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Abstract

This paper introduces a general continuous-time mathealdtamework for solution of dynamic
mean-variance control problems. We obtain theoreticallt®gor two classes of functionals: the
first one depends on the whole trajectory of the controllet@ss and the second one is based on its
terminal-time value. These results enable the developafemimerical methods for mean-variance
problems for a pre-determined risk-aversion coefficiente &@ply them to study optimal trading
strategies pursued by fund managers in response to vayjpes of compensation schemes. In partic-
ular, we examine the effects of continuous monitoring aresee’s symmetry on trading behaviour
and fund performance.

Keywords: mean-variance, continuous-time stochastic control 0gitg solutions, investment
strategy, managerial compensation

1. Introduction

Markowitz's seminal paper [32] introduced the mean-varénriterion into portfolio optimiza-
tion. Single-period problems, which are mathematicaligtable, have enjoyed popularity both in the
academia to model investor preferences and behavior (sgeEpstein [17], Ormiston and Schlee
[33], Tobin [38]) and among practitioners (see, e.g., Badial. [13], Litterman [31]). An extension
of this theory to continuous-time models proved to be diffidue to fundamental problems intro-
duced by the variance term. A natural approach to contintimes optimization is to use dynamic
programming, which relies on markovianity of functional$e variance is, however, not markovian.

There are three main alternatives. The first involves theystd risk-sensitive functionals (see, e.g.,
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Bielecki et al. [11]), whose second order Taylor expansias the form of a mean-variance functional
Y
E(H) - 3Var(H). (1)

whereH is a random outcome of the investment anis the risk-aversion coefficient. The second
alternative to dynamic programming hinges on the use ofingaie methods (see, e.g., Bielecki et
al. [10]). Although these methods can be used to obtain diimen solutions for a class of mean-
variance problems, they turned out to be unsuitable as a b@séfficient numerical algorithms for
general mean-variance problems.

A substantial progress in the theory for mean-variancetfonals was due to a third approach,
closely related to the one we employ in this paper. This augrpintroduced by Li and Ng [29] in
a discrete-time setting, embeds the mean-variance prablena class of auxiliary stochastic control
problems that can be solved by dynamic programming methsmis glso Leippold et al. [28]). An
extension of this method to a continuous-time frameworkésented in Zhou and Li[41], and further
employed by Fu et al. [19] and Lim [30]. These papers put sd\v@mstraints on the optimization
problem in order to obtain auxiliary control problems in elar-quadratic form. In particular, the
random variabléH in the mean-variance functional (1) is assumed to be a lifugmtion of the port-
folio wealth process. Wang and Forsyth [40] design numEksiclhemes for auxiliary linear-quadratic
problems formulated in [41] and construct an efficient fremt

In this paper we present a mathematical framework for thetisol of general mean-variance
stochastic control problems in continuous time. This fravorl extends the continuous-time theory
of Zhou and Li [41] in two aspects. First, we allow the randoamiable H in the mean-variance
functional (1) to be specified either as a continuous functibthe portfolio wealth at a terminal
time (in general, the value of the controlled process) omaisigral of a continuous function of the
portfolio wealth (in general, the value of the controlledggss) over time. A particular case when
H depends linearly on the portfolio wealth at terminal timedsered theoretically in Zhou and Li
[41] and numerically in Wang and Forsyth [40]. Second, waxelssumptions on the dynamics of
the controlled process to cover non-homogeneous degerdiffatsions with Lipschitz coefficients of
linear growth.

To the best of our knowledge, mean-variance optimizati@mblems based on the integral of a
function of the value of the controlled process over timeehaot been widely studied. A closely re-
lated paper by Aivaliotis and Veretennikov [4] providesdhetical approximation results via regular-

ization; their solution leads to randomized strategiesuinpaper, the optimization problem is solved
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directly using the theory of viscosity solutions to Hamiltdacobi-Bellman equations (see Fleming
and Soner [18], Pham [36]). In particular, our results emal@mputation of (non-randomized) op-
timal strategies in a feedback form. The justification ofitloptimality — the verification theorem —
requires very restrictive assumptions (for the latestltesee Gozzi et al. [22]) that our control prob-
lem does not satisfy. We, therefore, resort to numericakyjitig the optimality of strategies extracted
from numerical solutions of the HIB equations.

Our theoretical results are used to develop numerical idhgos to maximize functional (1) for
a given (pre-determined) risk-aversion coefficigntWang and Forsyth [40] solve auxiliary marko-
vian optimisation problems which are parametrised neitlyaisk-aversion nor by the expectation of
terminal value. Once the optimal strategy is known, they @ampute the risk-aversion, the expec-
tation and the variance. This proves to be sufficient if onesaat graphing an efficient frontier. Our
approach is different as we endeavour to find an optimalegjyator a pre-determined risk-aversion
coefficient. We reformulate the mean-variance problem agarposition of a static and a dynamic
optimization problem, which is equivalent to solving a separametrized HJB equations and maxi-
mizing the resulting value functions over a compact intevedued parameter. We demonstrate that,
for practical applications, our approach leads to an efftaiimerical algorithm.

Recently, Basak and Chabakauri [8] and [9] proposed anafiegr on mean-variance optimi-
sation. They introduced a notion of optimality in an intergonal game theoretic sense. This has
the advantage of turning the optimisation problem markavié should, however, be noticed that
strategies optimal in a game-theoretic sense might not ti@malin a classical sense; and vice versa.

Theoretical results of this paper are applied to a study alegéted portfolio management prob-
lem. It is a common practice in the asset management indigstrge mean-variance preferences for
choosing portfolios (see Bodie et al. [13] and Littermani]]3We assume that fund managers apply
the same type of preferences to their compensation andadatidw trading strategies that maximize
their satisfaction from compensation. The mathematiahéwork introduced in this paper allows
us to study trading strategies pursued by fund managersmponse to various types of compensation
(incentive) schemes. We also analyze implications of cempthemes on distributional properties of
the fund’s wealth process. We consider symmetric (e.govenership) and asymmetric (with a hurdle
rate provision) schemes based on the terminal wealth anideocointinuously monitored wealth.

Incentives have been proven to be a significant factor infingnthe behavior and performance

of fund managers. Agarwal et al. [2] examine, in an empirgtaty, the influence of incentives and



managerial discretion on the performance of hedge fundsy fihd that managers with performance-
related incentives — the inclusion of hurdle rate provisjoor co-ownership — are associated with a
better performance. We study numerically the implicatiohghe above incentives on trading deci-

sions of fund managers. Managers with symmetric (co-ovim@rsompensation schemes show a
superior performance over those remunerated by schemieswitlle-rate provisions: the resulting

Sharpe ratio of the terminal wealth is higher.

Incentives also influence the riskiness of trading strategiursued by fund managers. Elton et
al. [16] find that managers with asymmetric incentive cartgdend to follow riskier strategies than
those with symmetric compensation scherhds.particular, they observe that asymmetric schemes
encourage large variations in the riskiness of portfolieerdime: a poor performance at any time
triggers a sharp increase in the risk taking. Our numerisillts show that such behavior is optimal
for a fund manager with mean-variance preferences.

Our numerical study contributes also to the discussiontheudrequency of portfolio monitoring
(see, e.g., Agarwal et al. [2] and Goetzmann et al. [21]). Waae trading strategies and portfolio
performance when the manager's compensation is based getermance sampled continuously
over the whole investment period. We observe a fall in Shaapies for symmetric and asymmetric
schemes. This agrees with the empirical findings of Agarwal.g2]. A continuous examination of
the fund’s wealth diminishes managerial discretion, whagttording to [2], impacts on the fund per-
formace. One would, however, expect that the closer sgrofiiered by such compensation schemes
lowers the riskiness of investment decisions. We demaestinat the opposite is true: the variance of
excess returns increases.

A classical but more challenging problem is the design of memsation schemes that align pref-
erences of an investor and a fund manager. Existing literatfiiers results in the case of preferences
represented by utility functions (see, e.g., Carpentefrdhd Ou-Yang [34]). Mean-variance optimal-
ity criterion has only been used in a static (single-peridinework (Baptista [6] and Carlier et al.
[15]).

The outline of the remaining part of the paper is as followact®n 2 introduces a general math-
ematical framework for the solution of mean-variance sastic control problems and prepares the

ground for design of efficient numerical schemes. The probdé managerial compensation in a

1The fixed fee in the paper by Elton et al. [16] can be represeimeour framework as a symmetric compensation
contract.



continuous-time market model alongside with various tygfesompensation schemes and discussion
of numerical methods used for computation of optimal investt strategies is presented in Section
3. Analysis of the trading strategies is performed in Sectio Section 5 concludes. In the Elec-
tronic Supplement, Section A introduces numerical schemnesverifies their convergence, Section

B collects proofs.

2. Theoretical framework and results

In this section we present a general framework for the smiutif mean-variance dynamic opti-
mization problems. Subsection 2.1 studies functionalgedding on the value of controlled process at
the terminal time. In Subsection 2.2, these ideas are estkttodfunctionals based on the whole trajec-
tory of the controlled process. Our exposition is gearedatde numerical computations, necessary
for practical applications.

The state is described byladimensional non-homogeneous stochastic differentiaagon (SDE)

driven by ad;-dimensional Wiener procesg\)
dXt = b(a/t, t, Xt) dt + O'(Cl’t, t, Xt) dVVt, Xto =X, (2)

whereb : Ax [0, ) x R - R¥ando : Ax [0, ) x RY — R¥% The processa, to <t < T) is
from the classA of all progressively measurable processes (with respehgtéltration generated by
the Wiener procesdN;)) with values in a compact sét c R. Its role is to control the dynamics of
the diffusion ;). Equation (2) has a pathwise unique (weak) solution if tilefving conditions are
satisfied (see, e.g., Gikhman and Skorokhod [20, Sectidno6.Fleming and Soner [18, Appendix
D]):?
(Ao) The functionso, b are Borel with respect taa(t, X) and continuous with respect ta, &) for

everyt; moreover, there exists a consté&hsuch that

llo(a te, X) — o(a tz, 2l < K(IIX = 2| + tp - t2])

lIb(a, t1, X) — b(a, t2, 2)Il < K (lIx — 2| + |ty — t2f)

(Lipschitz condition)

and
lIb(a, t, X)II < K(L + [IXIl) ) -
(linear growth condition)
llo-(a t, ¥ < K(L+ [Ix)

°These conditions are superficial for the uniqueness ofisalsit We will, however, need them later in the study of the
value function of the mean-variance optimization problem.



