). Next, we fit a probability distri-
bution to these three performance metrics.
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Theorem 1. The expected interval availability in [0,T] is equal to the
steady state availability of the system and is given by:

E½AðTÞ� ¼
YM
j¼1

Xsj

n¼0

XMþs0jþ
PM

l¼1
slj

l¼0

Xminðsj�n;ðl�s0jÞþÞ

m¼0

pm;n;lðjÞ;

where sj is the stock level of item j in the tagged system.
Proof. The system is operational at time t if Xj(t) = 1, j = 1, . . . , M.
Let O(T) denote the total sojourn time of the joint process
(X1(t), . . . , XM(t)) in the state (1, . . . , 1) during [0,T]. Note that
A(T) = O(T)/T. The expectation of O(T) then reads

E½OðtÞ� ¼
Z T

0
E½1fðX1ðuÞ;...;XM ðuÞÞ¼ð1;...;1Þg�du ¼

Z T

0
P½ðX1ðuÞ; . . . ;XMðuÞÞ

¼ ð1; . . . ;1Þ�du ¼
Z T

0

YM
j¼1

PðXjðuÞ ¼ 1Þdu

¼
Z T

0

YM
j¼1

PðXj ¼ 1Þdu ¼ T:
YM
j¼1

PðXj ¼ 1Þ;

where the second equality in the first line is due to the indepen-
dence of X1(t), . . . , XM(t), and the second equality in the second line
follows from the fact the system starts in steady state at time zero.
Therefore, the system will remain in steady state for all t > 0. h

Note that the result in Theorem 1 seems to be straightforward.
However, this is not the case, since we know from the literature
that the expected value of the fill rate in an inventory system over
a finite period is larger than the steady state fill rate, see, e.g.,
(Thomas, 2005).

Before reporting our result on the variance of A(T), let us intro-
duce some notation. Let cj denote a row vector of size equal to the
cardinality of the state space Xj. The vector cj is obtained from the
steady state probability vector p(j) of AMCj by replacing the equi-
librium probability of the malfunctioning states with zero. Let fj de-
note a column vector of size equal to the cardinality of the state
space Xj. The non-zero entries of fj are equal to one and they rep-
resent the operational states.

Theorem 2. The variance of the system interval availability in [0,T] is
given by:

Var½AðTÞ� ¼ 2
X1
n¼1

e�mT ðmTÞn

ðnþ 2Þ!
Xn

i¼1

ðn� iþ 1Þ
YM
l¼1

clðPlÞifl þ 2E½AðTÞ�

� e�mt þ mT � 1

ðmTÞ2
� E½AðTÞ�2:
Proof. Recall that O(T) denotes the total sojourn time of the joint
process (X1(t), . . . , XM(t)) in the state (1, . . . , 1) during [0,T]. Recall
that PS, the transition probability matrix of the joint uniformized
process ((BO1(t), TR1(t), R1(t)), . . . , (BOM(t), TRM(t), RM(t))), is
approximately equal to PS ¼ P1 � P2 � � � � � PM . Similarly, the prob-
ability vector that the joint process starts in an operational state at
time zero reads
cs ¼ c1 � c2 � � � � � cM:

Finally, let fs denote the column vector defined as follows:

fs ¼ f1 � f2 � � � � � fM:

It is well known that, see, e.g., (Horn & Johnson, 1985)

ðA1 � A2 � � � � � AkÞ � ðB1 � B2 � � � � � BkÞ
¼ A1B1 � A2B2 � � � � � AkBk:

Therefore, it is readily seen that
csðPsÞifs ¼ c1ðP1Þif1 � � � � � cMðPMÞifM ¼
YM
l¼1

clðPlÞifl;

where the last equality follows from the fact that cl(Pl)i fl, for all l, are
positive real numbers.

Let Xso denote the set of system operational states. According to
Proposition 2 in Appendix I, we have that the variance of the interval
availability of the joint process in Xso during [0,T] is given by:

Var½AðTÞ� ¼ 2
X1
n¼1

e�mT ðmTÞn

ðnþ 2Þ!
Xn

i¼1

ðn� iþ 1ÞcsðPsÞifs þ 2E½AðTÞ�

� e�mT þ mT � 1

ðmTÞ2
� E½AðTÞ�2:

Inserting cs(Ps)i fs by its value in the previous equation yields the de-
sired result. h

Similarly we can derive the third moment of A(T), see Proposi-
tion 3 in Appendix I. However, we do not include the third moment
in our approximation for the purpose of keeping the analysis sim-
ple and, moreover, we have a satisfying result with the consider-
ation of the first two moments only, see Section 5.

