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The Impact of Choice on Public Services.

Dr. Vincent Knight1, Professor Paul Harper1

Cardiff University,Cardiff, UK

Abstract

It is well observed that individual behaviour can have an effect on the effi-
ciency of queueing systems. The impact of this behaviour on the economic
efficiency of public services is considered in this paper where we present re-
sults concerning the congestion related implications of decisions made by
individuals when choosing between facilities. The work presented has impor-
tant managerial implications at a public policy level when considering the
effect of allowing individuals to choose between providers. We show that
in general the introduction of choice in an already inefficient system will
not have a negative effect. Introducing choice in a system that copes with
demand will have a negative effect.

Keywords: Game Theory, Queueing Theory, OR in health services

1. Introduction

What damage do the selfish choices of some afflict on to the welfare of
all? The work presented in this paper answers this question in the context
of public service systems.

There is a substantial quantity of literature on the subject of equilibrium
behaviour of a queueing system where congestion is a factor influencing be-
haviour [1, 2, 3, 4, 5, 6, 7]. This can be traced back to a series of short
communications between Leeman [8, 9] and Saaty [10]. This paper builds on
this literature by considering the problem of public service systems. For most
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public services, congestion is a negative aspect of service quality. Examples of
this are healthcare systems (waiting lists), transports systems (traffic jams)
and/or schools (overcrowding of class rooms).

The degree of central control that should be exercised is a very important
question to be considered by governments and/or policy makers. What is
the effect of allowing individuals to choose service provider?

Of course, the motivation for the introduction of choice is to create com-
petition in the hope that this would improve overall service quality. The aim
of the work presented here is to use a game theoretical approach to mea-
sure the immediate effect of choice (i.e. prior to the effect of competition).
The approach proposed is based on a measure called the price of anarchy
[11, 12, 13, 14, 15, 16, 17, 18, 19, 20]. First introduced in [21] (a conference
paper that has been reprinted in [22]), the price of anarchy is the ratio of the
costs of the worst possible Nash equilibrium and the social optimum, and
can therefore be interpreted as a measure of the efficiency of a system.

The main contributions of this paper are as follows:

• A novel connection is made: placing choice between public services
within the formulation of routing games;

• Theoretical results are obtained as to the effect of demand and worth
of service;

• It is shown that in a public service system with an adequate capacity
to provide the perceived worth of service, a high price of anarchy is to
be expected;

• A numerical approach based on heuristics is proposed to calculate the
price of anarchy in a real world setting;

• The above ideas are demonstrated with a large scale real world case
study.

The paper is organised as follows: Section 2 will give a brief overview of
routing games; Section 3 will interpret choice of public services as a routing
game; Section 4 will study a particular model that gives an insightful conclu-
sion as to efficiency of general public service systems under choice; Section
5 looks at an application using hospital performance data for elective knee
replacement surgery in Wales; Section 6 makes concluding remarks.
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2. Routing Games

This section gives a brief introduction to routing games following very
closely [23]. For a thorough overview of routing games the reader is encour-
aged to view [23, 18].

A non atomic routing game (atomic routing games will not be consid-
ered in this work), is defined on a network G = (V,E), with vertex set V and
edge set E, as well as a set of source-sink pairs: {(s1, t1), (s2, t2), . . . , (sk, tk)}.
These pairs are called commodities. The set of all possible (si, ti) paths (for
i ∈ [k]) is denoted as Pi. Thus, Pi denotes the set of all the possible routes
that player i may take to get from source si to sink ti. Only networks
with Pi 6= ∅ for all i ∈ [k] are considered and P =

⋃

i∈[k] Pi. The graph G
is allowed to have multiple edges and a vertex can participate in multiple
source-sink pairs.

The routes taken by traffic are called flows, where f ∈ R
|P|
≥0 denotes a

particular flow and fP is interpreted as the quantity of traffic of commodity
i choosing path P for P ∈ Pi. A flow f is called feasible for r ∈ R

k
≥0 if and

only if
∑

P∈Pi
fP = ri for all i ∈ [k]. Thus, the vector r denotes a prescribed

quantity of traffic that must travel from sources to sinks.

