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In recent years several countries have set up policies that allow exchange of kidneys between two or 

more incompatible patient–donor pairs. These policies lead to what is commonly known as kidney 

Kidney transplants are essential for th
tients suffering from kidney failure, but fi
can be difficult because of their scarcity as well as blood or tissue In recent years kidney exchange programs brought n
exchange programs.
The underlying optimization problems can be formulated as integer programming models. Previously 

proposed models for kidney exchange programs have exponential numbers of constraints or variables, 
which makes them fairly difficult to solve when the problem size is large. In this work we propose 
two compact formulations for the problem, explain how these formulations can be adapted to address 
some problem variants, and provide results on the dominance of some models over others. Finally we 
present a systematic comparison between our models and two previously proposed ones via thorough 
computational analysis. Results show that compact formulations have advantages over non-compact 
ones when the problem size is large.
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neys for transplantation. However, they only met a tiny fraction 
of the demand and alternative transplantation policies considering 
living donors progressively stepped forward. Within these policies, 
if a patient had someone willing to donate a kidney and the pa-
tient–donor pair was compatible, then the transplant could be 
done. However, if a patient and the prospective donor were not
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key aspect is to organize exchanges between a number of suc
pairs so that patient P in one pair receives a kidney from donor 
in the other pair. Fig. 1 (left) illustrates the simplest case with onl
two pairs (P1, D1) and (P2, D2), where patient and donor in each pa
are incompatible (dotted lines represent incompatibilities). How
ever, P1 is compatible with D2 and P2 is compatible with D1. Prev
ously, when exchanges between pairs were not allowed, n
transplants could be performed in this situation. Within the evolv
ing frameworks of new programs, exchanges between such pair
are allowed and the two transplants can be performed (arrows rep
resent the exchange in the figure).

Kidney exchange programs have already been introduced i
many countries, including South Korea [20], Switzerland [37], Tur
key [15], Romania [21], The Netherlands [8,9,19], UK [7,17,23] an
the US [35,36,2,39]. Very recently, similar programs have also bee
set up in other countries: in 2010, Canada, Portugal, Australia, an
New Zealand kicked-off their own programs while Spain initiate
its program in 2011.

The objective for optimization in a kidney exchange program 
generally to maximize the collective benefit for a given pool o

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.ejor.2013.05.025&domain=pdf
http://dx.doi.org/10.1016/j.ejor.2013.05.025
mailto:mfconstantino@fc.ul.pt
mailto:xenia.klimentova@inescporto.pt
mailto:xenia.klimentova@inescporto.pt
mailto:aviana@inescporto.pt
mailto:abdur.rais@dps.uminho.pt
mailto:abdur.rais@dps.uminho.pt
http://dx.doi.org/10.1016/j.ejor.2013.05.025
http://www.sciencedirect.com/science/journal/03772217
http://www.elsevier.com/locate/ejor


Fig. 1. A 2-way exchange (left) and a 3-way exchange (right).
incompatible pairs, usually measured by the number of possible
kidney exchanges [36,8] — in the entirety of the paper we will refer
to this optimization problem as the Kidney Exchange Problem (KEP).
Although such an optimal solution is typically desirable, there are
other factors which may also be considered in some situations; e.g.
maximize the weighted sum of kidney exchanges [23] and/or the
quality-adjusted life expectancy of transplant candidates [42].

One of the crucial questions for the KEP is the definition of a
bound on the number of pairs that can be involved in an exchange.
When a kidney exchange involves only two donor–recipient pairs
as illustrated in Fig. 1 (left) it is commonly known as a 2-way or
2-cycle exchange. Basically this is an alternating directed cycle of
two donors and two recipients in which the donor from one incom-
patible pair gives one kidney to the recipient in the other pair and
vice versa. One can note that the size of the exchange cycle can be
increased. For example, the 3-way exchange presented in Fig. 1
(right) allows three patients to get transplants instead of two; solid
lines here represent compatibilities and arrows represent the ac-
tual exchanges that derive maximum collective benefit.