The solution ¥;) depends on the initial conditior, time tp, and the control ¢;); to simplify
notation we indicate this dependence in the expectdipn and the varianc&arg ,. When this is

not sufficient we shall writex®*,

2.1. Mean-variance optimization for terminal-time functionals

Consider a (Markowitz-typenean-variance control problem
u(to, X) := ggﬁ{Eg,xh(xT) — 6 Varg ,h(Xr)}, (3)
whereh : RY — R is a continuous function satisfying a polynomial growth dition:
()] < Ka(1+[IXI™)

for some constant&; > 0 andm> 1.

A major obstacle in solving this type of control problemshis hon-markovianity. The value func-
tion u does not satisfy the Bellman principle as a strategy thapisnmal for somety does not have
to be optimal for investment starting &t- tg (this property is also called time-inconsistency). We
show that the optimization problem (3) can be representedsaperposition of a dynamic markovian
control problem and a static optimization problem. Our apph has the advantage of leading to nu-
merical methods solving the original Markowitz problem &qore-determined risk aversion parameter
0. Related literature focuses mostly on graphing of an efftdi@ntier.

Using a dual representatiorf = sup,.p{-y* — 2%} (as in Aivaliotis and Veretennikov [4]), we
rewrite the variance term:

Varg Ji(Xr) = Ef (n(Xr))? = (Ef (X)) = Ef. (h(X7))? - jgﬂg{ - y? = 2E Jh(X7)}.
Inserting this into (3) yields the following representatiof the value function:
U(to, x) = sup{U (to. x,¥) — 6y}, 4)
yeR

where, for a fixeds € R, U(to, X, ¢) is the value function of a markovian control problem

Uto. x.¥) = SUPE {1 - 20p)h(xr) - 0 (h(Xr))%}.

Notice that ify* is the maximizer in (4) and* is an optimal strategy fdd (t, X, ¢*), theny* =
—E%’:X{h(XT)}. This follows from the fact that in the dual representatiéithe square functiony® =

sup/,{—w2 — 2yx}, the supremum is attained for= —x.
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The following theorem provides a representation of theevdilunctionU as a viscosity solution
to an appropriate Hamilton-Jacobi-Bellman (HJB) equatiofihe proofs of this and the following
theorems are in Section B of the Electronic Supplement. IRéhad h is assumed to be continuous

and of polynomial growth; these conditions will not be reated in the coming theorems.

THEOREM 2.1. Under assumption (Ag) for every ¢ € R the value function U is the unique contin-

uous polynomially growing viscosity solution to the HIB equation

{uto + SUPsea {B(@ to. X)T Uy + 3tr(co T (a. to. )Un)} = O, -

U(T, % w) = (1= 209)h(3) - 6(h(x))?,
where Uy, denotes the partial derivative with respect to time to, Uy is a gradient vector arising in the

differentiation with respect to the state x, and Uy isa matrix of the second derivatives.

The value functionuis related tdJ via the formula (4). This is not a simple quadratic relatiathw
respect tay, since the functiold depends oy in a non-linear way (due to the supremum operator).

The following theorem explores the dependenct) ahn .
THEOREM 2.2.
i) Thefunction U is convex and continuous in .

ii) Thevalue function u is given by
Uto,x) = sup {U(to, x %)~ 647},
Ymnin<Y <¥max

where

Ymin = — SUPEY N(Xr)  and  ymax = — inf EY ,h(X7). (6)
aeA aceA

The above theorem shows that the supremum in (4) can be cethpuwer a compact interval
[Vmin Ymax]. This, together with the continuity dfl with respect toy, ensures that the optimal
exists. In applications to managerial compensation dgmulifn this paper, this interval is very small
and the optimal, can be found efficiently (see Subsection 3.3).

The function under supremum in (4) is a difference of two exrfunctions. Although the numer-
ical maximization of such functions is not as fast as the maation of concave functions, one has

at one’s disposal advanced numerical techniques, seeHergt and Hoang [23, Chapter 10].

3Cf. Fleming and Soner [18], Pham [36] and Aivaliotis and Raveski [3] for the exposition of the theory of viscosity
solutions to Hamilton-Jacobi-Bellman equations and tted@tion to value functions of optimal stochastic contnallgems.



Let us summarize the findings of this section. The mean-vegigproblem (3) can be solved using
a family of auxiliary HIB equations (5). Formula (4) provsdée relation between the value function
U, being the unique viscosity solution to the equation (5) e value function. For a given {p, X)

the algorithm of finding the value afis as follows:
Step 1 Compute the functiog(y) = U(to, X, &) — 6 fOr ¥rin < ¥ < Wmax.

Step 2 Find the maximum ofy on the interval §in, ¥max]- Sinceg is continuous there ig* for

which the maximum is attained.

An optimal strategy folJ(to, X, *) is also optimal for the original mean-variance probla(ty, X).
The value functiorlJ is characterized as a viscosity solution to an HIB equattamjght not be a
classical solution due to a possible degeneracy of theagdrdiffusion ;). The computation of an
optimal strategy from a viscosity solution to the HIB equat the verification theorem — requires
very restrictive assumptions; the latest results can badan Gozzi et al. [22]. These assumptions
are not satisfied by our managerial compensation exampédhas the Black-Scholes model. We,
therefore, propose to rely on a numerical verification ofroptity of a strategy extracted from the

HJB equation.

2.2. Mean-Variance Optimization for Integral Functionals

In this subsection we extend the above theory to mean-w@iimctionals with an integral term:

T T
V(to, X) = sup{E%’X (f f(as, S Xs) ds) -0 Varfg’x( f(as, S Xs) ds)} . @)
ae€A to to

Proceeding as in the previous subsection we reformulateatti@nce term and obtain

V(to, X) = S};P{V(to, X 4) = %), (8)

where

T T 2
Vo x0) = supkf  0-200) [ s s x9ds-o( [ flon 53905}
aeA to to

The auxiliary optimization problem fdv is still not markovian due to the term involving the square
of an integral. Following Aivaliotis and Veretennikov [4Jenpropose an approach to reformulate this

quadratic term. Fubini’s theorem implies

T T
Egg,x(( fto f(as s Xg) ds) ( f(at,t,Xt)dt))

fo
t

.
ZZE%’X( f f(ae, t. X
to t

0

f(as S X5) d) dt).



Define a new state process:(Y;) by the following stochastic differential equation

dX; = b(at, t, X) dt + o(at, t, X;) dW4,

dY; = f(ay, t, X;) dt. ©
If we assume a polynomial growth &f then under (8) this equation has a pathwise unique (weak)
solution for any initial valuetf, Xo,Yo) € [0, T] x RY x R (see, as before, Gikhman and Skorokhod
[20, Section 6.7] or Fleming and Soner [18, Appendix D]).ndsihis extended state process we have

V(to, X, ) = V(to, X, 0, ), where
. T T
V(t07 Xa ya 17[’) = SupEg),X,y{(l - 2917[’) f f(a/tv t’ Xt) dt - 29[ f(a/tv t’ Xt)Yt dt}
€A to to
T
= SUPE} | f fan,t, X)[1 - 20y — 260Y] ).
aeA to

The functional defining/ is of markovian type. Since the functioh steers the dynamics of the

extended state process, we impose on it analogous assampi®rb ando:

(A1) The functionf is Borel with respect tog, t, X) and continuous with respect ta, ); moreover,

there exists a constalb such that

If(at,x) - f(at2, 2] < Ko (X =2l + Itr - ta) ,

If(at, X)] < Ka(1 + [IX]).

The following theorem states the HIJB equation for the valinetionV. This result is used in the

design of a numerical scheme approximating

THEOREM 2.3. Under assumptions (A)-(A1), for every ¢ € R the value function V(-,¢) is the
unique continuous polynomially growing viscosity solution to the following HIB equation:

Vio(to. X, Y, %)

+ SUpea {bla to. )TV + Str(oo T (a to, Vi) + (1 200 — 20y + V) f(ato. 0} = 0. (10)

V(T, Y, ) = 0.

Note that even if we had assumed uniform non-degeneracyeqirticessX;) (which we did not
do), equation (10) would be degeneratevas degenerate. Standard methods are, therefore, insuffi-
cient to prove existence and uniqueness of classical or e@akions. In Aivaliotis and Veretennikov
[4], this obstacle is overcome by a regularization of thecpssY;; an independent diffusion part is
added with a small constant diffusion coefficient. Subsatjuet is shown that the regularized value

function converges to the actual one uniformly when thigicidl diffusion coefficient vanishes.
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In Theorem 2.3 we apply methods of viscosity solutions toasti@t equation (10) has a unique
solution which corresponds to the value functién The reason for this development is three-fold.
First, an optimal markovian strategy can be extracted frbd) (see the discussion of the verification
theorem and optimal strategies at the end of Subsection hlgontrast, solutions to regularized
problems offer only a possibility of extracting a randondizearkovians-optimal strategy for the
original problem. Second, the representation of the valmetfon as a solution to an HIB equation
allows for the construction of an approximating numeriedesne. Third, we do not have to assume
the uniform non-degeneracy of Yet another reason is the elegance of the theory which cémneas
both the original and the regularized equation in the saaradiork.

Another feature that sets apart this paper from the earkek Wy Aivaliotis and Veretennikov [4]
is the unboundedness of the diffusion coefficients and ofuthetion f. This is a crucial feature that
enables the study of the compensation schemes describedtiors3.

The extension of the state space (9) allows us to considesttiohastic control problem (7) as
a special case (3) with(x,y) = y. This, however, leads to an inefficient numerical schemer Ou
formulation of the value functioW with an integral-type functional and the integrand depegdin
Xt as well as orY; smooths out errors induced by numerical approximationb@ptrocesy;.