What is now needed is some way of differentiating the various paths
(indeed some paths may be better than others). Each edge e ∈ E of G has
a cost function ce : R≥0 → R≥0 and it is assumed that ce is non-negative,
continuous, convex and non-decreasing. Using this, one can quantify the
efficiency of a flow f ; we define the cost of a flow C(f):

C(f) :=
∑

P∈P

cP (f)fp

where cP (f) naturally denotes the cost incurred by the traffic choosing path
P . A routing game is then defined by the triple (G, r, c).

Importantly this cost function takes into account the quantity traveling
through a particular path. It is immediate to give an equivalent definition:

C(f) :=
∑

e∈E

ce(f)fe (1)

where fe corresponds to the quantity of traffic using edge e.
Using this we give the following definitions:
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Definition 2.1. For the routing game (G, r, c), the flow f ∗ is an optimal
flow if and only if f ∗ minimizes C (as given by (1)) over all feasible flows f .

The next definition corresponds to an absence of central control. Note
that the term “Wardrop equilibrium” [24] is also used however we choose to
use the term “Nash flow” in line with [18].

Definition 2.2. For the routing game (G, r, c), the flow f̃ is a Nash flow if
and only if for every commodity i ∈ [k] and every pair of paths P1, P2 with
f̃P1

> 0 we have:
cP1

(f̃) ≤ cP2
(f̃)

Thus, f̃ is a Nash flow if and only if all used paths have minimum possible
cost. This ensures that no user can improve their situation. We now state
(without proof) two very powerful results obtained in [25].

Theorem 2.3. The flow f ∗ is an optimal flow for (G, r, c) if and only if f ∗

is a Nash flow for the instance (G, r, c∗) where:

c∗e(x) =
d

dx
xce(x) = ce(x) + x

d

dx
ce(x) (2)

The cost c∗e(x) is called themarginal cost for e. This powerful result shows
that mathematically, Nash flows and optimal flows are analagous. The next
result simply confirms this.

Theorem 2.4. The flow f̃ is a Nash flow for (G, r, c) if and only if f̃ mini-
mizes Φ where:

Φ(f) =
∑

e∈E

∫ fe

0

ce(x)dx (3)

The function Φ is called the potential function for (G, r, c). As stated we
give these results without proof but encourage the reader to see [23, 18].

The object of the work in this paper is to present a measure of the effi-
ciency of a system, the measure we shall use is given by the following defini-
tion.

Definition 2.5. For the routing game (G, r, c), the price of anarchy denoted
by PoA(G, r, c) is given by:

PoA(G, r, c) =
C(f̃)

C(f ∗)
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Note that the definition taken here differs slightly to the common def-
inition taken as the worst case ratio. The price of anarchy quantifies the
inefficiency created by choice. We illustrate these ideas through a famous
example, known as, Pigou’s example [26].

1

x

1

Figure 1: Pigou’s example.

The network of Figure 1 corresponds to the routing game, where traffic
has a choice of two paths to reach the sink. The upper arc corresponds to a
large highway and the travel time is independent (say 1 hour) of the quantity
of traffic using that highway. The lower arc corresponds to a much smaller
road, that is heavily affected by congestion and the time spent on this road
is equivalent to the proportion of traffic that uses it. It is immediate to note
that the Nash flow of this game is given by f̃ = (0, 1), since all traffic will go
along the smaller road (thus incurring an hour of travel time), in the hope
that at least a small quantity of traffic will use the larger road. The cost
function for this game is:

C(f1, f2) = C(1− x, x) = 1− x+ x2

thus, the optimal flow is f ∗ =
(

1
2
, 1
2

)

. It is then straightforward to calculate
the price of anarchy: PoA(G, r, c) = 4

3
.