Generally k-cycle exchanges with k P 3 can be better for opti-
mization as they have the potential for increasing the options for
involving more incompatible pairs in an ‘‘exchange cycle’’. If there
is no bound on the number of pairs in an exchange cycle, i.e., k is
not fixed, the problem turns into an assignment problem and can
be solved in polynomial time [2]. Ideally all operations involved
in a cycle should be performed simultaneously so that donors re-
main committed when the incompatible partners receive other do-
nors’ kidneys. Therefore for a solution to be practical and
manageable, the length of the cycles should be restricted for at
least two main reasons. First, the number of personnel and facili-
ties needed for simultaneous operations of donors and patients
raise several logistic issues that can make it prohibitively inconve-
nient to handle too many operations simultaneously [2]. Second,
because last-minute tests on donors and patients can bring out
new incompatibility issues that can cause a kidney donation and
related exchanges in the cycle to be canceled, it is preferable for
the cycles to be shorter.

For a given pool of donor–recipient pairs, a 2-cycle exchange
can be seen as a task of pairwise compatibility matching, and Ed-
mond’s maximum cardinality matching algorithm [11] can provide
an optimal solution in polynomial time. The problem with k-cycle
exchange certainly is a generalized model and much more interest-
ing for practical applications. However, the associated problem is
known to be NP-complete for k P 3 and difficult to solve efficiently
when a problem instance is large [2].

Current work on solving the KEP focuses mostly on Integer Pro-
gramming (IP) formulations. Two IP models, referred to in this pa-
per as the ‘‘edge formulation’’ and the ‘‘cycle formulation’’, were
proposed in [34]. Despite the very good results reported for the cy-
cle formulation in [2], the question of finding a compact formula-
tion that has a number of variables and constraints bounded by a
polynomial in the size of the problem (i.e., on the total number
of pairs in a donor–recipient pool), has, up until now, remained
open: the cycle formulation presents an exponential number of
variables, while the edge formulation has an exponential number
of constraints.

This paper focuses on mathematical modeling aspects of the
KEP: we propose two new compact formulations for the problem.
Moreover we investigate the relationships between different for-
mulations and provide some proofs of dominance of one formula-
tion over the other in the sense of values of upper bounds for
optimal solutions obtained with the linear relaxations (LP relax-
ations) of each formulation. Finally, a systematic comparison of
these formulations with the two previously reported ones is pre-
sented by thorough computational analysis.

The paper is organized as follows. Following this introduction
we review in Section 2 relevant literature with respect to variants
of the KEP and solution methods. In Section 3 the problem state-
ment and the known IP models are presented. The new compact
formulations for the KEP are introduced in Section 4. In Section 5
the adaptation of formulations for variants of the KEP is discussed.
The interrelations of upper bounds of linear relaxations for the pre-
sented IP models are investigated in Section 6. Section 7 reports
the computational analysis and conclusions on the effectiveness
of each formulation. Finally Section 8 provides conclusions and
directions for future work.
2. Literature review

The concept of kidney exchange program for incompatible pa-
tient–donor pairs was first promoted in 1986 in [27] as an alterna-
tive to deceased donor programs. Since then, several models for the
KEP have been proposed that differ mostly on type of exchanges al-
lowed, matching requirements and optimization objectives. For
ethical issues concerning the programs, readers may see [30,31];
an overview of contemporary ideas and challenges can be found
in [40,12]. In this section we survey KEP variants as well as optimi-
zation solution methods used to attack the problem.

2.1. Problem variants

The basic variant of the KEP is a 2-exchange mechanism involv-
ing two patients in two distinct pairs such that each patient is
incompatible with the associated donor [22,18,36] (see Fig. 1
(left)). The notion can be generalized to a k-exchange (k P 3) in
which up to k pairs can be involved in the exchange cycle [8,2,7].

Variants of the k-exchange problem can include altruistic donors;
i.e., donors that are not associated to any patient, but willing to do-
nate a kidney to someone in need. Non-directed (ND) exchanges oc-
cur when an altruistic donor gives a kidney to a patient in a kidney
exchange program and the recipient’s donor is ‘‘dominoed’’ to the
next compatible patient on the deceased donor waiting list, or is
used to add another incompatible pair to the chain [25,13,32].
The maximum size of a chain is determined by national or regional
programs.

