
29/03/2024 11:42

Finding hypernetworks in directed hypergraphs / Pretolani, Daniele. - In: EUROPEAN JOURNAL OF
OPERATIONAL RESEARCH. - ISSN 0377-2217. - STAMPA. - 230:(2013), pp. 226-230.
[10.1016/j.ejor.2013.04.020]

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

This is a pre print version of the following article:

Finding Hypernetworks in Directed Hypergraphs

Daniele Pretolani

DISMI, University of Modena and Reggio Emilia
Via Amendola 2, 42122 Reggio Emilia (Italy)

Tel.: (+39) 0522 522229, e-mail: daniele.pretolani@unimore.it

Abstract

The term “hypernetwork” (more precisely, s-hypernetwork and (s, d)-hypernetwork)
has been recently adopted to denote some logical structures contained in a
directed hypergraph. A hypernetwork identifies the core of a hypergraph
model, obtained by filtering off redundant components. Therefore, finding
hypernetworks has a notable relevance both from a theoretical and from a
computational point of view.

In this paper we provide a simple and fast algorithm for finding s-hypernetworks,
which substantially improves on a method previously proposed in the litera-
ture. We also point out two linearly solvable particular cases.

Finding an (s, d)-hypernetwork is known to be a hard problem, and only
one polynomially solvable class has been found so far. Here we point out
that this particular case is solvable in linear time.

Keywords: graph theory, directed hypergraphs, hyperpaths

1. Introduction

In the last two decades, hyperpaths in directed hypergraphs have often
been used to devise formal models and solution methods in many appli-
cation areas; see [1, 2, 5, 7, 8, 9] to mention a few. Only recently how-
ever, Volpentesta [10] investigated some hypergraph structures, referred to
as hypernetworks, defined in terms of sets of hyperpaths. In particular, the
s-hypernetwork is the union of all the hyperpaths with origin s, while the
(s, d)-hypernetwork is the union of all the hyperpaths with origin s and des-
tination d.

Hypernetworks were proposed (see [10] and references therein) in the Vir-
tual Enterprise context, where they provide a formal model for a network of

Preprint submitted to E. J. of Op. Res. April 11, 2013

(potentially) cooperating economic actors, capable of responding to specific
business opportunities. In general, a hypernetwork represents the relevant
part of a hypergraph model, that contains all the feasible solutions while ex-
cluding redundant components. On the computational side, working on the
hypernetwork rather than the whole hypergraph can lead to substantial sav-
ings in execution time. This happens in particular when shortest hyperpaths
must be repeatedly computed, possibly a huge number of times [5, 6]. For
example, the preprocessing phase described in [5, Section 4] actually finds an
(s, d)-hypernetwork.

As shown in [10], the s-hypernetwork Hs contained in a given hypergraph
H can be found in polynomial time. However, the algorithm proposed in [10]
requires a rather involved analysis, and has a high computational complexity.
Here we present a simple and fast method, whose complexity is at most
quadratic in the size of H. We also point out that Hs can be computed in
linear time for two well known particular classes, namely, directed graphs
and acyclic hypergraphs.

Opposed to finding Hs, finding an (s, d) hypernetwork is an NP-hard
problem, even in the case of directed graphs [10]. In [10] the problem is
shown to be polynomially solvable for the class of stratified hypergraphs,
but no complexity bound is provided. Here we point out that stratified
hypergraphs actually coincide with acyclic hypergraphs, and we show that
this case can be solved in linear time.

On the theoretical side, we point out the relation between hypernetworks
and other known concepts, namely, flow hypergraphs and dominators. These
relations were not observed explicitly in [10], even if similar results were
given; note that our treatment is different from, and substantially simpler
than, the one in [10].

The paper is organized as follows. In the next section we introduce our
notation and recall some known results. In Section 3 we deal with find-
ing s-hypernetworks, while in Section 4 we deal with (s, d) hypernetworks.
Conclusions, and suggestions for further research, are reported in Section 5.

2. Definitions and main properties

A directed hypergraph is a pair H = (V,E), where V is the set of nodes
and E is the set of hyperarcs; a hyperarc is a pair e = (T (e), h(e)) where
∅ 6= T (e) ⊂ V and h(e) ∈ V \T (e). Clearly, the hypergraphs considered here
contain directed graphs as a subclass.