Note that the potential function for this game is:

Φ(f1, f2) = Φ(1− x, x) =

∫ 1−x

0

1dx+

∫ x

0

xdx = 1− x+
x2

2

minimising Φ gives f̃ = (0, 1) as required. For this simple game, calculating
the Nash flow does not require using the potential function. However, opti-
mising Φ gives an algorithmic approach. This will be the method used when
calculating the price of anarchy for large systems.

In the next section we show how these ideas will be used to measure the
efficiency of a public service system.
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3. Public service choice and routing games

When choosing amongst public service systems it is reasonable to assume
that individuals take into account three aspects: reputation, distance and
congestion. As will become clear, our game theoretical model will take these
factors in to account.

The first of these is a subjective aspect that could depend on individual
satisfaction, word of mouth, and/or an official rating. It is accepted that
reputation itself is dependent on the sequences of the various service cen-
tre visits, however the way in which the opinion of a particular individual
diffuses through its social network will not be considered in this work. As
such we assume that reputation is a constant parameter. This is in line with
the previous mentioned idea of modelling choice for a given system (with-
out letting competition play a role). Travel distances, although (arguably)
subject to individual perception are also to be assumed constant (i.e. do
not vary with the decisions made by individuals). Finally, waiting time is
an extremely dynamic factor that depends on the choices of individuals in
the system. This is what justifies using a game theoretical approach. The
model we propose takes these three factors in to account in a linear way to
create a non-atomic routing game. We allow for multiple demand and ser-
vice nodes. Each demand node will have a unique demand rate whilst each
service node will offer a different level of attractiveness (potentially based on
reputation, congestion and expected length of stay). The pairing of these
nodes is heterogeneous in nature due to travel distances.

In particular let m and n be the number of demand and service nodes
respectively. We have a distance matrix d ∈ R

m×n
≥0 , where dij denotes the

distances between demand node i and service node j. Every demand node has
attributed to it a demand rate Λi for all i ∈ [m]. This demand rate is to be
measured in procedures per unit time. Every service node has attributed to it
a cost function wj : R≥0 → R≥0 with arguments corresponding to the arrival
rate at that node. We assume that wj is a continuous, non-negative, convex
and non-decreasing function. This assumption is not a restrictive one. Non-
negativity is a question of scale, and the non-decreasing constraint simply
implies that facilities become less attractive with increased congestion. It
can be argued that facilities with high volumes of a particular service deliver
better quality but how facilities respond to high volumes corresponds to the
modelling of competition that arises as a product of choice and is not the
purpose of this work.
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Finally one last input to our model is a reward for service βi ∈ R≥0 as
considered in [1, 2, 4, 27, 6, 7]. By indexing the vector β by demand nodes
the model we propose allows a partitioning of the population not only by
geography but also by gender, morbidity and/or economic status which are
all factors that will influence the choices of individuals [28, 29, 30]. The
important modification to be made here is in the interpretation of βi. As
mentioned in Section 2, to allow for this situation to be considered as a
routing game one needs all latency functions to be non-negative. For this
reason we call βi a cost of balking as opposed to a reward for service. There
are two immediate interpretations that can be given to βi:

• Individuals experiencing a dissatisfaction as a result of deciding that
none of the options where of high enough quality (i.e. low enough cost).

• Individuals opting to seek treatment through a private service at a
particular financial cost.

Note that these interpretations of βi lend themselves well to consider-
ations of public service systems, where equality is often as important as
efficiency [31]. For example, in countries with public health systems such as
the UK a series of waiting time targets are often imposed which may prove
insightful when seeking to parametrize β.

The decision variables are the λij; the arrival rate from demand node i
to service node j. The balking rate from node i is: Λi −

∑n

j=1 λij. Figure 2
gives a pictorial representation of the general system.

This can be interpreted in the form of a routing game with the latencies
of each edge given, as shown in Figure 3.