Contrary to the above mentioned problems where simultaneity
of exchanges is considered, Non-simultaneous Extended Altruistic
Donor (NEAD) chains allow non-simultaneity of exchanges
[10,28,4,12]. Unlike the conventional form of non-direct donation,
where the size of the chain is limited, the cascade in NEAD may
theoretically never end. The first donor who is incompatible, and
whose related patient receives a kidney from the altruistic donor,
gives his kidney to someone else with whom he is compatible.
The recipient’s incompatible donor can then do the same, and so
on. By not assigning a kidney to a patient in the deceased donor list
the cascading donor chain may continue indefinitely, unless a do-
nor whose related recipient has already been transplanted drops
out of the program.



The inclusion of compatible pairs in kidney exchange programs
defines one more variant of the KEP [14]. In this variant the com-
patible pair can be involved in an exchange only in the case that
the patient of this pair benefits from being in the pool (e.g. receive
a ‘‘better’’ kidney than he/she would have received from his/her
compatible donor).

Another variant is the multiple donors case, when one or more
patients have multiple donors associated. For such patients only
one of their multiple donors can be selected to create an exchange
cycle [2]. The donor selected is the one that would lead to maxi-
mum collective benefit.

All variants of KEP outlined above consider the problem as a sta-
tic or offline problem. But the problem can also be dynamic (online)
when isolated patients, patient–donor pairs, and altruistic donors
appear and expire over time [38,5,42,41,3].

2.2. Solution methods

The complexity of the k-exchange problem was investigated
in [1,2,7]. In [1,2] it is shown that for a given graph G and
k P 3 the problem of deciding if G admits a perfect cycle cover
containing cycles of length at most k is NP-complete. The proof
uses a reduction from the 3D–matching problem which is NP-
complete. In [7] the authors proved the APX-completeness of
the problem of finding a maximum size exchange involving only
2- and 3-cycles. In other words they claim that the 3-exchange
KEP do not admit any polynomial-time approximation scheme,
unless P = NP.

Edmonds’ algorithm [11] for maximum cardinality matching
was followed by [36] and [33] for the 2-exchange problem. When
k P 3 a natural and perspective way for attacking the KEP is
through IP models. Two different integer programs were used in
[2] and [34]: the edge and the cycle formulations. In [2] a sketch
of a proof is presented showing that the cycle formulation provides
a better upper bound of the optimal solution with LP relaxation
than the edge formulation. In the same work a cutting plane meth-
od was implemented for the edge formulation while a column gen-
eration method with branch-and-bound was designed for the cycle
formulation. The cycle formulation is used in [23] to solve the KEP
in UK. The program in UK allows direct and altruistic exchanges
and considers a set of criteria that should be pursued in a hierarchi-
cal way.

Results related to the potential for developing NEAD strategy
were presented in [28]. In [13] the authors created a pool of incom-
patible pairs based on the statistical data for blood-type, positive
cross-matching probabilities, and others, and looked for 2-ex-
changes. They implemented Monte Carlo simulations and calcu-
lated the maximum number of transplants under different
scenarios when including ND donors and NEAD chains and con-
cluded that NEAD chains are not clearly superior in terms of the
number of transplants achieved. The authors of [4] presented some
simulations similar to [13], but allowing long chain segments. With
this additional flexibility they concluded that NEAD chains lead to
more transplants. Some theoretical and computational analysis of
the efficacy of chains initiated by altruistic donation are provided
by [10].

The possibility of opening the pool of kidney exchange pro-
grams to compatible pairs has been addressed by, e.g. [29] and
[14]. A mixed pool of compatible and incompatible pairs was sim-
ulated in [14], the results show the benefits of such policy in terms
of the increase in probability of matching incompatible patients
that might otherwise not get a compatible donor. But the inclusion
of compatible pairs in a pool of incompatible pairs is a controver-
sial topic. Some of the ethical aspects associated with it are pointed
out in [29,32].
Some results on the dynamic variant of KEP are reported in
[38,5,42]. In [38] the author study how exchanges should be con-
ducted through a centralized mechanism in a dynamically evolving
agent pool with time and compatibility based preferences. They
derive dynamically efficient 2-way and multi-way exchange mech-
anisms that maximize total discounted exchange surplus. In [5],
KEP is considered an online problem in which patient–donor pairs
and altruistic donors appear and expire over time. The authors
studied trajectory-based online stochastic optimization algorithms
for this problem. They identified tradeoffs between different
parameters and developed an experimental methodology for set-
ting them. The work in [42] considers KEP as a dynamic resource
allocation problem with three objectives: maximize the quality-
adjusted life expectancy of transplant candidates (clinical effi-
ciency), and minimize two measures of inequity – the first measure
is a linear function of the likelihood of transplantation of the vari-
ous types of patients and the second is a quadratic function that
quantifies the differences in mean waiting times across patient
types. The dynamic status of patients is modeled by a set of linear
differential equations.