The following theorem explores the dependenc¥® oh .
THEOREM 2.4.
i) Thefunction V is continuous and convex in . If f isnon-negative, V is decreasing in y.

ii) Thereexists a constant C such that
V(to, %, ¥, %) = V(to, Xy, ')l < C (L + IIXI) Iy — v/!.
iii) Thevalue function v is given by

Vito,x)=  sup  {V(to,x 0,¢) - 6y},
Ymin<Y <¥max

where

T T
Ymin = — supEg‘;’Xf f(as, S, Xg) ds, and Ymax = — inf E%,xf f(as, S, Xs) ds.
a€A to a€A to

Thanks to the properties stated in the above theorem thewatign ofv(tp, X) can be performed

by a similar algorithm to the one presented at the end of $tibse2.1.
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3. Themanager’s compensation problem

In this section we introduce a delegated portfolio managemeblem in a framework of a finan-
cial market with one risk-free asset with a continuously poomded returm and a stock (risky asset)

whose price follows a geometric diffusion with a constaiift dr and a constant volatility-:
dSt = ,uStdt + O'SthVt.

The manager invests clients’ money in the two availabletasdder strategy is described by a
progressively measurable procesg (vhich represents the proportion of the total wealth at ttme
invested in the stock. The dynamics of the total wedthare, therefore, given by the following
equation:

dX; = X(r dt + 7(u — r) dt + mo- dW). (11)

We constrain the stock investmentto a bounded interval which represents restrictions ontshor
selling and borrowing; this puts limits on leverage levélsie bound on the leverage is imposed by
regulators on many financial institutions (for example, F$ in the UK requires that firms set their
leverage limits according to the risk-management regotatequirements [1]). In the simplest case,
when no borrowing and short-selling is alloweg € [0, 1].

The manager is remunerated according to the performante @fimd under her supervision. The
amount of compensation depends on the market evolutiorsttagegy f£;) she implements and the
compensation contract (hereafter also called the compensztheme) agreed between investors and
the manager. We assume that the fund manager applies meaneeapreferences to her compensa-
tion and follows trading strategies that are optimal for, her, that maximize her satisfaction from
compensation. This choice of preferences is in line withdti@mon practice in asset management
industry (Bodie et al. [13] and Littermann [31]).

Given a compensation contract the manager endeavors to §itrdtagy f) that maximizes the
mean-variance criterion

E(H™) - %Var(H”), (12)

wherey > 0 is her risk-aversion coefficient amdl is a random variable representing the amount of
compensation the manager receives if she follows a tradiategy (t;).
In this paper we focus on two approaches to constructing geeacompensation schemes. The

first one, which is based on continuous (over the whole imvest period) performance monitor-

11



ing, requires novel results presented in the previous @ectiThe second one depends on a well-
documented terminal time (e.g., end-of-year) performameasurement. Our theoretical findings

facilitate numerical solution of the resulting optimizatiproblems for both approaches.

3.1. Compensation schemes based on continuously monitored performance

Empirical evidence suggests that frequent monitoring hasgative effect on the fund perfor-
mance (see, e.g., Agarwal et al [2] and Hunton et al. [25]). Wilkshow that this phenomenon
can arise in a fully rational setting, i.e., without psyatmital/behavioral factors that might influence
decision-making in a real-life environment. In the modatgliramework of this section, we compare
optimal responses to contracts based on a terminal-timea@mtthuous monitoring of funds wealth.
Continuous monitoring can be regarded as a limit case, witen-dbservation intervals become in-
finitesimally small.

Another aspect of compensation schemes explored in thisrpagheir symmetry. Investment
Company Amendments Act of 1970 ruled that all performancgetiacompensation schemes em-
ployed by US investment companies (such as mutual or perfisizis) have to be symmetric. A
symmetric compensation contract pays out premiums to theagea when she outperforms a tar-
get, but imposes a penalty for under-performance. This eavidwed as a means of risk sharing or
co-ownership by the manager.

In a symmetric scheme with continuous monitoring, the marisgompensation is proportional
to the cumulative future value of the difference betweerpthrfolio return and the benchmark return:

. TX _
H™=C f (5 - )Tt (13)
o Xo
whereg is the benchmark growth rati({r denotes the value of the portfolioat the timet andC > 0
is the factor translating accumulated returns into marsgempensation. Notice that the coefficient
€ (-9 ensures that the performance measure takes into accouithéiealue of money.
An intuition would suggest that the compensation schemg éfhBourages close tracking of the

benchmark. This is however not true as the manager’s ogtioiz problem can be written in the

12



following equivalent form#
e [ ) -ovar [ (1)) a4)
0 Xo 0 Xo
wheref = 0—27 This separates the portfolio choice from the benchmagkaand relates it only to the
future value of the cumulative returns in a clear analogh&ostandard Markowitz problem.

Although the regulation banning the use of asymmetric iticemplans in mutual or pension funds
holds, asymmetric schemes are still popular with hedgesfuvtich are characterized by strong per-
formance incentives to their managers. Typically, thera mmall annual management fee and a
performance-based bonus payment. The latter, for mossfuagbaid if the return exceeds a hurdle
rate (the benchmark rate) or a high-water mark (the previnagsimum). The manager’s incentive

payment with the hardle-rate provision is given by
T wr
H™=C f (ﬁ - e‘“)+er (MO, (15)
o Xo

whereg is the hurdle rate and* = max(x, 0) is the positive part ok. Since compensation schemes
with high-water mark provision can be placed, in terms of gshrength of incentives, between the
symmetric and hurdle-rate schemes, they will not be parhefanalysis presented in this paper.
However, they can be accomondated by our mathematical Wvarkeand numerical methods.

The dynamics of portfolio wealth (11) is multiplicativeg |, for any trading strategyt{) the return
X7 /X0 is independent oKo. The initial wealthXo, can, therefore, be fixed to 1. Under the assumption
that short-selling is not allowed, the compensation sclsefh®) and (15) can be written in a unified
way:

.
H* = C f (Xr - KeBt)+er(T‘t)dt. (16)
0

For a symmetric scheme, one takés- 0. The hurdle rate payoff is obtained whién= 1.

The corresponding manager’s optimization problem takegdim

g * (T T g )" (T-1)
E(f0 (XF - Ke™) & dt)—eVar(fo (X7 - Ke™) €T 0dt) — max (17)

“We call optimization problems equivalent if their optimaiegegies are identical and their functionals are relateal i
deterministic way. Manager’s optimization problem takesfollowing form

T )21” » 7C2 T )2171 .
c:E(f0 (Z —eMe )dt)—TVar(fo (Z—ef*‘)e“T dt).

T

We divide this functional b and notice thaVar( ;| (5 — &)eTdt) = Var( f) (£ ~ 1)dt). ChangingE( ;' (5 -

)T dt) into E( foT(er(TX_:*‘” — 1)) shifts the value of the functional by a constant but does fiettthe optimal strategy.

This proves equivalence of (14) and the original managgtsrozation problem (12) with the compensation scheme.(13)
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whered = C—zy

3.2. Compensation schemes based on terminal-time performance

Compensation schemes introduced in the previous subsédwtie their counterparts based on the
fund’s wealth at the terminal time. In a symmetric scheme, rttanager’'s compensation is propor-
tional to the difference between the portfolio return arelllenchmark return:

Xﬂ
H™ = C(5t - &) (18)
Xo
As in the case of the continuous monitoring, the tradingtetyamaximizing manager’s satisfaction
does not depend on the benchmark rate. TakRirgO simplifies manager’s optimization problem to

~ ~
T T

E(i -1)- GVN(ZT -1) (19)

with 6 = 0—27 Since the quantityé% — 1 is the return of the portfolio, the optimization problen®)1
is consistent with a standard Markowitz portfolio optimiiea approach. Hence, by an appropriate
selection ofC a mean-variance investor can align their risk aversion withrisk aversion of the
fund manager (see Starks [37] for similar results). Thie aigplies that the symmetric compensation
scheme (18) is equivalent with manager’s co-ownershipefind.

A remuneration scheme with a hurdle-rate provision resultke payoff

XE
H™=C(=- - &),
Xo
whereg is the hurdle rate.
Similar to the case of continuous monitoring, above two s@gcan be represented in a unified
form:
+

H™ = C(XF - Ke') (20)

where the choic& = 0 leads to a symmetric scheme wherkas 1 corresponds to a scheme with the
hurdle-rate provision. An optimization problem faced by anager with mean-variance preferences

and the risk aversion coefficieptis

E((Xz - KeT)") - ovar((%z - Ke'T)") - max. (1)

14



3.3. Numerical approach

Optimization problems (17) and (21) are solved numericalie apply explicit-implicit scheme
to the discretized Hamilton-Jacobi-Bellman equationg @it (5) for the auxiliary optimal control
problems. Maximization with respect fbis constrained to a closed interval (see Theorems 2.2 and
2.4) which is found by solving appropriate optimal contrabiems (see Column 3 in Table 1). In
the case with continuous monitoring, this has to be done nigally. When compensation scheme is

based on the terminal value of the fund, the interval/fds given analytically:

LEMMA 3.1. Assumethat 7y € [0, mmax] for some mmax > 0and u > r. For any tg < T, we have
ll/rnax = —(erTX - eBTK)+,
Umin = —xe™THTp(dy) + TKD(dy),

where © is the cumulative distribution function of the standard normal distribution and

4 - log(x/K) + mtmax(i — 1)(T = to) + 37500 2(T —to) = (B—1)T
v Tmaxo VT — o '

do = di — mmaxo VT — to.

The proof of the above lemma (see the Electronic Supplenmat)rprisingly difficult. First, the
optimization problems (6) with the payoff (20) are of a ndarslard form: the objective function is not
concave which prevents the use of the well-developed thefocgntinuous-time utility optimization.
Another difficulty stems from the fact that the objective dtian is not differentiable.