Note that the sources of the routing game of Figure 3 correspond to the
demand nodes, however there is only one sink. This sink corresponds to the
state of “having made a choice”. The choice options in question correspond to
the various paths. All commodities have n+1 possible paths, corresponding
to the n service nodes as well as the balking option. From (1) and (3) we
have the cost function and potential function given by:

C(λ) =
m
∑

i=1

αi

n
∑

j

dijλij +
n
∑

j=1

m
∑

i=1

λijwj

(

m
∑

i=1

λij

)

+
m
∑

i=1

βi

(

Λi −
n
∑

j=1

λij

)

(4)
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βm

β2

Balk Seek Service

Λ1

Λ2

Λm

w1

wn

λ11
λ1n

λ21
λ2n

λm1

λmn

⋮ ⋮ ⋮

β1

Figure 2: Pictorial representation of choice strategies

β1

βm
β2

Λ1

Λ2

Λm

w1

wn

d11
d1n

d21
d2n

dm1

dmn

Figure 3: Routing game representation of choice strategies
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and:

Φ(λ) =
m
∑

i=1

αi

n
∑

j

dijλij+
n
∑

j=1

∫

∑m
i=1

λij

0

wj(x)dx+
m
∑

i=1

βi

(

Λi −
n
∑

j=1

λij

)

(5)

The constant αi ∈ R≥0 is simply a weighting statistic for the relative
importance of travel distances to the other factors (once again allowing for
this coefficient to be dependent on population partitioning). Using this for-
mulation of choice we obtain insights in to the asymptotic behaviour of the
price of anarchy. The first considers the sensitivity to the value of service:

Theorem 3.1. Assuming constant Λ we have:

lim
βi→∞

PoA(β) < ∞ for all i ∈ [m]

The price of anarchy increases with worth of service, up to a point.

Proof. Recalling Definition 2.5 we have:

PoA = PoA(β) =
C(λ∗)

C(λ̃)
=

C(λ∗(β))

C(λ̃(β))

Importantly we also have:

lim
βi→∞

λ∗(β) = k∗ (6)

and k∗ ∈ R
m×n
≥0 . Indeed, as βi increases, the arrival rate from demand node

i increases until the value of service is large enough such that there are no
more balkers. Similarly:

lim
βi→∞

λ̃(β) = k̃ (7)

Thus we have:

lim
βi→∞

m
∑

i′=1

(

n
∑

j=1

λ∗
i′j − Λi′

)

= lim
βi→∞

m
∑

i′=1

(

n
∑

j=1

λ̃i′j − Λi′

)

= 0 (8)

Recalling (4) we have:

PoA(β) =

m
∑

i=1

αi

n
∑

j

dijλ
∗

ij +
n
∑

j=1

m
∑

i=1

λ∗

ijwj

(

m
∑

i=1

λ∗

ij

)

+

m
∑

i=1

βi



Λi −
n
∑

j=1

λ∗

ij





α

n
∑

j

m
∑

i=1

dij λ̃ij +

n
∑

j=1

m
∑

i=1

λ̃ijwj

(

m
∑

i=1

λ̃ij

)

+ β





m
∑

i=1



Λi −
n
∑

j=1

λ̃ij
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Recalling (6),(7) and (8) we get:

lim
βi→∞

PoA(β) =

m
∑

i=1

αi

n
∑

j

dijk
∗
ij +

n
∑

j=1

m
∑

i=1

k∗
ijwj

(

m
∑

i=1

k∗
ij

)

m
∑

i=1

αi

n
∑

j

dij k̃ij +
n
∑

j=1

m
∑

i=1

k̃ijwj

(

m
∑

i=1

k̃ij

) < ∞

Note (as demonstrated by the proof) that the case of a high value of βi

corresponds to a model with no balking allowed. Such a model was studied
in [2, 15] where homogeneous agents are presented with a choice of multiple
M/M/1 facilities with no option of balking. In these two papers, geographic
location of demand is not taken in to account and congestion is thus the only
factor dictating the choices. In [15] it is shown that the price of anarchy is
bounded by the total number of facilities. Whether or not such an upper
bound can be obtained for the more general model we have presented is an
interesting research question.