The interval availability is equal to one if for all items j the time
until absorption of AMCj into the subset Xm

j (malfunctioning states
set) is larger than T, given that AMCj starts at time 0 in Xo

j (opera-
tional states set). Let hj denote the row vector that only consists of
the steady state probabilities of the operational states of AMCj. We
rearrange the generator Gj of AMCj such that the operational states
of Xo

j come first and then the malfunctioning states Xo
j . We assume

that the states of Xm
j are absorbing. This newly constructed absorb-

ing Markov chain is denoted by AAMCj. Let Oj denote the transient
generator of rearranged Gj. Let Ta

j denote the time until absorption
into a state of Xm

j . It is then well known that, see, e.g., (Neuts, 1981)

PðTa
j P TÞ ¼ hj expðTOjÞe:
Theorem 3. The probability that A(T) = 1 is given by:

PðAðTÞ ¼ 1Þ ¼ e�T
PM

i¼1
mi
YM
j¼1

hj

X1
n¼0

ðmiTÞn

n!
ðPa

j Þ
ne;

where Pa
j ¼ I þ Oj=mj, e is a column vector of appropriate size with all

elements equal to one, and mj > max (|Oj(l, l)|, l = 1, . . . , kOjk).
Proof. The proof follows right away by noting that:

PðAðTÞ ¼ 1Þ ¼
YM
j¼1

PðTa
j P TÞ ¼

YM
j¼1

hj expðTOjÞe;

and,

expðTOjÞ ¼ e�mjT
X1
n¼0

ðmjTÞn

n!
ðPa

j Þ
n
: �

Note that the infinite sum in Theorems 2 and 3 can be truncated
with a predetermined truncation error bounds, see (De Souza e Sil-
va & Gail, 1986; Tijms, 2003).
Remark 1. In the special case where there is no any stock on-hand
of items at the bases, the event A(T) = 1 is only possible when there
is no item failure during [0,T]. Therefore, P(A(T) = 1) can be easily
found as follows:

PðAðTÞ ¼ 1Þ ¼ E½AðTÞ�
YM
j¼1

e�kjT :
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Remark 2. It is hard to compute P(A(T) = 0). This is because a
system is on failure if at least one item is on failure for every
t e [0,T]. Moreover, P(A(T) = 0) is negligible in practical problem
instances of high expected availability. Therefore, we shall neglect
this probability in the remainder of this paper.
4.2. Approximation of the survival probability function of A(T)

Until now we have computed the expectation and the variance
of the interval availability A(T) as well as the probability that the
interval availability equals 1. We shall report now how to fit these
metrics in a probability distribution that is a mixture of a probabil-
ity mass at one and a Beta distribution. The choice for the Beta dis-
tribution is made for the main reason that the interval availability
and a Beta distributed random variable both have finite support.

The interval availability has probability mass at zero and one.
According to Remark 2, we neglect the probability mass at zero.
Therefore, we approximate the interval availability as follows:

AðTÞ ¼ ð1� PðAðTÞ ¼ 1Þ � Bþ PðAðTÞ ¼ 1Þ;

where B is a Beta distributed random variable bounded between
zero and one. From the latter equation, it is readily seen that

E½B� ¼ E½AðTÞ� � PðAðTÞ ¼ 1Þ
1� PðAðTÞ ¼ 1Þ ; E½B2� ¼ E½AðTÞ2� � PðAðTÞ ¼ 1Þ

1� PðAðTÞ ¼ 1Þ :

The probability density function of a Beta random variable reads

f ðx; a;bÞ ¼ 1
Bða;bÞ x

a�1ð1� xÞb�1
; ð1Þ

where B(a,b) is the beta function. Given that the expectation and
the variance of B are known, simple calculus gives that

a ¼ ð1� E½B�Þ � E½B�2

Var½B� � E½B�; ð2Þ

b ¼ a
1

E½B� � 1
� �

: ð3Þ
Theorem 4. The survival function of the interval availability is given by:

PðAðTÞP yÞ ¼ ð1� PðAðTÞ ¼ 1Þ
Z 1

y
f ðx;a;bÞdxþ PðAðTÞ ¼ 1Þ;

where P(A(T)=1) is given in Theorem 3 and f(x; a, b), a, and b are given
in (1)–(3).
Fig. 1. Interval availability survival function with M = 10 i
5. Numerical validation