Numerical solution of HIB equations requires trimming af gtate space (to a bounded region:
interval or rectangle) as well as discretizing it. The trimghof the state space and the choice of
discretization grid in time and space is usually guided hyegience. Existing mathematical results
explore the speed of convergence as the bounded regiondjpad the number of discretization
points tend to infinity; such results do not allow to assestiecision of a given computation. More-
over, the verification theorem for viscosity solutions toBHaquations (see [22]) is not applicable
in our setting. Hence, it is not known whether the strategyaeted from the discretized HIB ap-
proximates the optimal strategy. We propose an approacHiltkdhese gaps. We store the strategy
obtained while solving the discretized HJB for the optimmaknd use it to run a Monte Carlo simula-
tion. In each Monte Carlo run we generate a trajectory of theksprices and invest according to the
computed optimal strategy. The collection of samples ofamgaris compensation is stored and used

to approximate the value of their mean-variance functiofable 1 displays results for a selection
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T K [Wmins Wimax] v PDE value Monte Carlo

Terminal-time performance

[-0.441503, -0] -0.222016 0.156465 (0.154375,0.15Y366
5 0 [-1.65037, -1.28531] -1.34597 1.31546 (1.31516,1.8170

a1
=

Continuous monitoring

5 1 [-1.2517742,-0.0000004] -0.8463702 0.6296674 (0.890Q2.636558)

5 0 [-7.3013320,-6.4201271] -6.6405067 6.5496516 (6.336866716)
Table 1: Numerical approximations of the value functiofequation (3)) and the value functian(equation (7)) at the
initial time to = 0 and the initial wealthx = 1. Column 3 displays the interval in which the searcly ¢ékes place. Column
4 shows the optimum. An approximation ©of0, 1), computed using this optimad, is given in Column 5. Last column
displays a 98% confidence interval for the value of the fuumzti (3) computed by a Monte Carlo simulation with 100000
runs using the strategy extracted from the discretizatioth® Hamilton-Jacobi-Bellman equations (5) and (10). le th
computation we use= 0.05,u = 0.1,0 = 0.2,C = 1 andB = 0.06. The risk aversion coefficiemt= 6. Trading strategies
are constrained to the interval,[] (mmax = 1). For terminal-time performance: time,[D] is divided into 300 steps; the
state space grid (in terms of logf contains 2000 points spread evenly oveR,[3]. For continuous monitoring: time is
divided into 5000 steps foF = 5; the state space grid is two-dimensional; one dimensiote(ims of logk)) contains 200
points spread evenly over 2, 3]; the other (in terms of) has 500 points located uniformly on{, 10].

of compensation schemes and model parameters. They hirhéhapproach presented in this paper
with an auxiliary variabley performs well. It is also efficient; in the case of termindineafunctional,
all the computation of the value function , i.e., the maxiatian overs and solution of auxiliary opti-
mization problems required around 5 secohds comparison, each Monte Carlo computation took
90 seconds. Understandably, computational intensity ofarical scheme solving the problem with
the continuous monitoring increases dramatically due éairitroduction of another state varialyle
In addition, the functional is based on an integral over tirtie computation requires a dense time
grid, which has a further impact on the computation times Itill, however, practical taking a few
minutes with most of the time used for the determinatioyofThis can be sped up by doing pre-runs
with rougher grids.

Interested reader is referred to Section A of the Electr8nipplement for a more detailed presen-

tation of numerical methods and proofs of their convergence

4. Trading strategies

In this section we analyze optimal trading strategies fer thrious managerial compensation

schemes presented in Section 3. Specifically, we look at

(SC) symmetric compensation scherike= 0),

SAll computations were performed on a Dell Lattitude E64Q8tdg with Intel Core2 Duo 2.54GHz processor.
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| scheme K B C utility
SC 0 0 1 1.314
Terminal time HR 1 0.06 41 1.303
SC 0 0 0.2 1.309
Continuous monitoring HR 1 0.06 15 1.385

Table 2: Results for the calibration of four models: two fembinal-time performance and two for continuous-monitgri
of performance. Time horizon i = 5. The last column displays the values of the mean-variabgective function for
calibrated proportionality factoiS. Due to computational complexity (fine discretization of #tate space is required for
large values ob) the utility value in the last row is not as well fitted as fohet functionals.

(HR) asymmetric compensation scheme with a hard hurdlepraigsion K = 1,3 = 0.6),

based on the continuously monitored performance (see &b@)pn the terminal value (see (20)). We
fix the market parameters at:= 0.1, 0 = 0.2, andr = 0.05. The manager’s risk aversionjs= 6.5
We assume that borrowing is not allowed, i.e., the maximurastment in the stock is 100% of the
wealth max = 1). Relaxation of this assumption is discussed in Subgeetid. We constrain the

analysis to the investment horizan= 5.

4.1. Consistent comparison of strategies for different functionals

The risk-adjusted expected payoff to the manager heavpemnlds on the choice of compensation
scheme (see Table 1). Indeed, for terminal-wealth baseshseh andC = 1, the symmetric risk-
adjusted payoff is B15 whereas the asymmetric one with the hurdle rate provisi@156. To ensure
the level playing field, we propose to choose the compensatialing factoiC for each scheme in
such a way that the manager is indifferent to the choice afdmsineration scheme, i.e., such that the
value

E(H™) - %Var(H”)

is independent of the choice of the scheme. This sets ouoagpprapart from the majority of the
literature analyzing relations between investment giateand fund manager's compensation con-
tracts; these studies rarely take into account that diftereentives imply different levels of payoff
to managers, see, e.g., Carpenter [14], Kouwenberg andhzi¢d6], Panageas and Westerfield [35].
Table 2 shows the results of the calibration of four comptimsaschemes to be studied in this

section.
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Figure 1: Compensation schemes based on terminal-timerpghce and continuously monitored performance. Plots of
realized portfolio positions along simulated trajectsrad stock price. The horizontal axis displays time in yedfbe
vertial axis is the portfolio position — the proportion oktlwvealth invested in the stock. The circles are the averafjes o
portfolio positions at any given time. The length of the bowee/below the mean represents the standard deviatioreof th
portfolio positions. Trading strategies were constraittetthe interval [01] (mmax = 1). Model parameters3, K andg) are
collected in Table 2. The manager’s risk aversiop is 6. The market parameters are- 0.1, o = 0.2, andr = 0.05. These
plots are obtained from a Monte Carlo simulation with 10088lizations of stock prices.

4.2. Trading strategies for terminal value based compensation

Figure 1 displays realized portfolio positions along siatedl trajectories of the stock price. Cir-
cles represent the average stock position at each time. eRigghl of the bar above/below the mean
shows the standard deviation. Optimal strategy for the asgimic scheme (Panel (c)) is more volatile
and tends to invest more in the risky asset than the one fosytmenetric scheme (Panel (a)). This

gives support to the findings of Elton et al. [16] who demaatstithat stronger incentives encour-

SRisk-aversion between 4 and 6 is commonly shown to be tyficahe stock market investments, see, e.g., [12, 31].
"Resullts for other investment horizons are similar. We cadbe investment horizon longer than a year because differ-
ences between compensation schemes are more pronoundealgiar horizons and graphs are easier to analyze.
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| Terminal time | Continuous monitoring

Compensation scheme | SC HR | SC HR
Sharpe ratio 0.98 0.63 0.57 0.52
Expected annualized excess return  1.91% 1.89% 3.50% 1.72%

Standard deviation of annualize

1.95% 3.00% 6.15% 3.35%
excess return

Table 3: Sharpe ratios for returns over 5 years obtained Ibywfimg optimal strategies. These numbers were computad vi
Monte Carlo simulation with 10000 realizations of stoclkcps.

age higher riskiness of trading strategies (higher investrin the risky asset); in our setting the HR
scheme offers stronger incentives. The explanation optiesiomenon is however more complicated.
Managers remunerated with any of the schemes increaseskyeimvestment after a period of poor

performace in order to recoup the losses. However, compartte symmetric scheme, the optimal
strategy for the asymmetric scheme prescribes higher gtgektment for small values of wealth and
smaller stock investment for large values. This is rathéntuitive; one would expect managers paid
according to the asymmetric schemes to hold larger stockigus in all cases. It seems that the
primary goal of managers with HR schemes is to beat the beathnTheir optimal strategy shows

strong reactions to the values of the wealth below the beadkmvith this behavior becoming even

more pronounced towards the end of the investment period.afnees with results obtained by other
authors in various frameworks, see Carpenter [14], and koberg and Ziemba [26].

Above results suggest that asymmetric schemes induce iankhracking behavior. Recall that
symmetric schemes cannot enforce benchmark trackingstiongewilling to include the benchmark
into manager’s compensation should therefore considéwdimg an asymmetric scheme as part of
the compensation contract.

Arya and Mittendorf [5] associate stronger incentives whidpher abilities of portfolio managers.
In our setting, the asymmetric scheme induces strategi¢saict quickly to market changes resulting
in a much larger variation compared to symmetric schemesKggire 1(a) and (c)). Therefore, fund
managers with asymmetric compensation schemes have to quéker and more precise trading
decisions, which requires more skills than strategiescpitesd by the symmetric scheme.

Distributional properties of the annualized fund returbsatned by following optimal strategies
are presented in Table 3. Agarwal et al. [2] and Arya and Mdtaf [5] suggest that stronger in-
centives encourage better performance. Our findings damatemshat it is not necessarily true. The

Sharpe ratio as well as the expected return of a fund whosageais remunerated by a scheme with
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a hurdle-rate provision is lower than those for the fund weittymmetric compensation. It is not the
strength but an appropriate choice of incentives that Iéadsbetter performance, see Kouwenberg
and Ziemba [26] for detailed analysis of the interplay betwé¢he symmetric (co-ownership) and

asymmetric incentives in the fund management.

4.3. Continuously monitored performance

Figure 1, Panels (b) and (d), shows realized portfolio pmsitobtained via a Monte Carlo simula-
tion. A common feature of both strategies is the increaskee$tock investment when time approaches
the investment horizoi .2 Such behavior was also observed by Panageas and Weste36gld
different modeling framework in which they studied the irapaf high-water marks and investment
horizon on portfolio positions. Their conclusion was thas inot the asymmetry of the compensation
scheme but the finiteness of the investment horizon thatugages fund managers to opt for large
stakes in the stock towards the end of the investment pefd.findings for terminal-value based
compensation schemes contradict their conclusions:nigastrategies for all types of compensation
do not show any tendencies of increasing stock positionswviinge approache$. In our opinion
the integral form of the functional, the feature that is sklaby Panageas and Westerfield’s model
and our compensation schemes based on continuously nemhjperformance, contributes mostly to
this behavior. It results from the interaction between ibk aversion and the ability to accumulate
performance over time. High proportion of risky investmanthe beginning of the investment period
increases the probability of a substancial decrease indhéofio value. Such drop means that no
compensation is accumulated until the loss is recoupe@asang the riskiness of the compensation
earned by the manager. On the other hand, a big loss cloger terminal time has disproportionately
smaller consequences.