2

In the literature the term hypergraph is often referred to the broader
class introduced by Gallo et al. [1], who define a hyperarc as an ordered pair
(X,Y) where X and Y are two disjoint subsets of nodes. The hypergraphs
addressed in our paper, where |Y | = 1 for each hyperarc, are called B-graphs
in [1]; the symmetric case where |X| = 1 is referred to as F-graphs. Observe
that we obtain an F-graph from a B-graph (and vice-versa) by reversing the
direction of hyperarcs, i.e., by replacing each pair (X,Y) by (Y,X).

A hypergraph H ′ = (V ′, E ′) is a sub-hypergraph of (or is contained in)
H, denoted as H ′ ⊆ H, if V ′ ⊆ V and E ′ ⊆ E; we write H ′ ⊂ H if the
inclusion is strict, i.e., H ′ 6= H. For each node u ∈ V we define the forward
star FS(u) = {e ∈ E : u ∈ T (e)} and the backward star BS(u) = {e ∈ E :
h(e) = u}. We let n = |V | and m = |E|, while the size of hypergraph H is
denoted by S(H) =

∑

e∈E(|T (e)| + 1). In the following we take S(H) as the
size of the input problem, assuming n+m = O(S(H)); in particular, we have
S(H) ≥ max{n,m}) if there are no isolated nodes, i.e., FS(u) ∪ BS(u) 6= ∅
for each u ∈ V .

A path Pst in a hypergraph H is a sequence of nodes and hyperarcs:

Pst = (s = v1, e1, v2, e2, ..., eq, vq+1 = t)

where, for i = 1, . . . , q, vi ∈ T (ei) and vi+1 = h(ei). Node t is connected to
node s if a path Pst exists in H. A cycle is a path Pst, where t ∈ T (e1).
A hypergraph is acyclic if contains no cycles. Gallo et al. ([1], Section 7.2)
show1 that some well known properties of acyclic directed graphs hold true
for acyclic hypergraphs.

Property 1. Given a hypergraph H = (V,E):

i. H is acyclic if and only if there exists at least one topological order
V = {v1, v2, . . . , vn} of the nodes such that, for each e ∈ E

vi ∈ T (e) ∧ h(e) = vj ⇒ i < j. (1)

ii. it takes linear time O(S(H)) to check wether H is acyclic and, in that
case, to obtain a topological order.

The concepts of hyperconnection and hyperpath are captured by the fol-
lowing definitions.

1Actually their results are stated for F-graphs, but the translation to B-graphs is
straightforward, due to the simmetry between the two classes.

3

Definition 1. (hyperconnection) A node u ∈ V is hyperconnected to s in
H if either u = s or there exists a hyperarc e ∈ BS(u) such that each node
v ∈ T (e) is hyperconnected to s.

Definition 2. (hyperpath) A hyperpath from an origin node s to a desti-
nation node t (i.e., an s-t hyperpath) is a minimal hypergraph π = (Vπ, Eπ)
where t is hyperconnected to s.

In Definition 2 minimality of π means that it does not exist any π′ ⊂ π

where t is hyperconnected to s. Clearly, t is hyperconnected to s in H if
and only if H contains a hyperpath from s to t. Note that a hyperpath in
a directed graph is a simple (i.e., non-looping) directed path. The following
properties of hyperpaths are well known, see e.g. [6].

Property 2. Let π = (Vπ, Eπ) be a hyperpath from s to t:

i. π is acyclic;

ii. for each u ∈ Vπ \ {t} there is at least one e ∈ Eπ such that u ∈ T (e),
thus there is at least one u-t path in π;

iii. for each u ∈ Vπ \ {s} there is exactly one e ∈ Eπ such that u = h(e);

iv. for each u ∈ Vπ \ {t}, π contains exactly one hyperpath from s to u.

Given a hypergraph H = (V,E) and a distinguished source node s ∈ V ,
we denote by Πs the set of hyperpaths with origin node s in H, and by Πsd

the set of hyperpaths from s to d 6= s in H.

Definition 3. (hypernetworks) Given H = (V,E) and s ∈ V , the s-hypernetwork
Hs = (Vs, Es) is the union of all the hyperpaths in Πs, i.e.,

Vs =
⋃

π∈Πs

Vπ, Es =
⋃

π∈Πs

Eπ;

for each d ∈ V , d 6= s, the (s, d)-hypernetwork Hsd = (Vsd, Esd) is the union
of all the hyperpaths in Πsd, i.e.,

Vsd =
⋃

π∈Πsd

Vπ, Esd =
⋃

π∈Πsd

Eπ.