The following result considers the effect of demand on the price of anarchy.

Theorem 3.2. Assuming constant β ∈ R
m
≥0 we have:

lim
Λi→∞

PoA(Λ) = 1

In a system with insufficient capacity the price of anarchy is low.

Proof. We have:
lim

Λi→∞
λ∗(Λ) = l∗ (9)

for some l∗ ∈ R
m×n
≥0 . Indeed, as demand increases, each facility has an

upper bound for it’s total arrival rate after which, due to βi it becomes
more advantageous for agents to balk. Similarly

lim
Λi→∞

λ̃(Λ) = l̃ (10)
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for some l̃ ∈ R
m×n
≥0 . We can write the expression for the PoA as:

PoA(β) =

1

Λi











m
∑

i′=1

αi′

n
∑

j

di′jλ
∗
i′j +

n
∑

j=1

m
∑

i′=1

λ∗
i′jwj

(

m
∑

i′=1

λ∗
i′j

)

+
m
∑

i′=1

i′ 6=i

βi′



Λi′ −

n
∑

j=1

λ∗
i′j



− λ∗
ij











+ βi

1

Λi











m
∑

i′=1

αi′

n
∑

j

di′j λ̃i′j +

n
∑

j=1

m
∑

i′=1

λ̃i′jwj

(

m
∑

i′=1

λ̃i′j

)

+

m
∑

i′=1

i′ 6=i

βi′



Λi′ −
n
∑

j=1

λ̃i′j



− λ̃ij











+ βi

for all i ∈ [m]

and so (recalling (9) and (10)) taking Λi → ∞ gives the required result.

This shows that for a bad system, i.e. a system that is unable to cope
with the total demand, choice does not create a relatively large level of in-
efficiency. The fact that the price of anarchy is low when the congestion in
the system grows is a phenomenon identified in [13]. Theorem 3.2 seems to
indicate that there is a tipping point at which the price of anarchy starts to
decrease and tends to one. In Section 4 we will give a result that identifies
this tipping point for a particular case and observe it empirically in Section 5.

Note that Theorems 3.1 and 3.2, extend the work presented in [15, 17,
18, 19]. In the next section we consider a particular case of the routing game
model which corresponds to a general case of public service systems.

4. Price of anarchy in a single source single facility setting

Consider the simplest situation of Figure 3 i.e. a single source and a sin-
gle facility. The options offered to individuals are thus to seek service or to
balk. This is illustrated in Figure 4:

Λ
β

w

Figure 4: Routing game corresponding to a single source and a single facility.

This scenario, which could arise with a single population and a single
service centre does not necessitate the inclusion of distance which can be
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taken in to account when setting a value of β and as such we assume α =
0 (note that for simplicity of notation we suppress the indices i and j).
Importantly this simple model can be used to model behaviour at a much
higher level at which individuals are not choosing to use a particular facility
but are at a national level choosing whether or not to use the public system.
Individuals have the choice between balking and a freely provided service
that becomes less attractive as congestion increases. Recalling (4) and (5),
we have:

PoA(Λ) =
λ̃w(λ̃) + β(Λ− λ̃)

λ∗w(λ∗) + β(Λ− λ∗)
(11)

We give the following result that identifies the tipping point discussed
after the proof of Theorem 3.2.

Theorem 4.1. Assuming the particular model of Figure 4 we have:

sup
Λ≥0

PoA(Λ) = PoA(x̃)

where x̃ is the solution of w(x) = β.

Choice causes the highest level of inefficiency when the capacity of the
system matches the perceived worth of service.

Proof. It is immediate to note that when Λ > x̃ we have λ̃ = x̃, as when de-
mand is sufficiently high for the congestion to imply a cost of facility equal to
β, then all extra demand will result in balkers. Similarly we have for Λ > x∗,
λ∗ = x∗ where x∗ is a solution of w∗(x) = β (recalling (2) and Theorem 2.3).