3. Problem definition and formulation

Graph theory can provide a natural framework for representing
the KEP models. Let G(V,A) be a directed graph with the set of ver-
tices V = {1, . . . , jVj} consisting of all incompatible patient–donor
pairs and the set of arcs A designating compatibilities between
the vertices. Two vertices i, j 2 V are connected by arc (i, j) if the pa-
tient in pair j is compatible with the donor in pair i. To each arc is
associated a weight wij, (i, j) 2 A. If the objective is to maximize the
total number of transplants wij = 1, "(i, j) 2 A.

Fig. 2 illustrates an example where four incompatible pairs are
considered, the compatibility between pairs being represented by
weighted arcs. An exchange is defined by a set of disjoint cycles
in the whole graph and it is feasible if every cycle length does
not exceed a given limit k. In Fig. 2 for k = 3 the possible cycles
are 1–2–3–1 and 3–4–3. However these cycles are not vertex-dis-
joint as they have vertex 3 in common.

If only 2-way exchanges can be considered, the maximum num-
ber of transplants in this pool will be two (between pairs 3 and 4).
However, if up to three pairs can be involved in an exchange cycle
the optimal matching for this example will be three (donor 1 gives
a kidney to patient 2, donor 2 to patient 3, and donor 3 to patient
1).

Definition 1. The Kidney Exchange Problem can be defined as
follows:

Find a maximum weight set of vertex-disjoint cycles having length
at most k.

One of the most effective ways to deal with it is using Integer
Programming. Below we introduce the two formulations previ-
ously proposed in the literature for this problem: the edge and cy-
cle formulations.
Fig. 2. KEP graph.



3.1. Edge formulation

In the edge formulation, a variable xij is associated with each arc
(i, j) 2 A in the graph G(V,A), defined as follows:

xij ¼
1 if patient of pair j gets a kidney from donor of pair i;

0 otherwise:

�

The edge formulation is given by:

Maximize
X
ði;jÞ2A

wijxij ð1aÞ

Subject to
X

j:ðj;iÞ2A

xji ¼
X

j:ði;jÞ2A

xij 8i 2 V ð1bÞ
X

j:ði;jÞ2A

xij 6 1 8i 2 V ð1cÞ
X

16p6k

xipipþ1 6 k� 1 8paths ði1; i2; . . . ; ik; ikþ1Þ ð1dÞ

xij 2 f0;1g 8ði; jÞ 2 A: ð1eÞ

The objective function (1a) maximizes the weighted sum of the
exchange – in the case of unitary weights, it corresponds to maxi-
mizing the total number of transplants. Constraints (1b) assure
that patient i receives a kidney iff donor i donates a kidney. Con-
straints (1c) guarantee that a donor can only donate one kidney
and constraints (1d) enforce the cycle-length: to exclude cycles lar-
ger than k, we need to make sure that every path of length k arcs
does not have more than k � 1 arcs in a feasible exchange. This
constraint requires all paths of length k to be considered explicitly
in the model. In general the number of such paths can grow expo-
nentially with k.