Clearly, Vs is the set of nodes hyperconnected to s in H; from now on we
restrict ourselves to (s, d)-hypernetworks where d ∈ Vs, i.e., Πsd is not empty.
Note that we have Es ⊆ E(s), where

E(s) = {e ∈ E : T (e) ⊂ Vs ∧ h(e) ∈ Vs}

4

is the set of hyperarcs with nodes in Vs; thus we have Hs ⊆ H(s), where
H(s) = (Vs, E

(s)), and this inclusion can be strict, as shown in Example 1.

Example 1. In the hypergraph H in Figure 1 we have Vs = {s, a, b, c, d};
nodes and hyperarcs in dotted lines do not belong to H(s). Hyperarc 6
belongs to H(s), but not to Hs. Indeed, any hyperpath from s to d must
contain hyperarc 5, by Property 2.iii; thus a hyperpath containing 6 would
contain a cycle (a, 5, d, 6, a), contradicting Property 2.i.

a

b

c

d

e

f

s

5

8

47

6

3 1
2

Figure 1: A hypergraph H, and the hypergraphs H
(s) and Hs in H.

Hypernetworks can be related to the concepts of flow hypergraph and
dominator. Flow hypergraphs, introduced by Guedes et al. [4], extend the
well known concept of flowgraph to the broader class of hypergraphs intro-
duced by Gallo et al. [1]. We say that H = (V,E) is a flow hypergraph with
source s ∈ V if each node in V is hyperconnected to s in H; this can be
denoted by H = (V,E, s). It is easy to see that hypernetworks (both Hs

and Hsd) as well as the hypergraph H(s) = (Vs, E
(s)) are flow hypergraphs.

Moreover, the concept of dominator in a flowgraph can be extended to flow
hypergraphs.

Definition 4. Given two distinguished nodes u and v in a flow hypergraph
H = (V,E, s), u is a dominator of v if u belongs to every hyperpath from s

to v in H.

Note that a reflexive version of the dominance relation is referred to as
“s-indispensability” in [10]; however, the connection with dominance is not
pointed out there.

5

3. Finding the s-hypernetwork

As discussed above, to identify Hs we can proceed as follows: first build
the hypergraph H(s) = (Vs, E

(s)) and then remove from E(s) all those hyper-
arcs that do not belong to any hyperpath in Πs. The set Vs can be found in
O(S(H)) time, applying procedure B-Visit [1]; given Vs, E(s) can be found
in time O(S(H)). Thus building H(s) takes linear time in the size of H.

In the following we show how to derive the hypernetwork Hs from H(s),
first for the general case and then for two easier classes. We exploit the
following quite intuitive fact, following from Property 2.iv: a hyperarc e in
E(s) belongs to Hs if and only if it belongs to a hyperpath from s to h(e)
in H(s). Hyperarcs that do not fulfill this condition are removed, and the
remaining ones define Hs.

3.1. The general case

Besides finding hyperarcs to be removed from H(s), our algorithm gen-
erates an n × n {0, 1} matrix D (the analogue of the “s-indispensability
matrix” in [10]) where Dij = 1 if node vi is a dominator of node vj in H(s),
and Dij = 0 otherwise. Here we assume an arbitary but fixed ordering of the
nodes in H(s), i.e., Vs = {s = v1, v2, . . . , vn}.

To improve efficiency, all the hyperarcs in the backward star of a node are
processed at the same time. Thus the algorithm works in stages, processing
a node u ∈ Vs \ {s} at each stage; recall that BS(u) is not empty. For each
u, a hypergraph Hu = (V u, Eu) is obtained from H(s) as follows: for each
hyperarc e ∈ BS(u) a new node ue is introduced, and e is replaced by a new
hyperarc eu = (T (e), ue). Formally,

- V u = Vs ∪ {ue : e ∈ BS(u)}

- Eu =
(

E(s) \ BS(u)
)

∪ {eu = (T (e), ue) : e ∈ BS(u)}.

Note that, in Hu, node u has an empty backward star, and each node ue has
an empty forward star; moreover, S(Hu) = S(H(s)).