To validate our approximations, we constructed a discrete event
simulation model of the actual process. In this section, we compare
the results of our model with the simulation. We consider different
cases with different values for the average system availability and
for the number of items per system (M). In the main scenario, one
depot serves six bases. This scenario and its input parameters value
are inspired by a case study done at Thales Netherlands. At each
base, a single system is installed that is composed of M = 10, 30,
50 items. The repairs are done at the depot and there is no repair
possible at the bases. The repair time of item j is exponentially dis-
tributed with rate lj = 1/MTTRj, where MTTRj is the mean time to
repair item j. The order of magnitude of the MTTRj is between a
few months to more than 1 year. In our model the order-and-ship
time is exponentially distributed with mean 120 hour. Item j fails
according to a Poisson process with mean time between failures
(MTBFj) equal to 1=kj; j ¼ 1; . . . ;M. The order of magnitude of kj is
between a few times per year to a few times per 100 years. Each
system is used for 3000 hour per year for missions. We are inter-
ested in the interval availability of a system during 1 year, i.e.,
T = 8760 hour. The implementation of the simulation is done in
Plant Simulation v8.2. We used Matlab v7.8 to implement our
model. We run the simulation and our model on a machine with
dual core processor of 2.80 gigahertz with 4 gigabyte RAM. For de-
tails on the different stock allocation, MTBFj, and MTTRj in the nine
cases considered, we refer to Appendix II.

In the following, we shall first validate our model and then ana-
lyze in Section 5.2 the impact of non-exponential order-and-ship
times on the interval availability distribution. Finally, in Section 5.3
we shall analyze the impact of the interval availability distribution
on the stock allocation.

5.1. Model validation

In Figs. 1–3, we show the survival function of the interval avail-
ability using our model and the simulation with M = 10, 30, 50,
respectively. Note that in both the simulation and the approximate
model, the order-and-ship times are exponentially distributed. Ob-
serve that our model has the highest accuracy for the cases where
M = 10 and 30 and where E[A(T)] is larger than 80%. Our model pre-
dicts very well E[A(T)] and Var[A(T)] for all the cases, see the second
and third row in Table 1 for details. Note that for all the different
cases considered the difference of PðAðTÞP xÞ, with x P E½AðTÞ�,
obtained using the simulation and our model is larger than
n case: E[A(T)] = 70%, E[A(T)] = 83%, and E[A(T)] = 92%.



Fig. 2. Interval availability survival function with M = 30 in case: E[A(T)] = 72%, E[A(T)] = 83%, and E[A(T)] = 90%.

Fig. 3. Interval availability survival function with M = 50 in case: E[A(T)] = 72%, E[A(T)] = 81%, and E[A(T)] = 91%.

Table 1
Relative absolute difference of E[A(T)] (resp., Var[A(T)]) obtained using our model and simulation.

M 10 10 10 30 30 30 50 50 50
E[A(T)](%) 70 83 92 72 83 90 72 81 91
Relative difference E[A] (%) 3.03 1.23 0.42 1.48 1.22 0.48 0.81 0.92 0.44
Relative difference Var[A(T)] (%) 0.98 2.72 4.47 0.03 3.92 4.63 2.65 3.70 2.76
Min difference of P(A(T) > x), x 6 E[A(T)] �0.05 �0.04 �0.01 �0.02 �0.03 �0.01 �0.02 �0.02 �0.01
Max difference P(A(T) > x), x 6 E[A(T)] 0.00 0.00 0.00 0.01 0.01 0.02 0.03 0.03 0.04
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�0.05 and smaller than 0.04, as indicated in Table 1. Finally, we
should mention that the computation time of our model is less
500 ms for all the considered cases.