3.2. Cycle formulation

An alternative IP model for the edge formulation is the so called
cycle formulation. Let CðkÞ be the set of all cycles in G with length
at most k. We assume that a cycle is an ordered set of arcs. Define a
variable zc for each cycle c 2 CðkÞ:

zc ¼
1 if cycle c is selected for the exchange;
0 otherwise:

�

Denote by V(c) # V the set of vertices which belong to cycle c.
The model can be written as follows (where wc ¼

P
ði;jÞ2cwij):

Maximize
X

c2CðkÞ
wczc ð2aÞ

Subject to
X

c:i2VðcÞ
zc 6 1 8i 2 V ð2bÞ

zc 2 f0;1g 8c 2 CðkÞ: ð2cÞ

In the case of unitary weights, wc equals the number of edges in
c, i.e., the number of transplants associated with cycle c. The objec-
tive function (2a) maximizes the weighted number of transplants.
Constraints (2b) ensure that every vertex is in at most one of the
selected cycles (i.e., each donor may donate, and each patient
may receive only one kidney). Compared to the edge formulation,
the difficulty with this formulation is induced by the exponential
number of variables. Indeed, the number of cycles can grow expo-
nentially with k.
4. New compact formulations

As previously noted the number of constraints or variables in
the formulations that had been proposed up to now for the KEP
can grow exponentially with k. It is known that such formulations
can sometimes provide better bounds with linear relaxation than
‘‘compact’’ ones [26] but computationally the size of the problem
may become a bottleneck as solution procedures can take long
time for solving large problem instances.

We present two new formulations for the problem: the edge-
assignment formulation and the extended edge formulation. Each of
these formulations is compact, i.e., both the number of variables
and constraints are bounded by a polynomial in the size of the
problem, given by the number of pairs. In the edge-assignment for-
mulation the path constraints represented by (1d) are reformu-
lated using additional assignment variables. In the extended edge
formulation an extra index will be introduced in the variables xij

for allowing the cycle cardinality constraints to be created in a sim-
ple way. In the next couple of sections we present the IP models. A
discussion on their downsizing into ‘‘reduced’’ formulations is also
provided.

4.1. Edge-assignment formulation

Let L be an upper bound on the number of cycles in any solution.
For instance, a simple upper bound is L = jVj as the number of cy-
cles cannot exceed the number of vertices. Let each cycle in the
solution be indexed by l, 1 6 l 6 L and denote by V(l) # V the set
of vertices in cycle l. Define the following assignment variables:

yl
i ¼

1 if node i belongs to cycle l;
0 otherwise:

�

With these additional variables, we can write the cycle cardinal-
ity constraints as:X

i

yl
i 6 k 8l 2 1; . . . ; L: ð3aÞ

It is necessary now to ensure that each node i is properly as-
signed to a cycle l, and this is done using the following constraints:X

l

yl
i ¼

X
j:ði;jÞ2A

xij 8i 2 V ð4aÞ

yl
i þ xij 6 1þ yl

j 8ði; jÞ 2 A; 8l 2 1; . . . ; L ð4bÞ
yl

i 2 f0;1g 8i 2 V ; 8l 2 1; . . . ; L: ð4cÞ

Constraints (4a) ensure that node i is in a cycle
P

j:ði;jÞ2Axij ¼ 1
� �

if and only if there is an assignment of i to some l
P

ly
l
i ¼ 1

� �
. Con-

straints (4b) state that if node i is in cycle l yl
i ¼ 1

� �
and donor i

gives a kidney to recipient j (xij = 1) then node j must also be in cy-

cle l yl
j ¼ 1

� �
.

The edge-assignment formulation is composed of constraints
from the edge formulation – (1a), (1b), (1c) and (1e) – together
with the constraints (3a), (4a), (4b) and (4c).

For the formulation above, for a given index l, the set of nodes i
2 V(l) giving yl

i ¼ 1 could in fact belong to more than one vertex-
disjoint simple cycle (see e.g. Fig. 3), but the number of arcs in
all of these cycles are guaranteed to have no more than k arcs.

Furthermore, the edge-assignment formulation allows for mul-
tiple equivalent solutions, i.e. has symmetry. If there is a solution
having p cycles represented by indices l1, . . . , lp, other orderings
of p indices may correspond to the same solution as exemplified
in Fig. 4. A solution consisting of cycles between pairs 2, 3 and 4
and pairs 1 and 5 can be obtained with different indexing l for cy-
cles 1 and 2.