Example 1 (continued) The hypergraph H(s) shown in Figure 1 appears
on the left in Figure 2; on the right, the hypergraph Hu for u = a is shown.
The two hyperarcs 1 and 6 in BS(a) are replaced by the new hyperarcs 1a

and 6a, respectively, introducing two new nodes a1 = h(1a) and a6 = h(6a).
The nodes hyperconnected to s in Hu (shown in thick lines) are c and a1.

6

b

c

d

s

5 4

3
2

a

6

a

a

a

6

1

a1

a

b

c

d

s

5 4

6

3 1
2

Figure 2: Hypergraph H
(s) (left) and hypergraph H

u for u = a (right).

Let us denote by V u
s the set of nodes hyperconnected to s in Hu; clearly,

u 6∈ V u
s . The set V u

s provides all the necessary information to identify the
hyperarcs in BS(u) that must be removed and the nodes dominated by u.

Lemma 1. Given a hyperarc e ∈ E(s) with h(e) = u, e ∈ Es if and only if
node ue ∈ V u

s .

Proof. (if) Let π be a hyperpath from s to ue in Hu; clearly, π contains
hyperarc eu, and does not contain node u, thus by replacing eu by e we
obtain a hyperpath from s to u in H(s).
(only if) Let π ⊆ H(s) be an s-u hyperpath containing e: by replacing e by
eu we obtain a hyperpath from s to ue in Hu.

Lemma 2. For each node v 6= u in Vs, node u is a dominator of v in H(s)

if and only if v 6∈ V u
s .

Proof. (if) Let π ⊆ H(s) be an s-v hyperpath: if π contains node u then π is
not contained in Hu, otherwise π ⊂ Hu; thus v 6∈ V u

s implies that each s-v
hyperpath in H(s) contains node u.
(only if) Suppose there is an s-v hyperpath π in Hu; clearly, π does not
contain u; by Property 2.ii, π does not contain any node ue, thus π ⊆ H(s).

Example 1 (continued) Consider again the hypergraph Hu, for u = a,
in Figure 2. We have a6 = h(6a) 6∈ V u

s , while a1 = h(1a) ∈ V u
s ; indeed,

7

recall that hyperarc 6 does not belong to Hs, while hyperarc 1 belongs to Hs.
Moreover, we have b, d 6∈ V u

s ; indeed, node a dominates nodes b and d in H(s).

Algorithm FindHs
input: hypergraph H(s) = (Vs, E

(s)), Vs = {s = v1, v2, . . . , vn}
output: hyperarc label R ∈ {0, 1}m, matrix D ∈ {0, 1}n×n

1. D11 := 0; for all j ∈ {2, . . . , n}: D1j := 1;
2. for all i ∈ {2, . . . , n} do

let u := vi

3. build Hu = (V u, Eu)
4. apply B-Visit(Hu, s), obtaining the set V u

s

5. for all e ∈ BS(u):
if ue ∈ V u

s then Re := false else Re := true;
6. for all j ∈ {1, . . . , n}:

if vj ∈ V u
s or j = i then Dij := 0 else Dij := 1;

end-for

Table 1: Algorithm FindHs.

Our algorithm, referred to as FindHs, is described in Table 1. We use
a label R to mark hyperarcs to be removed from H(s), in particular, we set
Re = true if hyperarc e is removed, and Re = false otherwise. Line 1 writes
the first row of D; the main loop starts at line 2, and each stage consists of
lines 3-6. Lines 3 and 4 take O(S(H)) time, while lines 5 and 6 take O(m)
and O(n) time, respectively. All the step of the algorithm require O(S(H))
space, but a further O(n2) space is required for matrix D. Note however that
it is not necessary to store D during the algorithm, i.e., each row i of D can
be sent to output and discarded at the end of step 6; in this case, the overall
space requirement becomes O(S(H)).

Theorem 1. Algorithm FindHs finds the hypernetwork Hs and writes the
matrix D in O(n · S(H)) time, with an O(S(H)) space requirement.

The forward procedure proposed in [10] finds Hs with time complexity
O(n2m2T), where T = maxe∈E |T (e)|. In general S(H) is O(mT), thus

8

FindHs reduces complexity by a factor nm at least. Moreover, it is easy to
define classes of hypergraphs where S(H) is O(m) while T is Θ(n); in these
cases the improvement increases to a factor n2m.

Combining Lemma 1 and Lemma 2, and taking into account the structure
of a hypergraph Hu, we obtain the following relevant relation.