Note that we also have due to the non decreasing and convexity proper-
ties of w: w(x) < w∗(x) for all x > 0 which implies x∗ < x̃ as illustrated by
Figure 5.

We now consider (11) over the three intervals: [0, x∗[, [x∗, x̃[, [x̃,∞[

• For Λ ≤ x∗ we have λ̃ = λ∗ = Λ so that:

PoA(Λ) = 1 for Λ ≤ x∗ (12)

12



β

x* x 

w*

w

Figure 5: Graphical proof of x∗ < x̃

• For x∗ < Λ ≤ x̃, recalling (11) we now consider the derivative of
PoA(Λ):

∂PoA

∂Λ
=

∂

∂Λ

Λw(Λ)

x∗w(x∗) + β(Λ− x∗)
=

w∗(Λ)(x∗w(x∗) + β(Λ− x∗))− Λw(Λ)β

(x∗w(x∗) + β(Λ− x∗))2

(13)

Evaluating the sign of (13) is not straightforward however recalling that
PoA(Λ) ≥ 1 (by definition) and (12) it is sufficient to show that the
sign of (13) does not change over x∗ < Λ ≤ x̃ to imply:

∂PoA

∂Λ
> 0 for x∗ < Λ ≤ x̃

The derivative of the numerator of (13) is given by:

∂

∂Λ
(w∗(Λ)(x∗w(x∗) + β(Λ− x∗))− Λw(Λ)β) =

∂w∗(Λ)

∂Λ
(x∗w(x∗) + β(Λ− x∗))

(14)

and as Λ > x∗ and ∂w∗(Λ)
∂Λ

> 0 this implies as required that PoA(Λ)
increases for x∗ < Λ ≤ x̃.

• For Λ > x̃, we have:

∂PoA

∂Λ
=

∂

∂Λ

βΛ

x∗w(x∗) + β(Λ− x∗)
=

βx∗(w(x∗)− β)

(x∗w(x∗) + β(Λ− x∗))2
(15)
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However as shown in Figure 5, w(x∗) < β, which completes the proof
as summarised by Figure 6.

This result is insightful as it shows that the worst case equilibria is at
a point at which the demand saturates the service to the point of worth of
service. Recalling Theorem 3.2, we see that a system with a very high level
of demand has a low price of anarchy (a fact noted in [13]), as does a system
with a low level of demand. This leaves us with the situation shown in Figure
6 implying that a system with capacity that provides a level of service near
the perceived worth of service will have a high price of anarchy.

x* x 

PoA

Λ

Low level 
of demand High level 

of demand

Inefficient
System

Figure 6: Plot of the price of anarchy for a generalised public service system

Figure 7 gives an initial confirmation of the above result through an exam-
ple equivalent to a fictitious model of a public schooling system serving three
neighbourhoods with two schools. Is is assumed that the “cost” (congested
related utility) of each of the schools is the same and given by w(x) = ex−20

so that for a class congested by less than 20 students we have a relatively
low cost. In this case the cost of balking is equivalent to choosing to send
students to a different option than the 2 schools immediately available. This
game was solved numerically using [32].

In the next section we propose a further example: an applied case study
in a healthcare setting.
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Figure 7: Education Example

5. Price of anarchy in the Welsh health service

Since 1948, the National Health Service (NHS) in the United Kingdom
has given free healthcare to all patients at the point of service. Through
the years this service has evolved into what is currently the largest employer
in the UK. One of the most potentially significant changes was introduced
in 2009, when free choice of service provider was offered to all patients in
England [33]. In [34], the Welsh First Minister Rhodri Morgan claimed that
NHS choice is ‘not relevant to Wales’. This claim has motivated the work
presented in this paper: How does choice effect the efficiency of a public
healthcare system?