5.2. Exponential vs. deterministic and uniform order-and-ship time

In this section we show that the exponential assumption of the
order-and-ship time considered in our model has almost no impact
on the survival function of the interval availability, especially, on
P(A(T) P x) with x 6 E[A(T)]. Using simulations we compare the
case with exponentially distributed order-and-ship times with
deterministic and uniformly distributed order-and-ship times. All
the three distributions have the same expectation equal to
120 hour. The uniform distribution has a finite support in the inter-
val [108,132]. Fig. 4 displays the survival function of the interval
availability with the three distributions. Observe that the order-
and-ship time distribution has only an impact on the tail of the sur-
vival function, i.e., on P(A(T) P x) with x P E[A(T)]. In addition, the
survival function in the deterministic and uniform case are almost
the same and both have some discontinuity points in the tail. Fur-
thermore, using simulation we also find that the repair time distri-
bution has a minor impact on the survival function of the interval



Fig. 4. Interval availability survival function for deterministic, exponential, and uniform order-and-ship time with M = 50 in case: E[A(T)] = 80%, E[A(T)] = 91%.
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availability. This finding is in line with the literature (Alfredsson &
Verrijdt, 1999).

5.3. Impact on stock allocation

In this section, we show that the use of the interval availability
probabilities as goal instead of the expected availability may influ-
ence the stock allocation in the network. We shall consider two dif-
ferent stock allocations with the same expected availability and
total number of items, however, with a different survival probabil-
ity of the interval availability. We consider the following simple
scenario: we have six systems, each of them consisting of two
items with a mean time between failures equal to 3640 and
1905 hour. Both items have a mean time to repair equal to 2160.
The mean order-and-ship time is equal to 120 hour. Both items
prices are equal to one. For a given stock investment of 17 units,
METRIC gives that the optimal stock allocation at depot is (610),
at base one (01), and at the other bases (00). Using our model
we find that for the previous stock allocation the expected system
availability at base one is 94.9% and at the rest of bases is equal to
88.1%. Therefore, the expected system availability is equal to 89.2%.
The survival probability that the interval availability of base one
larger than 0.83, is equal to PðA1ðTÞP 0:83Þ ¼ 95:55% and for
the rest of systems it is equal to 77.8%. Therefore, on average the
survival probability at percentile 0.83 is equal to 80.8%. For the
stock allocation at depot (6,11) and at bases (0,0), the expected
system availability is equal to 88.9% and the survival availability
of the systems at percentile 0.83 is equal to 81.9%. Observe that
the two different stock allocations have almost the same expected
availability and total number of items, however, the second alloca-
tion has a higher survival probability. Therefore, we conclude that
the inclusion of the survival probability of the interval availability
in the stock allocation optimization may lead to a different stock
allocation compared to the METRIC approach.
6. Conclusion and directions for further research

In this paper we analyzed the interval availability of a two-ech-
elon network that supports multi-item systems. We proposed an
efficient analytical approximation that is based on a Markov chain
analysis. From Markov chain analysis we computed in closed and
exact form the expected, the variance, and the probability of hun-
dred percent interval availability of the system. Using the previous
three performance metrics we approximate the survival function
of the interval availability with a mixture of a probability mass
at one and a Beta distribution. The simulation result shows that
our model has accurate results especially for high expected interval
availability.

As a future research we plan to include our model in a optimi-
zation procedure of interval availability probability subject to a
constraint on the total investment in the spare parts. Other con-
straints could also be added like the penalty costs of not meeting
the SLA on interval availability. Besides, the extension of the model
for multi-echelon supply network with more than two levels and
possibly the multi-indenture case are also important. Since in some
practical cases we encountered a case with multi-indenture, three-
echelon network. Moreover, the restriction in our model for only
repairing the failed items at the depot should be relaxed.
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Appendix A. Technical proof

In this Appendix we derive the first three moment of the cumu-
lative sojourn time in a subset of the states of a continuous time
Markov chain during the interval [0,T]. Let G denote the transition
rate generator of a continuous-time Markov chain X(t) with finite
state space X of size |X|. We assume X(t) has a steady state distri-
bution and that X(0) is distributed according to the steady state
distribution. Let xi denote the steady state probability X(1) = i.
We denote by G(l,m) the (l,m)-entry of G. Let us define the matrix
P as follows:

P ¼ I þ 1
m

G;

where I is the identity matrix of size |X|2, and m is given by:

m > maxðjGjðl; lÞj; l ¼ 1; . . . ; jXjÞ:

P can be interpreted as the transition probability matrix of the uni-
formized process of X(t), t P 0, see, e.g., (Tijms, 2003).
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Let O(T) denote the total sojourn time during [0,T] in a subset
Xo 	X. It is then well known that the cumulative distribution of
the sojourn time in Xo reads, see, e.g., (De Souza e Silva & Gail,
1986; Tijms, 2003):

PðOðTÞ 6 xÞ ¼
X1
n¼0

e�mT ðmTÞn

n!