Property 3. A hyperarc e ∈ E(s) belongs to Hs if and only if h(e) does not
dominate any node v ∈ T (e) in the flow hypergraph H(s).

Property 3 implies that Hs can be determined in linear time O(S(H)) if
the matrix D is available. Moreover, even if D is not known, H(s) can be
determined in linear time if all the relevant information about dominators in
H(s) is available in a suitable form; we exploit this fact to devise linear time
methods for two particular classes.

3.2. Linearly solvable cases

The hypernetwork Hs can be found in linear time O(S(H)) for two non-
trivial classes of hypegraphs: acyclic hypergraphs and directed graphs. Note
that hypergraphs in these classes can be recognized in linear time. The two
classes require quite different algorithmic techniques, and we discuss them
separately, pointing out the information about dominators that is relevant
to each case.

Acyclic hypergraphs. This case turns out to be quite simple, since if H is
acyclic then Hs = H(s) (the “only if” relation does not hold here). This
follows from Property 3, observing that in an acyclic hypergraph the node
h(e) does not dominate any node in T (e). More precisely, h(e) does not
belong to any hyperpath from s to u ∈ T (e): if this happens, by Property 2.ii
there is a path from h(e) to u, that together with e gives a cycle. Note
that, for acyclic hypergraphs, a quite limited information on the dominance
relation suffices to find Hs; in fact, we find Hs without computing the matrix
D. We leave as an open question whether it is possible to find D in less than
O(n · S(H)) time for an acyclic hypergraph.

Directed graphs. This case is definitely more complex. Recall that, in di-
rected graphs, a hyperpath corresponds to a simple directed path, i.e., H(s) is
a flowgraph. It is easy to see (and actually follows from Property 3) that an
arc (u, v) ∈ E(s) belongs to a simple path from s to v in H(s) if and only if v is

9

not a dominator of u. Our method checks this condition efficiently, exploiting
some known results about dominance in flowgraphs, described below.

In a flowgraph G = (N,A, s) a node u is an immediate dominator of
node v if there is no dominator w of v such that u dominates w. Each node
v 6= s in G has a unique immediate dominator, and this implicitly defines a
directed spanning tree T = (N,AT), rooted at s, where (u, v) ∈ AT if u is
the immediate dominator of node v. Note that arcs in AT do not necessarily
correspond to arcs in A. The dominators of a node v are the nodes in the
unique path from s to v in T . The immediate dominators, and thus the tree
T , can be found in linear time O(|A|), although this task is definitely far
from trivial, see [3] and references therein.

Now suppose that we computed the tree T = (Vs, A
T) in the flowgraph

H(s) = (Vs, E
(s)). In order to find the arcs to be removed from E(s) we

perform a depth first visit of T . The visit is performed by the recursive
procedure DFVisit, shown in Table 2. We maintain a node label l that
marks active nodes: a node u is active (i.e., l(u) = true) if and only if the
visit of the subtree rooted at u started but did not yet terminate. It is easy
to see that, when DFVisit(u) is called and line 1 is executed, the active nodes
are exactly those in the path from s to u in T , i.e., u and its dominators. At
that point (line 2) we process each arc (u, v) ∈ E(s): if v is active then we
set Re := true, otherwise we set Re := false. Then (line 3) we recursively
call DFVisit(w) for each successor w of u in T . Initially, all the node labels
are set to false; the visit of T is started by the call DFVisit(s). Clearly, the
whole process takes linear time O(m).

procedure DFVisit(u)
1. l(u) := true;
2. for all e = (u, v) ∈ E(s):

if l(v) = true then Re := true else Re := false;
3. for all (u,w) ∈ AT : call DFVisit(w);
4. l(u) := false;

return

Table 2: Recursive procedure DFVisit.

For directed graphs, the matrix D is redundant, since the dominance re-

10

lation is completely described by T . Observe that, opposed to what happens
for acyclic hypergraphs, here we exploit the complete knowledge of the dom-
inance relation to find Hs. We do not know if Hs may be found in linear
time, or at least in less than O(nm) time, without computing T .

4. Finding an (s, d)-hypernetwork

The problem of finding an (s, d)-hypernetwork in a hypergraph H is in
general NP-hard, but it can be solved in linear time if H is acyclic. We
prove this result first, and then we point out the relations with stratified
hypergraphs.