The ideas of the previous section are now demonstrated on a large network
of service and demand nodes. To the author’s knowledge, this is the largest
such study presented in the literature. The case study chosen is the choice
of facility for elective knee replacement surgery across Wales. Using hospital
data for such procedures spanning a period from 29/01/2008 to 29/03/2010
(26 months) 14 service nodes and 22 demand nodes are identified. They are
shown in Figure 8 and summarized in Tables 1 and 2.

For the purposes of this case study the measure we will use for the at-
tractiveness of each facility is the expected time spent in the system (note
that this includes time spent on the waiting list).

We assume that every facility is an M/M/c queue. For the readers unfa-
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Figure 8: Service nodes (crosses) and demand nodes (flags) in Wales
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miliar with Kendall’s notation, this implies that a facility acts like a service
centre with random (negative exponential distribution) inter arrival and ser-
vice times and c servers. The service time distribution corresponds to the
length of stay. The c servers correspond to the capacity of each facility (i.e.
the number of beds), as shown in Figure 9.

Service times according 
to negative exponential distribution: M 

c=5

Inter arrival times according to 
negative exponential distribution: M

Figure 9: Pictorial representation of an M/M/c queue.

Given an average arrival rate λ and an average service rate µ, such that
0 ≤ ρ = λ

cµ
< 1, the mean time spent in the system for an M/M/c queue is

given by ([35]):

W = W (λ, µ, c) =
1

µ
+

(λ
µ)

c

c!cµ(1− λ
cµ)

2

∑c−1
n=0

(λ
µ)

n

n!
+

(λ
µ)

c

c!(1− λ
cµ)

(16)

We thus have:

wj(λ) =
1

µj

+

(

λ
µj

)cj

cj !cjµj

(

1− λ
cjµj

)

2

∑cj−1
n=0

(

λ
µj

)n

n!
+

(

λ
µj

)cj

cj !

(

1− λ
cjµj

)

for all j ∈ [n] (17)

where µj and cj are the service rates and number of servers at service node
j ∈ [n].

Convexity of (16) is a known result [36] and so combining functions (4), (5)
and (17) with Theorem 2.4 gives two mathematical programs with solutions;
the optimal flow and Nash flow for any public healthcare facility system:
OPTMP and NASHMP.
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OPTMP: NASHMP:
minimise (4) minimise (5)

such that:
n
∑

j=1

λij ≤ Λi for all i ∈ [m] (18)

λij ∈ R
m×n
≥0 for all i ∈ [m], j ∈ [n] (19)

m
∑

i=1

λij < cjµj for all j ∈ [n] (20)

Constraints (18) and (19) ensure non-negativity of all flows. Constraint
(20) ensures that all our facilities are in steady state, i.e. that the arrival
rate at all facilities is less than the corresponding service rate. This later
constraint is not restrictive given a sensible choice of β. In fact constraint
(20) has an interpretation where it is assumed that the expected wait at a
facility that is not running at steady state is extremely large.

An approximate capacity for each of the 14 units is calculated, but due
to sharing of wards between specialties, it is difficult to obtain precise bed
numbers for a particular surgery/unit. The 22 demand nodes correspond to
the 22 unitary areas of Wales and demand rates for each are obtained from
the data set. The properties of each hospital and demand node are given
in Tables 1 and 2. A distance matrix for these nodes was obtained using
Google Maps Javascript API. For the purpose of this study a value of α = .8
is taken, this is based on research presented in [28, 37].

The two mathematical programs OPTMP and NASHMP thus require the
optimisation of (4) and (5) over 308 variables. A genetic algorithm imple-
mented in [38] is used. A population size of 200 is used with crossover rate
of .5 and a dynamic mutation rate dependent on the overall progress of the
algorithm. Further research could be directed at finding a direct method for
solving the routing games considered similar to the work of [39].