Xn

k¼0

aðn; kÞ
Xn

j¼k

n

j

� �
x
T

� �j
1� x

T

� �n�j
;

0 6 x < T;

PðOðTÞ ¼ TÞ ¼
X1
n¼0

e�mT ðmTÞn

n!
aðn;nþ 1Þ;

where a(n,k) is the probability that the uniformized process visits k
times the subset Xo during [0,T] given that it makes n states tran-
sitions in [0,T]. Note that the interval availability equals
A(T)=O(T)/T. Therefore, the derivation of the moment of O(T) should
immediately yield the moment of A(T).

Let us denote Po the probability matrix with jth column equal to
the jth column of P if j e Xo otherwise the jth column is equal to a
vector of zeros. Let Pf = P � Po. Conditioning on j, the state of the
Markov chain at time T the probabilities a(n,k, j) can be computed
recursively. Let C(n,k) denote a row vector with jth entry equal to
a(n,k, j). It is easy to see that C(n,k)e = a(n,k). The vector C(n,k)
then satisfies the following recursion, see (De Souza e Silva & Gail,
1986),

Cðn; kÞ ¼ Cðn� 1; k� 1ÞPo þ Cðn� 1; kÞPf ;n P 1; k P 1: ð4Þ

Cðn;0Þ ¼ Cðn� 1;0ÞPf ;n P 1; k ¼ 0;

with the initial conditions:

Cð0;0Þ ¼ ðx1; . . . ; xXÞPf ;

Cð0;1Þ ¼ ðx1; . . . ; xXÞPo;
Proposition 1. The mth moment of A(T) is given by:

E½AðTÞm� ¼
X1
n¼0

e�mT ðmTÞn

ðnþmÞ!
Xnþ1

k¼1

aðn; kÞ
Ykþm�1

l¼k

l

Proof. The mth moment of A(T) follows immediately by noting
that the mth moment of O(T) gives

E½OðTÞm� ¼ m
Z T

0
xm�1PðOðTÞ > xÞdx;

and that,
R T

0 xm x
T

� �j 1� x
T

� �n�jdx ¼ Tm ðn�jÞ!ðjþm�1Þ!
ðnþmÞ! , and

Pn
j¼k
ðjþm�1Þ!

j! ¼
1
m
ðnþmÞ!

n!
� kðmþk�1Þ!

k!

h i
. h

We deduce from Proposition 1 that it remains to computePnþ1
k¼0aðn; kÞ

Qkþm�1
l¼k l in order to find E[A(T)m]. In order to do so, we

follow an approach based on generating functions. Let us multiply
(2) by zk and sum the result over all k = 0, . . . , n + 1. Then, we find
that

DnðzÞ ¼
Xnþ1

k¼0

Cðn; kÞzk ¼ D0ðzÞðzPo þ Pf Þn

¼ ðx1; . . . ; xjXjÞðzPo þ Pf Þnþ1
; n P 0: ð5Þ

In the following we restrict the derivation to the second and third
moment of A(T). Taking the first derivative of (3) according to z at
point one and multiplying the result with the column vector e, we
find that
Xnþ1

k¼1

kaðn; kÞ ¼ ðnþ 1Þ
X
i2Xo

xi; ð6Þ

where we used that P � e = e and (x1, . . . , x|X|)P = (x1, . . . , x|X|). Taking
the second order derivative of (3) according to z at point one and
multiplying the result with e, we find that

Xnþ1

k¼1

kðk� 1Þaðn; kÞ ¼ 2p0

Xn

i¼1

ðn� iþ 1ÞPie0; ð7Þ

where p0 = (x1, . . . , x|X|)Po, i.e., p0 is the row vector with ith entry
equal to xi if i e Xo and zero otherwise, and e0 is the column vector
with ith entry equal to 1 if i e Xo and zero otherwise. Finally, the
third derivative of (3) at point one gives that

Xnþ1

k¼1

kðk� 1Þðk� 2Þaðn; kÞ ¼ 6p0

Xn�1

i¼1

Xn�i

j¼1

ðnþ 1� i� jÞPi�1P0Pje0: ð8Þ

The sum of (5) with two times (4) gives
Pnþ1

k¼0kðkþ 1Þaðn; kÞ right
away. Moreover,

Pnþ1
k¼0kðkþ 1Þðkþ 2Þaðn; kÞ ¼ ð8Þ þ 6 � ½ð6Þ þ ð7Þ�.