4.1. A linear time method for acyclic hypergraphs

Similar to Hs, finding Hsd is rather simple, and does not require knowl-
edge of the dominance relation. We exploit a general property of acyclic
hypergraphs [8, Property 2.1] that in our context can be restated as follows:

Property 4. An acyclic hypergraph H such that BS(u) 6= ∅ for each node
u 6= s in H is a flow hypergraph.

Recall that each (s, d)-hypernetwork Hsd = (Vsd, Esd) is contained in Hs,
and that Hs = H(s) if H is acyclic. To obtain Hsd it may be necessary to
remove some hyperarcs and nodes from H(s). Observe that Hsd contains
at least one path Pud for each node u ∈ Vsd, as follows immediately from
Property 2.ii. Therefore, we can safely remove a node u ∈ Vs if there is no
path from u to d in H(s). Let us denote by V (sd) ⊆ Vs the set of remaining
nodes, i.e., u ∈ V (sd) if and only if d is connected to u in H(s); moreover, let

E(sd) = {e ∈ E(s) : T (e) ⊂ V (sd) ∧ h(e) ∈ V (sd)}

be the set of hyperarcs in E(s) with nodes in V (sd).

Theorem 2. If H is acyclic, for each (s, d)-hypernetwork Hsd = (Vsd, Esd)
we have Vsd = V (sd) and Esd = E(sd).

Proof. It follows immediately from Property 2.ii that Vsd ⊆ V (sd), and thus
Esd ⊆ E(sd). It remains to show that E(sd) ⊆ Esd, which implies V (sd) ⊆ Vsd.
First note that if u ∈ V (sd) then we have e ∈ E(sd) for each e ∈ E(s) such that
h(e) = u, which implies that H(sd) = (V (sd), E(sd), s) is a flow hypergraph,

11

due to Property 4. Consider a generic hyperarc e0 ∈ E(sd) with h(e0) = u,
and a path

Pud = (u = v1, e1, v2, e2, ..., eq, vq+1 = d)

contained in H(sd). Note that it can be q = 0, i.e., u = d. Obtain H ′ ⊆ H(sd)

from H(sd) as follows: for i = 1, . . . , q +1 remove from E(sd) all the hyperarcs
in BS(vi) except ei−1. From Property 4, H ′ is a flow hypergraph; moreover,
by Property 2.iii, every hyperpath from s to d in H ′ contains the path Pud,
and thus contains e0. In conclusion, e0 ∈ Esd.

The set V (sd) can be easily found in linear time O(S(H)) by a backward
version of procedure Visit [1]. It follows that an (s, d)-hypernetwork in an
acyclic hypergraph can be found in linear time.

4.2. Acyclic and stratified hypergraphs

The definition of stratified hypergraphs ([10, Definition 4.4]) can be re-
stated as follows.

Definition 5. A hypergraph H = (V,E) is stratified if V can be partitioned
into a sequence of subsets N0, N1, . . . , Nk, with k > 0, satisfying:

1. let u ∈ Ni and v ∈ Nj: if i ≥ j then there does not exist any hyperarc
e ∈ BS(v) such that u ∈ T (e);

2. for each u ∈ Ni, i = 1, . . . , k, there exists a hyperarc e with h(e) = u

and T (e) ⊆ ∪j=0,i−1Nj.

Let us say that a hypergraph is nonempty if it contains at least one
hyperarc. Note that a stratified hypergraph must be nonempty.

Property 5. A hypergraph H = (V,E) is stratified if and only if it is a
nonempty acyclic hypergraph.

Proof. (if) Let V = {v1, v2, . . . , vn} be a topological order satisfying (1). Let
N0 = {vi ∈ V : BS(vi) = ∅}, i.e., N0 is the set of nodes with an empty
backward star; since H is nonempty, N0 ⊂ V . We sort the nodes in V \ N0

according to the topological order, i.e., we let V \N0 = {vo(1), vo(2), . . . , vo(k)},
where o(i) < o(j) for each 1 ≤ i < j ≤ k. For each e = (T (e), vo(j)) ∈ E, and
for each vo(i) ∈ T (e), we have i < j by Property 1.i. We define Ni = {vo(i)}
for each i = 1, . . . , k; it is routine to check that the partition N0, N1, . . . , Nk

satisfies conditions 5.1 and 5.2.
(only if) It is easy to see that H is acyclic since, for each e ∈ E, a node
u ∈ T (e) cannot be connected to the node h(e).