Compensation schemes based on continuous monitoring tiblimralue lead to inferior prop-
erties of the terminal time wealth distributions comparedhe terminal-value based schemes (see
Table 3). This is in agreement with the findings of Agarwalleti2] who notice that the discretion
of fund managers impacts the returns: the larger the fléyitihat managers enjoy the better their
investment results. Our results show that this phenomenaonticaused by psychological reaction to
close scrutiny but is rather an optimal behavior. Contirsumonitoring of portfolio wealth prevents

managers from implementing strategies with long-term gy¢ahd possible short-term losses) since

8This behavior persists when changing model parametersstment horizo and the maximal stock holdingyay.
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Compensation scheme | SC HR
Sharpe ratio 0.98 0.57

Expected annualized excess return  1.89% 2.13%

Standard deviation of annualize

1.94% 3.72%
excess return

Table 4: Sharpe ratios for returns over 5 years obtainedllmyfimg optimal strategies for terminal-wealth based fimgals
and the upper bound on the stock positigg, = 2. These humbers were computed via Monte Carlo simulatitim X000
realizations of stock prices.

the short-term performance impacts their compensatiohdrsame way as the long-term does. This
not only lowers the Sharpe ratio compared to the terminahivédbased schemes, but also boosts the
riskiness of the excess returns. This comes as a surprise gmtinuous monitoring (closer scrutiny

of managers’ decisions) should, intuitively, encouragieleénanagement.

4.4. Relaxation of the borrowing constraint

In this subsection we relax the borrowing constraint; wevallhe leverage of up to Zrfx = 2).

We restrict our attention to terminal-wealth based scheforesvo reasons as we have already shown
the superiority of terminal-wealth based schemes over timtircuously monitored schemes. This
behavior is further amplified by the relaxation of the boriroyvconstraint.

Table 4 displays properties of the annualized excess ituliime relaxation of the borrowing
constraint results in the decrease of the Sharpe ratio ®@agiymmetric scheme; bigger investment
flexibility benefits the manager (via higher risk-adjustegdexted payoff) but worsens the Sharpe ratio
for the fund. The returns implied by an optimal strategy fog symmetric scheme are unchanged.
Indeed, this strategy is unaffected by the relaxation oftthieowing constraint. This finding lends
support to the claims of supremacy of symmetric schemestheeasymmetric ones.

The relaxation of the restriction on the borrowing yieldsrarease of the expected excess return
for the HR scheme; the corresponding quantity for the symmetheme remains unchanged. A
manager with an asymmetric scheme exploits an increasestment flexibility available on the
market to boost the returns; the expected excess returimdoHR scheme are substantially higher
than for the SC scheme. This supports the view, which we shidiheArya and Mittendorf [5], that

asymmetric compensation schemes should only be awardéghty kkilled managers.

5. Conclusions

In this paper, we presented theoretical and numerical tee$oit the optimization of a mean-

variance functional based on the terminal-time value ortenwhole trajectory of the underlying
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process. An optimization problem of this form cannot be igdidlirectly by employing dynamic
programming methods. We reformulated it as a superpositi@nstatic and a dynamic optimization
problem, where the latter is feasible for dynamic prograngmnethods. We characterized its value
function as the unigue continuous, polynomially growinigcesity solution to an appropriate degen-
erate Hamilton-Jacobi-Bellman equation. Our reformatabf the mean-variance problem allowed us
to numerically calculate the value function and an optintr@tegy for a pre-determined risk-aversion
coefficient.

We applied this theory to the delegated portfolioc managemesblem: given a compensation
contract, a mean-variance optimizing fund manager seekslat) strategy that maximizes her (risk-
adjusted) compensation. Our mathematical and numeriaaldwork can accomodate optimization
problems induced by complex (real-world) contracts. Iriipalar, we were able to study the relatively
unexplored relations between strategies pursued by menagmunerated according to schemes
based on the terminal wealth and on the continuously madtarealth. Surprisingly, terminal-wealth
based schemes turned out to induce more prudent investreleanibr and superior performance than
the schemes that rely on the continuously monitored wealth.

Goetzmann et al. [21] show, in a discrete-time setting, amatdge of frequent monitoring of
portfolio value. Our continuous-time results contradhistfinding? Future research will aim at
explaining this paradox. We will also try to design compéiosaschemes that benefit from the con-
tinuous monitoring of the portfolio value and lead to tragstrategies outperforming those induced

by terminal-time based schemes.
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Electronic supplement

A. Numerical schemesfor manager’s compensation problems

In this section we design numerical schemes for the solwifdhe manager’s optimization prob-
lems introduced in Section 3. In the first part we discuss migaleschemes for functionals depending
on the terminal value of the wealth process. The second paevoted to functionals based on the
continuously monitored performance. We follow the samepf presentation as in Section 2 to
introduce our numerical methodology in the simpler termimealth case.

To simplify the notation, we introduce a discounted wealthcpssX; = e "X;.1° This process

satisfies the following stochastic differential equation:
dXt = ﬂtxt((/.l - r) dt + O'dVVt) (Al)

Notice that &) stays positive provided that the initial value is positive

In this section we assume that short-selling is not allowstlthe leverage is bounded, i.e.,
(B1) mt € A= [0, mmax]-

This assumption allows us to simplify numerical schemessihmiten proofs. Results of this section
can be extended, with some effort, to strategies with a bedindverage; € [mmin, Tmax] With
arbitrarymmin € R). The bound on the leverage is imposed by regulators on maagdial institutions
(see, e.g., [1]).

We also assume (rather naturally) that the rate of returhefisky stock is not smaller that the

riskless interest rate:

(B2) p=r.
Finally, we assume that

(Bs) 7mex < 251,

The above assumptions can also be relaxed at the cost of acoramicated numerical schere.

0we suppress the dependence of both processes on the captioldrder to simplify the notation. This dependence is
signalled by the expectation and variance operators.

Hynder (B)-(B3) we can always approximate the first derivative with respeztwith a forward difference. Relaxation
of these assumptions requires an adaptive numerical sctiehensures the use of forward and backward differences as
appropriate, see [39].



A.1. Numerical solution for the case of terminal wealth-based compensation

In the notation of Subsection 2.1 and using the discounteativg@rocess, the value function
corresponding to the functional (21) has the following fofor tg < T
U(to. X) = sup{Ef, ;h(Xr) — 0 Varf, (X)), (A.2)
neA

whereA is the set of all progressively measurable processes witlesan [Q mmax] and
h(x) = (xéT - KéT)". (A.3)

Recall thatv(0, 1) corresponds to the optimal utility for a fund manager. Tédmulting strategies are

analyzed in Section 4.

A.1.1. Markovian reparametrization
As (A.2) is not suitable for markovian optimization methpd® rewrite it in the following way
(see Section 2):

U(to, X) = sup{U(to, X, &) — 99112},
yeR

whereU is the value function corresponding to an auxiliary optiatian problem that fits the marko-

vian optimization framework:

Uto: x.4) = SUPEF {@ - 200)h(Xr) - 6 (n(Xr))*}.

For fixed (o, X) the above supremum can be restricted to a compact inténa@l[y in, ¥max] (S€€
Theorem 2.2), where
Ymin = — SUPER h(Xt), Ymax = — Inf EF h(X7). (A.4)
neA meA
Sinceh is non-negative, both numbers are non-positive. We will thée property in a number of

places later in this subsection. Lemma 3.1 provides acalyixpressions fapin andy/max.
A.1.2. Localization and change of variables

By virtue of Theorem 2.1 for any fixedl the functionU (-, ¥) is the unique continuous polynomi-

ally growing viscosity solution to the following HIB equarti

{Ut0 + SURhe[0 g (Al — XUy + 382X20% U} = O, A5
U(T. % %) = (1 - 200)h(x) — A(h(x))>. '

The state space of this equation is infinitee R. A common approach used for numerical solution

of such problems is to localize the equation, i.e., to reisthie state space to a compact interval
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[Xmin, Xmax] @nd set appropriate Dirichlet boundary conditionsifl andXmax (See Barles, Daher and
Romano [7], Wang and Forsyth [39]). We can only state appmai& boundary conditions since we
do not know the solutiotJ, but this is not a serious limitation. In [7] authors justtfyat the error

incurred by these approximate boundary conditions is simak far from the boundaries. They study

in detail the case when the boundary conditions are equhkttetminal value

U (th Xﬂiﬂ? l//) = U (Tv Xmin’ 17[’)’ U(t()? Xmax’ 17[’) = U(T’ Xmax’ 17[’)’ tO € [07 T)

Using their approach, a localized version of (A.5) readoHiewis: for X € [Xin, Xmax]

Uty + SURke[0.rmag {3 — NXUx + 38%X20%Une} = 0,

U (to, Xmin» %) = (1 = 200)N(Xnin) — O("(Xmin))?, (A.6)
U (to, X, ) = (1 = 266)N(xmax) — 6(N(Xmax))’,

U(T. x.y) = (1 - 209)h(3) - 6(h(x))".

Notice thatU(tp, X, ¥) equals 0 foix € (—oo, 0]. It suffices to restrict our attention to the remaining
part of the state space and considgr > 0. This is further justified by the fact that the set«d is
invariant for the dynamics ot¢)*2.