Two distinct aspects are considered. Firstly we aim to quantify the role
played by the cost of balking β. For the demand rates of Table 2 the price
of anarchy is calculated for varying levels of β and this simply examines the
effect of the service value on the price of anarchy. The results are shown in
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Table 1: Service node properties

Service Node Capacity (beds) Service Rate (patients per day)
Llandough Hospital 14 0.147

Royal Gwent Hospital 9 0.125
Prince Philip Hospital 7 0.132

Neath Port Talbot Hospital 4 0.151
Ysbyty Gwynedd 4 0.156
Morriston Hospital 4 0.148
Nevill Hall Hospital 4 0.136
Abergele Hospital 4 0.123

The Royal Glamorgan Hospital 4 0.141
Withybush General Hospital 3 0.170
Wrexham Maelor Hospital 2 0.153
Prince Charles Hospital 2 0.125

Bronglais General Hospital 1 0.171
Princess of Wales Hospital 1 0.100

Figure 10 which is an illustration of Theorem 3.1 as the price of anarchy is
increasing but seemingly converging to some upper bound.

With an ageing population the demand for healthcare services is ever
increasing. The next experiment considers the effect of demand on the price
of anarchy. Using the same distribution of demand (as given by Table 2)
sensitivity analysis for an overall demand rate Λ =

∑m

i=1 Λi and for β ∈
{40, 70, 100} is conducted. The results are presented in Figure 11.

6. Conclusions and further work

The work presented here has attempted to quantify the effect of choice
on a public service system. Using theoretical results from routing game the-
ory, generalised conclusions are obtained regarding the price of anarchy and
an algorithmic approach for obtaining the price of anarchy is demonstrated.
This measure takes in to account the geographical disposition of the demand
and service nodes, as well as various factors that influence choice such as the
congestion of a particular service centre.
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Table 2: Demand node properties

Demand Node Inter Arrival Rate (patients per day)
Cardiff 1.22

Carmarthenshire 0.92
Rhondda Cynon Taff 0.71

Caerphilly 0.61
Pembrokeshire 0.61

Swansea 0.51
Bridgend 0.51
Newport 0.51
Conwy 0.41

Gwynedd 0.31
Neath Port Talbot 0.31

The Vale of Glamorgan 0.31
Monmouthshire 0.31

Torfaen 0.31
Flintshire 0.31

Isle of Anglesey 0.31
Denbighshire 0.31
Ceredigion 0.31
Wrexham 0.31

Blaenau Gwent 0.20
Powys 0.20

Merthyr Tydfil 0.20
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Figure 11: Effect on the Price of Anarchy of Increasing Demand
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The 3 following results are proved analytically:

• The price of anarchy increases with worth of service, up to a point.

• In a system with insufficient capacity the price of anarchy is low.

• Choice causes the highest level of inefficiency when the capacity of the
system matches the perceived worth of service.

A large scale healthcare case study is given. Two aspects are considered.
Firstly we confirm that increasing the perceived worth of knee replacement
surgery monotonically increases the price of anarchy to some upper bound.
Secondly, the effect of demand is considered. It is once again confirmed that
the price of anarchy is bounded. Importantly we note that for the current
demand in Wales a high price of anarchy is obtained.

This paper brings with it various avenues for further work. In particu-
lar, as in [11] it would be interesting to consider the presented models with
elastic demand. Furthermore it would be worth investigating whether the
particular problem properties of OPTMP and NASHMP lend themselves to
a better solution methodology than the generic one presented here.

The main potential insight gained from the price of anarchy work is at a
strategic level where systems can be designed so as to minimise the price of
anarchy. As such, new facilities can be introduced in a way as to counteract
the negative effects of choice, thus leaving competition to act as a potential
vector for improvement.

The authors would like to conclude by re-iterating that this work takes in
to account a single dimension of the introduction of choice. No consideration
is given to potential benefits of competition. Whether or not individuals
are happier with choice is a further subject for debate (one that the authors
cannot claim to have sufficient expertise on). For example, in [40], a very
negative essay on the subject of choice is given whereas in [41] it is reported
that patients’ are happier when given a choice.
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