We are now ready to show our main results.

Proposition 2. The second moment of the fraction of time that the
Markov chain X(t) sojourns in the subset X0 during [0,T] is given by:
E½AðTÞ2� ¼ 2
X1
n¼1

e�mT ðmTÞn

ðnþ 2Þ! p0

Xn

i¼1

ðn� iþ 1ÞPie0

þ 2
X
l2X0

xl
e�mT þ mT � 1

ðmTÞ2
;

where xi is the steady state probability of the Markov chain in state i, p0

is the column vector with ith entry equal to xi if i �X0 and zero other-
wise, and e0 is the column vector with ith entry equal to 1 if i �Xo and
zero otherwise.
Proposition 3. The third moment of the fraction of time that the
Markov chain X(t) sojourns in the subset X0 during [0,T] is given by:

E½AðTÞ3� ¼ 6
X1
n¼0

e�mT ðmTÞn

ðnþ 3Þ! p0

Xn�1

i¼1

Xn�i

j¼1

ðn� i� jþ 1ÞPi�1P0Pje0

þ 12
X1
n¼0

e�mT ðmTÞn

ðnþ 3Þ! p0

Xn

i¼1

ðn� iþ 1ÞPie0

þ 12
mT � 2þ ðmT þ 2Þe�mT

ðmTÞ3
:

Proof. The results follow right away by replacing m by two and
three in Proposition 1 and using Eqs. (5) and (6). h
Appendix B. Simulation detaIls

The mean time between failures, MTBF, of the items in the cases
with M = 50 items are given as follows: (MTBF1 � � �MTBF50) = (5280
3360000 38100 32400 3180 333000 185100 825000 339000
1095000 280200 726000 41400 223800 288300 195900 348000
56400 27780 265200 26520000 42900000 2652000 333000
13320000 13320000 26520000 3360000 6660000 666000
1095000 1110000 80100 300000000 300000000 300000000
300000000 150000 150000 150000 666000 666000 693000
693000 5280000 30000000 333000 600000 309000 1332000).
Note that in the cases with M = 10 and 30 we respectively take
the first 10 and 30 elements of the latter vector.

The mean time to repair, MTTR, of the items in the cases with
M = 50 items are given as follows: (MTTR1 � � �MTTR50) = (2160
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5760 2160 2160 2160 2160 2160 4320 2160 2160 2160 2160 2160
2160 2160 2160 2160 4320 2160 2160 8640 7200 7920 8640 6480
6480 4320 4320 4320 5040 5760 4320 2160 3600 3600 5760 5040
4320 5040 5040 5760 5040 5040 5040 6480 6480 5040 6480 5760
2160). Note that in the cases with M = 10 and 30 we respectively
take the first 10 and 30 elements of the latter vector.

The stock at the depot is a vector represented as (s01, . . . , s0M).

Case 1: M = 10, E[A(T)] = 70, depot stock = (1 0 0 0 0 0 0 0 0 0),
base stock = (0 0 0 0 0 0 0 0 0 1).
Case 2: M = 10, E[A(T)] = 83, depot stock = (1 1 1 1 1 1 0 0 0 0),
base stock = (0 0 0 0 0 0 0 0 0 1).
Case 3: M = 10, E[A(T)] = 92, depot stock = (2 1 1 1 2 0 0 0 0 0),
base stock = (0 0 0 0 0 0 0 0 0 1).
Case 4: M = 30, E[A(T)] = 72, depot stock = (1 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0), base stock = (0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1).
Case 5: M = 30, E[A(T)] = 83, depot stock = (2 2 2 2 1 1 1 1 1 0 1 1
1 1 1 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0), base stock = (0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1).
Case 6: M = 30, E[A(T)] = 90, depot stock = (7 1 2 2 2 1 1 1 1 0 1 1
1 1 1 1 1 0 1 0 0 0 0 1 0 0 0 0 0 1), base stock = (0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1).
Case 7: M = 50, E[A(T)] = 72, depot stock = (2 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0), base stock = (0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1).
Case 8: M = 50, E[A(T)] = 81, depot stock = (3 2 2 2 2 1 1 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0), base stock = (0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1).
Case 9: M = 50, E[A(T)] = 91, depot stock = (2 1 2 2 3 1 1 1 1 1 1 1
1 1 1 1 1 0 1 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 4 4 4 1 1 1 1 1 1 2 1
1 0), base stock = (0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1).
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