The processXy) is a controlled geometric Brownian motion and its incretaeare proportional
to the value of the process. Equidistant discretizatiorhefdtate space of (A.5) would, therefore,
be inappropriate. A common solution is a change of varialites log(x). With a slight abuse of
notation a new value function with the changed variableiisd#noted byU. Equation (A.6) takes

the following form:

Ut + SUPc(0.11a] {[a(,u —1) - 3a%52|U, + %azgzuzz} =0,

U (to, Zmins %) = (1 — 260)h(€¥n) — 6(h(e?mn))?, (A7)
U (to, Zmaxs %) = (1 — 26y)h(g#=) — (h(e?™))>,
U(T,zy) = (1 - 204)h(&) - o(h(e)))?,

for z € [Zyin, Zmax], Wherezyn = 10g(Xmin) andzyax = 109 (Xmax)-
A.1.3. Implicit numerical scheme
Fix ¢ < 0. Equation (A.7) satisfies the strong comparison propentyiscosity solutions and,

hence, has a unique continuous viscosity solutiofsee, e.g., Fleming and Soner [18, Remark V.8.1]

or Wang and Forsyth [39, Remark 2.1]). Define an equidistpate gridz, . . ., 2y, wherezy = zin

2The processX;) starting from a positive initial value stays positive.



andzy = Zmax, and an equidistant time grid@, . .., TN, Whererg = 0 andry = T. Letds, = 3 — zp be
the space discretization step afd= 71 — 7o be the time discretization step. DenotelWy a discrete
approximation tdJ (t,, z,¢) and putu” = (U, ..., U})T.

Under (B)-(B3) the coefficient byU, in (A.7) is non-negative. To ensure monotoniéityf a
numerical scheme for equation (A.7), we approximaevith a forward difference, i.e., byd(to, z+
5,,¢) — U(to, z ¥))/8,. For a vector of controla = (ay, ..., ay) € [0, 1max]™ we define a controlled

discrete differential operator:

(Launy, = 28k no+ (- e@)o? | —2au = No: = 2 od@)’e?

26% i+1 5§ i

Fully implicit discretization of (A.7) takes the followinfprm:

U sUp o (LUM =0, i=1.. . M=1 n=0..,N-1

Ul = (1 - 20p)h(e®) - o(h(e?))>, n=0,...,N-1 (A.8)
un = (1 - 20p)h(e™) - o(h(e*))>, n=0,...,N-1

UN = (1-20p)h(e?) - 6(h(€*))>, i=0,...,M.

The following theorem ensures the convergence of the abawverical approximation.

THEOREM A.1l. Under assumptions (B;)-(Bs) the solution of the above discrete Hamilton-Jacobi-

Bellman equation converges uniformly to the solution of (A.7) asN, M — oo.

A.1.4. Algorithm
We can now present an algorithm for the solution of the odhjmean-variance problem (A.2).

Without loss of generality we assume that the initial timaadg 0. Fix an initial capitak > 0.

1. Fix a space gridy, ..., zy in such a way that logd ~ (z0 + zv)/2, and the step, is appropri-
ately small. We will comment on the selection of the grid datethis section.

2. Fix atime gridro, ..., Tn. We will comment on the selection of the grid later in thistget

3. Compute/min andymax Using formulas derived in Lemma 3.1.

4. Find a maximum of(y) = U(0, X, ) — 62 overy € [Ymin, ¥max]- FOr each candidate

solve (A.5) as discussed above. The search might be perfoeitteer by maximization over a

3For the definition of monotonicity see, e.g., [18, SectiomlX



discrete grid in §min, Ymax] OF via DC programming method$. In the examples discussed in
this section we use the first approach as in practice thevaitRfnin, Ymax] is fairly small.
5. After finding the optimal/* perform another computation &f(0, x, v*) and store the resulting

strategy.

A.15. Convergence
Outcomes of the above numerical computations might hedeibend on a few crucial parameters
that set the grid on which the discretization of the HIB eignais based: the number of space grid

pointsM and the number of time steps

| k=0 |
N | W value | W value

10 -1.0619387 1.0565641 -0.0838146 0.0646984
100 -1.0619612 1.0565812 -0.0882061 0.0693725
200 -1.0619612 1.0565820 -0.0884347 0.0696070
300 -1.0619612 1.0565823 -0.0885697 0.0696854
400 -1.0619612 1.0565824 -0.0886154 0.0697234

A
I
=

Table A.1: Numerical approximations of the value functioat the initial timet, = 0 and the initial wealthx = 1 with
varying number of time stedd. The bounds foy are F1.1051709-1.0512711] forK = 0 and [F0.1096888-0] when

K = 1. In the computation we use= 1,r = 0.05,u = 0.1, = 0.2,8 = 0.06 andd = 3. Trading strategies are constrained
to the interval [01] (mmax = 1). The state space gridis = -2, zy = 3 with M = 2000.

Table A.1 summarizes our experiments with varying numbeinod steps. For the two cases, the
symmetric one{ = 0) and the asymmetric on& (= 1), we report the optimal value gf and the
computed approximation to the value function for the ihitialue x = 1. The results foK = 0 are
surprisingly good: it suffices to takd = 10 time steps to obtain a very good precision (the relative
difference between the first and the last row is of the ordeP)L(Due to this quality of results the
optimaly is identical for all choices oN (with a small difference foN = 10). This property is not
shared by the outcomes of simulations for the asymmetrie, cakere reliable results are obtained
for N greater or equal to 100. This difference, in our opinion,dssed by properties of optimal
strategies. As we show later, an optimal strategy for thensgtric case is less sensitive to small
changes in wealth and in time to maturify Indeed, the asymmetric functional requires an optimal
strategy to keep the wealth above the benchmark at the semaadducing the risk. This results in

frequent adjustments to the portfolio.

The mappingy(y) is a difference of two convex functions. There are efficimmnerical methods for maximization of
such functions (called the DC programming), see, e.g., tHord Hoang [23, Chapter 10].



| K=0 | K=1

M v value | W value
50 -1.0597145 1.0541610 -0.0927347 0.0657653
100 -1.0610219 1.0553888 -0.0885261 0.0696073

1000 -1.0619387 1.0565197| -0.0886611 0.0697280
2000 -1.0619612 1.0565823 -0.0885697 0.0696854
3000 -1.0619837 1.0566032 -0.0887068 0.0696687

Table A.2: Numerical approximations of the value functioat the initial timet, = 0 and the initial wealthx = 1 with
varying number of space stepb. The extreme points of the state space gridzare -2, zy = 3. The bounds foy are
[-1.1051709-1.0512711] forK = 0 and [0.1096888-0] whenK = 1. In the computation we use = 1,r = 0.05,

u=010=02,8=0.06andd = 3. Trading strategies are constrained to the interval][Qr.x = 1). The time interval
T is divided intoN = 300 steps.

The results for varying number of space steps are collent&dble A.2. The speed of convergence
is similar for both functionals.

We repeated the above convergence experiments for variodelrparameters and the results

were consistent with those presented here.

A.2. Numerical solution for the case of continuously monitored performance

In this subsection we concentrate our efforts on the nurles@ution of the optimization problem
(17). In terms of the discounted wealth process, the valuetion takes the following form: fap < T
T T
V(to, X) = sup{E{fo,x( f f(t, X)dt) - 0 Varg ,( f f(t, Xt)dt)} , (A.9)
neA 0 0

whereA is the set of all progressively measurable processes witlesan [Q mmax] and
f(t,x) = (x&T — K (T-0)*,

The presentation of the remaining part of this subsectitoviis a similar pattern as that of Sub-
section A.1 but differs in important details due to an addiil dimension in the controlled process

and the type of functionals involved.

A.2.1. Markovian reparametrization
We rewrite (A.9) as follows
V(to, X) = supV(to, x, 0,1) — 6y°),
yeR
whereV is the value function of an auxiliary markovian optimizatiproblem with an extended state
space X, Yy):

.
V(to. X, Y, ) = SUpE}, | f f(t. X)[1 - 20 - 20Y;] dt}. (A.10)
neA to
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The dynamics ofYy) is given by a differential equation
dy; = f(t, Xt)dt, Ytg =Y.

Theorem 2.4 implies that the supremum oyeran be restricted to a compact intervigahin, ¥ max]
with

T T
Ymin = — supng f(s Xg) ds, Ymax = — inf E‘X’f f(s, Xs) ds.
aeA t aeA t

Notice that both of these numbers are non-positive sinisenon-negative. As previously, this prop-
erty will be used in the derivation and convergence of theeniral scheme.

Computation ofymn andymax requires numerical solution of stochastic optimizationbbems:
we use an implicit scheme with policy iteration. We omit dlstas these problems are of a standard

form.

A.2.2. Localization and change of variables
For a fixedy the value functiorV(:, ¢) is the unique continuous polynomially growing viscosity

solution to the following HJB equation (see Theorem 2.3):

{vt + SURLe[0 ] |8 = 1)XVi + 382025V + F(t, )V + (1 X)(1 - 200 - 26y)| = O, (A11)

V(T, X% Y,¢) =0.
Notice thatV(tg, X, Y, ) = 0 for x < 0 so we restrict numerical computations 10y € (0, ) x R
(this is also an invariant set for the dynamics of the pro¢&ssY;)). We localize equation (A.11)
by choosing a rectangular regioR{n, Xmax] X [Ymin, Ymax] € (0, 00) X R. As in Subsection A.1, the
value ofV at the terminal time may be used as a boundary condition &stimx T. This seems
counterintuitive since/ is zero at timerT, but it is strictly positive (and growing whendecreases)
fory > 0 andt < T. We expected that choosing zero boundary conditions foloitedized equation
would lead to a smaller value &f than required. We tested this hypothesis in two ways. Fiest w
doubled the length of the intervalgn, Xmax] and [ymin, Ymax] @nd noticed that this leads to no change
of the computed value function fogy in the middle of the rectangle. Second, we applied boundary
conditions derived from asymptotic behavior of the valuaction asx — 0, 0 andy — *co. Results

were again identical.



After a change of variableg,= log(x), a localized version of (A.11) takes the form:

Ve + FL @V, + F(t (L - 20y — 26y)
+ SUPc[0.1res] [[a(,u —1) - L%V, + %azgzvzz] -0,

V(to, Zmin, ¥) = V(to, Zmax, ) = 0, (A.12)
V(th Z7yl"ﬂ|"|) = V(tO’ Zs Ymax) = 07
V(T,zy,¢) =0.