12

Property 5 shows that our linear time method completes a polynomiality
result already given in [10]. Note that this polynomiality result exploits some
nontrivial theoretical properties of (s, d)-hypernetworks (namely, Theorem
4.1 in [10]) that hold true also if the hypergraph is not acyclic. Our approach
is simpler and more direct, since we derive our result from a known property
of acyclic hypergraphs, namely Property 4.

Remark 1. In the original statement of condition 1. in Definition 5, i.e.,
condition (4.1) in [10, Definition 4.4], the inequality “i > j” appears in-
stead of “i ≥ j” (probably due to a typographical error). This actually
results in a weaker condition, that allows e.g. a hyperarc e ∈ E such that
T (e) ∪ {h(e)} ⊆ Ni. Clearly, the weaker condition defines a proper exten-
sion of acyclic hypergraphs. Unfortunately, the polynomiality result does
not extend to this broader class, unless P = NP . To see this, consider a
generic hypergraph H = (V,E) and a pair of nodes s and d in V . Define a
hypergraph H ′ adding to H a new node d′ and a new arc (d, d′). Choosing
N0 = V and N1 = {d′} we see that H ′ is stratified according to the weaker
condition. Clearly, every s-d hyperpath in H corresponds to a unique s-d′

hyperpath in H ′, and vice-versa. Thus finding the (s, d′)-hypernetwork in H ′

is as hard as finding the (s, d)-hypernetwork in H, i.e., NP-hard.

5. Conclusions

Hypernetworks in directed hypergraphs have been introduced as a formal
descriptive tool within a specific application. In our paper we pointed out
that finding hypernetworks has a relevant interest, from a computational
point of view, in many different contexts.

We provided a fast and simple method for finding the s-hypernetwork,
and two non-trivial classes solvable in linear time. For one of this two classes
we also devised a linear time method for finding the (s, d)-hypernetwork. On
the theoretical side, we pointed out the relations between hypernetworks,
flow hypergraphs, and dominators.

Our results may be extended along two different directions. On one side,
find classes where hypernetworks can be identified exploiting a partial knowl-
edge of the dominators, as for acyclic hypergraphs. On the other side, find
classes where dominators can be found in less than O(n · S(H)) time. One
possible candidate class are the reducible flow hypergraphs [4]. Indepen-
dently of hypernetworks, we believe that the computation of dominators in
flow hypergraphs may be an interesting subject for further research.

13

Acknowledgements

The author thanks two anonymous referees for constructive comments
which helped to improve the first version of this article.

References

[1] G. Gallo, G. Longo, S. Nguyen, and S. Pallottino. Directed hypergraphs
and applications. Discrete Applied Mathematics, 42(2-3) (1993) 177–201.

[2] G. Gallo and M.G. Scutellà. A note on minimum makespan assembly
plans. European Journal of Operational Research, 142(2) (2002) 309–
320.

[3] L. Georgiadis and R. E. Tarjan. Finding dominators revisited. In Pro-
ceedings of the 15th ACM-SIAM Symposium on Discrete Algorithms
(SODA ’04) 869-878. SIAM, Philadelphia, 2004.

[4] A. L. P. Guedes, L. Markenzon, and L. Faria. Flow hypergraph re-
ducibility. Discrete Applied Mathematics, 159 (2011) 1775-1785.

[5] L.R. Nielsen, K.A. Andersen, and D. Pretolani. Bicriterion shortest
hyperpaths in random time-dependent networks. IMA Journal of Man-
agement Mathematics, 14(3) (2003) 271–303.

[6] L.R. Nielsen, K.A. Andersen, and D. Pretolani. Finding the K shortest
hyperpaths. Computers & Operations Research, 32(6) (2005) 1477–1497.

[7] L.R. Nielsen and A.R. Kristensen. Finding the K best policies in a
finite-horizon Markov decision process. European Journal of Operational
Research, 175(2) (2006) 1164–1179.

[8] D. Pretolani. A directed hypergraph model for random time-dependent
shortest paths. European Journal of Operational Research, 123(2) (2000)
315–324.

[9] D. Pretolani, L.R. Nielsen, K.A. Andersen, and M. Ehrgott. Time-
adaptive and history-adaptive multicriterion routing in stochastic, time-
dependent networks. Operations Research Letters, 37 (2009) 201–205.

[10] A. P. Volpentesta. Hypernetworks in directed hypergraphs. European
Journal of Operational Research, 188 (2008) 390–405.

14