A.2.3. Implicit numerical scheme

Fix ¢ < 0. Using standard arguments ([18, Remark V.8.1], [39, R&r2dr) we show that (A.12)
satisfies the strong comparison property for viscositytemig and, hence, has a unique continuous
viscosity solutionV(-,y). Define uniform space grid®, ..., zv, wherezyg = Znin, Zv = Zmax, and
Yo, - - .» YL, Whereyg = Viin, YL = Ymax, and a uniform time grid, ..., N, Whererg = 0,7y = T. Let
0, = 71 — 2o, 6y = Y1 — Yo be the space discretization steps ane 71 — 7o be the time discretization
step. Denote by{‘j a discrete approximation ¥(t,, z, y;, ) and putv" = (Vii‘j).

Under (By)-(B3) the coefficients standing By, andVy in (A.12) are non-negative. Derivativds
andVy are, therefore, approximated with a forward differencertsuee monotonicity of a numerical

scheme. For a matrix of controla {) € [0, mmax] "M define a controlled discrete differential operator

28 j(u =)oz + (1 - 52)(ai,j)20'2

(Lavm = 207 Vi
N =28 j(u—r)o, - (2- 52)(ai,j)20'2V_n_

22 g
CH R
+ [ — . .
)

Fully implicit discretization of (A.12) takes the followgnform:

Vinjl—l _ Vn Vin V'n

— L + 1t &) She SIS +(1-200 - 20y))+ sup  (LAV") =0 (A.13)

T y [0, 7rax] MM
with boundary conditions
Vg =V =Vio=VL=V=0
fori =1,...,M,j=1,...,L,andn = 1,...,N. In a similar way as in Theorem A.1 we prove

convergence of the above scheme.

THEOREM A.2. Under assumptions (B;)-(Bs) the solution of the above discrete Hamilton-Jacobi-

Bellman equation converges uniformly to the solution of (A.12)asL,N,M — co.



| K=0 | K=1

N | [Wmin, Ymax] v value | [¥min, Ymex W value

10 -1.08131,-1.05193 -1.0528690 0.6833594.07332,-0.00263 -0.0608738 0.0488927
50 -1.07877,-1.05129 -1.0580779 0.988386D.06959, -0.00015 -0.0626881 0.0515996
100 -1.07848,-1.05128 -1.0591700 1.023126®.06917,-0.00004 -0.0622946 0.0518549
200 -1.07834,-1.05127 -1.0596893 1.0402411.06896,-0.00001 -0.0621028 0.0519749
500 -1.07826,-1.05127 -1.0599647 1.0504311.06883,-0.00000 -0.0619895 0.0520443
1000 | -1.07823,-1.05127 -1.0601576 1.053815DP.06879,-0.00000 -0.0619520 0.0520671
2000 | -1.07822,-1.05127 -1.0599977 1.0565558.06877,-0.00000 -0.0619333 0.0520784

Table A.3: Numerical approximations of the value functioat the initial timet, = 0 and the initial wealthx = 1 with
varying number of time stepd. In the computation we usé = 1,r = 0.05,4 = 0.1, 0 = 0.2, 8 = 0.06 andd = 3.

Trading strategies are constrained to the interval [Qryax =

andyp = -1,y = 3 with L = 100.

| K=0 | K=1
L | W value | W value
50 -1.0580075 0.8039931 -0.0619333 0.0376220
100 -1.0599977 1.0565555 -0.0619333 0.0520784
200 -1.0613756 1.0555008 -0.0619333 0.0519358
400 -1.0613756 1.0549085 -0.0619333 0.0518711
800 -1.0613756 1.0545861 -0.0619333 0.0518389

1). The state space gridig = -2, zy = 3 with M = 200

Table A.4: Numerical approximations of the value functioat the initial timet, = 0 and the initial wealthx = 1 with
varying number of space stepsn variabley. The bounds foys are independent df and equal to$1.07822 —1.05127]
for K = 0 and [-0.06877 0] for K = 1. In the computation we use = 1,r = 0.05,u = 0.1, = 0.2, 8 = 0.06 andd = 3.
Trading strategies are constrained to the interval[Qrax = 1). The state space gridis = -2, zy = 3 with M = 200
andyp, = —1,y. = 3. The number of time steps ¢ = 2000.

A.2.4. Algorithm and convergence

The algorithm for the solution of the above equation is agals to that in Subsection A.1.

Our experiments show that numerical results for the meaiaivee functional with the integral
term (A.9) exhibit large errors for small number of timest® see Table A.3. This is clearly at
odds with our findings for the terminal-time based functlonajood precision is obtained for the
number of time stepdl as low as 10. It can be explained by the fact that the fundtistualied in
this subsection is based on the integral over time — a demsedrid is crucial for the precision of
its computation. Another observation lends support to ¢kdgm. The results are fairly precise for
N as low as 50 ifK = 1 (the asymmetric functional), but the case= 0 requires at leadfl = 500
for acceptable precision. This is contrary to our findingstii@ terminal-time functionals, where the
symmetric caseK = 0) requires fewer timesteps. This difference might be dhudsethe fact that
the integrand is smaller fd€ = 1 (it might be even equal to 0 when the wealth of portfolio doet

exceed the benchmark) than #r= 0 and integration errors are hence less pronounced.



| K=0 | K=1
M| [Wmin Ymad v value | [Wmin: Ymax] v value

50 | -1.07886,-1.05127 -1.0595801 1.0558600.06683,-0.00000 -0.0601739 0.0478990
100 | -1.07843,-1.05127 -1.0600660 1.0563309.06866,-0.00000 -0.0618301 0.0514420
200 | -1.07822,-1.05127 -1.0599977 1.056555®.06877,-0.00000 -0.0619333 0.0520784
400 | -1.07811,-1.05127 -1.0599642 1.0566644.06860,-0.00000 -0.0617795 0.0521047
800 | -1.07806,-1.05127 -1.0599475 1.0567180.06847,-0.00000 -0.0616580 0.0520548

Table A.5: Numerical approximations of the value functioat the initial timet, = 0 and the initial wealthx = 1 with
varying number of space steps in variablez In the computation we use = 1,r = 0.05,u = 0.1, 0 = 0.2, 3 = 0.06
and@ = 3. Trading strategies are constrained to the intervdl][Qrmax = 1). The state space grid#s = -2, zy = 3 and
Yo = =1,y = 3 with L = 100. The number of time stepshis= 2000.

Table A.4 shows that there is little benefit from increasimgriumber of grid points in the variable
y above 100. A similar observation can be made with respedtémtimber of grid points in the
variablez (see Table A.5). Our experiments showed that there is amaptiatio of the grid step
sizes in variableg andy. The decrease of the grid step in one dimension brings ilittigrovement if
not accompanied by an adjustment in the other. We discovbetdin the example studied here, the

length ofy-step should be around twice the length of #retep.
B. Proofs

Proof of Theorem2.1. Fix ¢ € R. Define a Hamiltonian corresponding to equation (5) (see [36

Section 3.4] or [3, Section 1.4] for the notation)
HY 1[0, T) x Rx RY x S¥ > R U {0},
whereSt is the set of symmetrid x d matrices, by the formula
HY(t, x, p, M) = ig/lo{b(a, t,X)" p+ %tr(o-o-T(a, t, x)M)}.

The PDE (5) can now be written as:

Uto(t()? Xa 17[’) + H"D(t, Xv UX(t()v Xa 17[’)’ UXX(t()? Xa 17[’)) = O’

B.14
U(T, % %) = (1 - 209)h(x) - 6(h(x))?, -

whereUy, denotes the partial derivative with respect to tighandUy, Uy denote the first and second
derivative with respect ta.

The domain of the HamiltoniaHY is defined as

domHY) = {(t,x, p, M) € [0, T) x R x RY x S : HY(t, x, p, M) < oo}.
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For any fixed (, x, p, M) € [0, T) x RY x RY x S¢ and due to the continuity df ando with respect to
a € A and the compactness of the getwe have that squA{b(a, t, ) p+ str(co(at, x)M)} < oo,
Therefore the domain dfi¥ is the whole space. By Assumption {)Athe coefficientd ando are
Lipschitz continuous with respect toandt uniformly in a. This together with the continuity i§ and
o with respect taa and the fact that the set of contraisis compact implies thal? is continuous.
By [36, Proposition 4.3.2] or [3, Theorem 3.6](-, ) is a viscosity subsolution to (5). The value
function U (-, ¢) is of polynomial growth under Assumption ¢Aand due to the polynomial growth
for the cost functiorh (see [3, Lemma 3.3]). By [36, Proposition 4.3.1] or [3, Theor3.4],U(,, v)
is a viscosity supersolution to (5). Sintk:-, ) is both a viscosity subsolution and supersolution then
it is a viscosity solution to equation (5).

We shall now prove the uniqueness and continuity of solsttor{5). The value functiob (to, X, ¥)
is continuous atp = T due to the continuity and polynomial growthto&nd the estimate (D.4) in [18,
Appendix D]. The comparison theorem ([36, Theorem 4.4.9BoCorollary 4.7]) yield the continu-
ity of U(:, ) in the whole of its domain [0T] x RY and assure that (-, ) is a unique polynomially

growing continuous viscosity solution to (5). O

Proof of Theorem 2.2. (i): Takey 1, ¥» € R. By the definition ofU we have

%U(to, X, Y1) + %U(to’ X.¥2)
- Sggﬁ’E%,x,y{%((l ~ 26y1)h(Xr) - 6 (h(X7))%) + :_ZL((1 ~ 20 - e(h(XT))Z)}

= U(to, X, (v1 + ¥2)/2).

This proves convexity, which implies continuity with resp&o .

(ii): One can see thdt grows at most linearly, which implies that the mappgtg) = U (to, X, ¥)—
0y attains its maximum in a compact interval. By convexityhas well-defined directional deriva-
tives. Henceg also has well-defined directional derivatives and in a poimn¢re the maximum is at-
tained the left-hand side derivative is non-negative wihiteright-hand side derivative is non-positive.
We shall show thaé*g(y) > 0 for ¢ < ymin andd—g(y) < 0 for ¥ > Ymax. This will imply that the

conditions for maximum can only be satisfied in the intervakif, ¥ max]-

11



For the right-hand side differential &f we obtain the following lower bound:

U(tO’ X9l// + 6) - U(t()? X, 17[’)

d,U(to, x.¥) = I{is?a

0
i Yo% ¥) ~ Uto, .y +6)
510 0
-+ i SURien Egp (= 20y + 20(y + 6))h(X7)}
) 0
= = SUpE, (20n(X7))
= 20 min.

Therefore 9*g(y) > 20¢nin — 200 = 20(Yin — ¥), anda*g(y) > 0 wheny < Yin.

The left-hand side differential df is bounded from above in a similar fashion:

U(tO, X, lﬁ) - U(t09 X, lﬁ - 6)
0
< lim SUR,ea Ef x{( = 20 + 20(y — 6))h(X1)}
510 0

= SUPE, | — 20h(Xr)}
aeA

6¢U (th X? l//) = Ig?a

This implieso~g(¥) < 200max — 200 = 20(Ymax — ) andd—g(y) < 0 wheny > ¢pax. O

Remark to the proof of Theorem 2.2. Formulas forymin andymax can be obtained directly from the
duality relationship (4) provided that for eagtthere exists an optimal strategy maximizldo, x, ).

Indeed, ify* maximizes (4) and* is an optimal strategy fdd (to, X, ¥*) then
y* = —Ef  {h(Xr)} € | - SupEg ((h(Xr)}, - inf EY ({h(Xr)}].
aeA aeA
The original proof of Theorem 2.2 does not require the eristeof optimal strategies. O

Proof of Theorem 2.3. Fix ¢ € R. We rewrite (10) in a canonical form:

_\7to(t07 )’2’ lﬁ) - Hw(t )’za \7)?(.[09 )’2’ w)’ \7)?)?(.[07 )’2’ lﬁ)) = Oa
V(T, %) =0,

wherex = (x,Y), the HamiltonianH? is given by

HY(t, (x.y). B. M) = sup[bu £ %) p + Str(oo (ut OM)
ueA

+ (1 - 20y - 20y + py) f(u, 1, %)),

12



with p = (p, py) € RY x R and M is obtained fromM by removing the last row and column. The

domain of the Hamiltonian is defined as
domHY) = {(t, %, B, M) € [0, T) x R4 x RHL 5 ST HY(t, %, B, M) < o).

The assumptions of Lipschitz continuity and linear growdghthe drift coefficientstf and f) of the
extended process (9) and diffusion coefficien{Assumptions (A) and (A;)) implies thatHY is
continuous and its domain is the whole space. [36, Propos#i3.2] or [3, Theorem 3.6] imply that
V(-,¢) is a viscosity subsolution to (10). By virtue of [3, Lemm&Jthe value functionV/(-, ¢) is
of polynomial growth because of Assumptiongjand the linear growth of the running cost function
f. By [36, Proposition 4.3.1] or [3, Theorem 3¥]-,¢) is a viscosity supersolution to (10). Since
V(-,¥) is both a viscosity subsolution and supersolution thematviscosity solution to equation (10).
In order to show uniqueness, we need continuity of the valnetfonV(to, X, y, ) at the terminal
timety = T. Indeed, function/(-, ) is continuous aty = T due to the Lipschitz continuity it x and
linear growth inx of f, b ando. The comparison theorem [36, Theorem 4.4.5] or [3, Corplar]
yield the continuity ofV/(-, ) in the whole of its domain [0r] x RY x R and assure that(-, ¢) is a
unigue polynomially growing continuous viscosity solutito (10).

O

Proof of Theorem 2.4. Stochastic control problem (7) is a special case of the pro3) with the
state space (9) arf{x,y) = y. Theorem 2.2 implies assertion (iii) and the first part ofeassn (i).
Monotonicity of V with respect tay is immediate.

(i): We have

.
V(to, X, ¥, ¢1) = V(to, X, Y, ¢2) < sup{Ze(wz - wl)E%,x,y{ j: f(at, t, Xo) dt}}

a€EA

]
< 200z - vl SUPEL | [ IFan t X))
aeA to

Under assumption (4, formula (D.5) in Fleming and Soner [18] implies that thesést a constant
C; such that for anyr € A

EZ . sup [IX?} < Co(1+ (IXI1?). (B.15)
tE[to,T]

13



Linear growth off allows us to write

T T
o [ 1ot} < B [ el + It
0

to
< KZ(T - tO) E%,x,y{l + sup ”Xt“}
te[to,T]

< Ka(T = to) (1 + (EY 1yt sup [IXIP)Y?)
tE[to,T]
< Ko(T —to) (1 + (C1 + CalIXIP)Y?)

< Co(1+IX)

for some constar,. In the above derivation, the third inequality follows fothe Holder inequality,

and the fourth — from (B.15). Hence,

V(to, %, ¥, 1) — V(to, X, Y, ) < 26r2 — yra|Ca(L + [IX]).

The corresponding lower bound follows similarly. This pes\(ii) with C = 26C.

O

Proof of Lemma 3.1. The values/in andymax are determined by the following value functions

V(to, X) = SUPE] ((Xre'T — K&'M)*, V(to, X) = inf ET (Xre'T - Ke’T)".
neA - meA

Standard theory of optimal control (see, e.g., Fleming aode§ [18]) implies that the value
function v(to, X) is a unique continuous viscosity solution with polynonmgabwth to the following
HJB equation:

Vi, + INfacio ey (Al - 1), + 322X20 2y, } = 0,
{\_/(T, X) = (xéT — KefT)*.
A direct verification shows that
V(to, X) = (€ Tx - &TK)" (B.16)

solves this equation (it is then easy to check that an optimatrol isz = 0). Indeed, fottg € [0, T],
x> 0 andx # x* := éf~TK the functionv is of the clas<C®?. The HJB equation is satisfied then in
a classical sense and, hence, in the viscosity sense. Tifieatern of the viscosity solution property
at (to, X*) is more involved. The functiom is a viscosity subsolution aty( X*) because the set of test
functions is empty at this point (see [36, Definition 4.2.4]3 Definition 2.1]). For the proof that
is a viscosity supersolution take a test functipe C1? such that(to, X*) = V(to, X*) and¢ < v. We

have to show that

$io(to. X°) + {a(u = r)xpx(to x") + %azxza%xx(to, x)} <0.

inf
[Ovﬂmax]
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The mapping — ¢(t, X*) has a local maximum ag since the functiory is independent of the first
argumentfp (see (B.16)). This implies that,(to, X*) = 0. The second term is non-positive because
the expression under infimum equals 0 o= 0. This completes the proof of the supersolution
property ofv.

Determination of the optimal strategy furis more complicated. Lt : R - R, &£ > 0, be a
family of twice continuously differentiable non-decraagiconvex functions approximatirtyin the

supremum norm, i.ejlh — h?||s, < &.1° Define

0°(t, X) = Efhe(X7)l, x>0, tel0,T],

o, X

where byrmnax We denote the control equal identicallytgax. Equivalently,

0°(t, X) = E{h®(X&r-1,)}s

where &) satisfies the following stochastic differential equation

dét = & mmax((u — 1) dt + o dWp), &=1

This reformulation implies thai®“is non-decreasing ir. To prove convexity ot in x, takexy, xo >
0:

0 (to, 1) ; 0 (o, X2) { h*(Xé7-t,) + 3 h (XoéT- to)}

{hg( 2z X2§T to)} =0 (to, a er XZ),

I\/

where the inequality follows from the convexity lof and the positivity oft_y,.
Theorem 2.9.10 in Krylov [27] implies thaf is aC%? solution with a linear growth of the fol-

lowing PDE problem:

0 + madu — X0 + 372, x20 20, = 0,
{ © (B.17)

¢ (T, X) = h¢(X).
We shall prove that

. 1 1,
sup {a(u — n)xi5 + 588020y} = mma(u — 1)XU + SrhaCo? .
2€[0.7tma] 2 2

15For a continuous functiof, the supremum norrf||.. is defined in the following way

[Ifll = sUAf(X): xe R}

15



The derivative, with respect & of the mapping under supremum equals
(u — 1)X0E + ax?or?(E,.

This derivative is non-negative far > 0. Indeed, the convexity aff“implies (, > 0. Sincel® is
non-decreasing i, we havel > 0. Assumption (B) givesu —r > 0. Recall also thakx > 0. Thus,
the supremum is realized at= mmay. 16

Using above observation we conclude ttrasatisfies

~ ~ 1,22, .20 —
08+ SURLc(0 g {80 — 1)X0E + 38250205, = O,

(T, X) = he(X).

(B.18)

Theorem 3.5.2 in Pham [36] implies that iS the value function corresponding to the following
optimal control problem

[0, T] % (0, %) > (to, X) > SUPEE , h*(X)
neA

and the optimal control is = mmax.

Take a controlr € A. For anye > 0 we have

EF (h(Xr) < EL WP(Xr) + & < (P(to, X) + & = Ef"hP(Xr) + & < EMh(Xr) + 25.

,X

The arbitrariness of implies that
Ef .« h(X7) < E@‘;X h(X7).
Hence
V(to, X) = SUPEY,  h(Xr) = E{Teh(Xr).
TeA
We infer that an optimal strategy is, therefore, constant,ryax, and
V(to, X) = E(Xeﬂrmlx(#—r)(T—tO)—M(T—t0)+ﬂn1ax0'(\’\"r—\’\/to)erT _ KeBT)Jr.

This last expression can be computed in a similar way as tbe pfa call option in the Black-Scholes

model (see, e.g., Appendix to Chapter 13 in Hull [24]). O

181f 42 = ¢, = 0 or &, = u —r = 0 then the supremum is attained at any point of the intervai,{Q] so, in particular,
atmax. Otherwise, the derivative of the mapping under supremugnaater than zero, which implies that the maximum is
realized at = mmay.
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Proof of Theorem A.1. It is easy to verify that assumptions (2.1)-(2.2) of [39] aatisfied. Assump-
tion (3.1) of [39] follows from the monotonicity of the scherwhich is ensured by the use of forward

differencing and assumptions {B(B3). We conclude by applying [39, Theorem 4.1]. O

Proof of Theorem A.2. The proof follows similar lines as the proof of Theorem A.1. O
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