The symmetry can be a problem because, as stated in [24],
‘‘Even for relatively modestly sized problems, ILPs with large sym-
metry groups are difficult to solve using traditional branch-and-
bound or branch-and-cut algorithms’’. One way to avoid the sym-
metry of the edge-assignment formulation is by representing each
cycle by its node with the lowest index. In other words, for L = jVj, a
cycle having nodes i1, . . . , ir is represented by index l = min{i1,



Fig. 3. Index l can represent more than one cycle. For e.g. l = 1, the solution with
y1

1 ¼ y1
5 ¼ y1

2 ¼ y1
3 ¼ y1

4 ¼ 1, x15 ¼ x51 ¼ x23 ¼ x34 ¼ x42 ¼ 1 and all other variables
equal to 0 satisfies all the constraints of the edge-assignment formulation for k = 5.
. . . , ir}. In this case only variables yl
i with i P l are necessary and

this can be enforced by restricting the variables yl
i to indices

1 6 l 6 i 6 L and by adding constraints:

yl
i 6 yl

l 8i 2 V ; l ¼ 1; . . . ; L; i > l ð5aÞ

Note that here and below we eliminate variables by fixing them to 0
(i.e. yl

i ¼ 0;8i 2 V ; l ¼ 1; . . . ; L; i 6 l).

4.1.1. Reduced edge-assignment formulation
To tighten the model further, in some situations the variable yl

i

can be eliminated if l and i cannot be in the same cycle. LeteV l ¼ fi 2 V : i P lg and dl
ij denote the shortest path distance in

terms of number of arcs in graph G from i to j for i; j 2 eV l such that
the path passes only through vertices of set eV l. Let dl

ij ¼ þ1 if there
is no such path from i to j. For a given i if dl

li þ dl
il > k, then there is

no cycle with length k or less containing both nodes l and i. In this
case the variables yl

i need not be considered in the model. More
precisely, for each vertex l 2 V, let us build the set of vertices
Vl ¼ i 2 V ji P l and dl

li þ dl
il 6 k

n o
. It can happen that for some

l 2 {1, . . . ,L} Vl = ;. Denote by L# f1; . . . ; Lg the set of indices l such
that Vl – ;. The reduced edge-assignment formulation can now be
represented by Eqs. 6a, (6b)–(6i).

maximize
X
ði;jÞ2A

wijxij ð6aÞ

subject to
X

j:ðj;iÞ2A

xji ¼
X

j:ði;jÞ2A

xij 8i 2 V ð6bÞ
X

j:ði;jÞ2A

xij 6 1 8i 2 V ð6cÞ
X
i2Vl

yl
i 6 k 8l 2 L ð6dÞ

X
l2L:i2Vl

yl
i ¼

X
j:ði;jÞ2A

xij 8i 2 V ð6eÞ

yl
i þ xij 6 1þ yl

j 8ði; jÞ 2 A; i 2 Vl; 8l 2 L ð6fÞ

yl
i 6 yl

l 8i 2 Vl; l 2 L ð6gÞ
yl

i 2 f0;1g 8i 2 Vl;8l 2 L ð6hÞ
xij 2 f0;1g 8ði; jÞ 2 A ð6iÞ
Fig. 4. Symmetry in edge-assignment formulation. The complete solution for k = 3 wi
indexing l. For e.g. l = 1 for Cycle 1 and l = 2 for Cycle 2 with y1

1 ¼ y1
5 ¼ y2

2 ¼ y2
3 ¼ y2

4 ¼ 1 an
other yl

i ¼ 0.
4.2. Extended edge formulation

Consider L copies of the graph G, and let l be the index of a copy.
Recall that L is an upper bound on the number of cycles in a solu-
tion. In each copy l at most k arcs can create a cycle and each node
i 2 V can belong to at most one such cycle. This can be captured by
‘‘cycle cardinality constraints’’ in a new model using the variables
xl

ij. Let

xl
ij ¼

1 if arc ði; jÞ is selected to be in copy l of the graph;
0 otherwise:

�

The extended edge formulation is given by:

maximize
X

l2f1;...;Lg

X
ði;jÞ2A

wijxl
ij ð7aÞ

subject to
X

j:ðj;iÞ2A

xl
ji ¼

X
j:ði;jÞ2A

xl
ij 8i 2 V ;8l 2 f1; . . . Lg ð7bÞ

X
l

X
j:ði;jÞ2A

xl
ij 6 1 8i 2 V ð7cÞ

X
ði;jÞ2A

xl
ij 6 k 8l 2 f1; . . . Lg ð7dÞ

xl
ij 2 f0;1g: 8ði; jÞ 2 A;8l 2 f1; . . . Lg ð7eÞ

The objective (7a) is to maximize the total weight of the arcs ta-
ken from all copies of the graph. Constraints (7b) state that in each
copy l of the graph, the number of kidneys received by patient i is
equal to the number of kidneys given by donor i. To make sure that
a donor/patient intervene only once, constraints (7c) ensure that a
node can only be selected in at most one copy of the graph. Con-
straints (7d) state that at most k edges can be used from each copy
of the graph. This essentially prevents the cycles from becoming
larger than k as each copy of the graph allows only cycles of length
k or less. There can be more than one cycle in a copy of the graph
but the total number of edges in all the cycles is at most k.

As with the edge-assignment formulation the extended edge
formulation also has symmetry. To avoid multiplicity of solutions
a similar approach can be used here as well. If a copy l of the graph
provides a cycle for some solution, then node l must be in this cycle
and all other nodes must have indices larger than l. Hence, all vari-
ables xl

ij such that i < l or j < l may be discarded from the model, and
constraints similar to (5a) can be added to set l as the lowest index
of all nodes in the cycle:

X
j

xl
ij 6

X
j

xl
lj 8i > l: ð8Þ
4.2.1. Reduced extended edge formulation
Along the same lines as the elimination procedures for the vari-

ables yl
i proposed for the edge-assignment formulation (see Sec-

tion 4.1), one may also be able to eliminate variables xl
ij in the

extended edge formulation. If there is no cycle of size at most k
th x15 = x51 = x23 = x34 = x42 = 1 and all other xij = 0 can be obtained with different
d vice versa l = 2 for Cycle 1 and l = 1 for Cycle 2 with y2

1 ¼ y2
5 ¼ y1

2 ¼ y1
3 ¼ y1

4 ¼ 1, all



Fig. 5. Inclusion of altruistic donor with m = 1 and n = 2. Node 1 is the altruistic
donor, and dashed arcs (2,1) and (3,1) are the arcs to the altruistic donor’s dummy
patient.
containing both node l and an arc (i,j) with i P l, j P l, then variable
xl

ij can be set to zero or simply eliminated from the model.
Summarizing, the application of the elimination procedures

leads to the construction of a subgraph Gl = (Vl,Al) for each index

l 2 L, with Vl;L and dl
ij as defined in Section 4.1 and

Al ¼ ði; jÞ 2 Aji; j 2 Vl and dl
li þ 1þ dl

jl 6 k
n o

. With this notation

the reduced extended edge formulation is given as follows.

maximize
X
l2L

X
ði;jÞ2Al

wijxl
ij; ð9aÞ

subject to
X

j:ðj;iÞ2Al

xl
ji ¼

X
j:ði;jÞ2Al

xl
ij 8i 2 Vl;8l 2 L; ð9bÞ

X
l2L

X
j:ði;jÞ2Al

xl
ij 6 1 8i 2

[
l2L

Vl; ð9cÞ

X
ði;jÞ2Al

xl
ij 6 k 8l 2 L ð9dÞ

X
j:ði;jÞ2Al

xl
ij 6

X
j:ðl;jÞ2Al

xl
lj 8i 2 Vl;8l 2 L ð9eÞ

xl
ij 2 f0;1g: 8ði; jÞ 2 A;8l 2 L
5. Adaptation of each model to include problem variants

In the following text we discuss how formulations for the KEP
can be adapted to three variants: the problem with altruistic do-
nors participating, the problem where compatible pairs are in-
cluded into the pool, and the problem with one or more patients
having multiple donors associated.
5.1. Inclusion of altruistic donors

The inclusion of altruistic donors in KEP IP formulations is dis-
cussed in [23]. Exchanges involving altruistic donors are labeled as
domino paired chains (DPC) and, due to program regulations, the
authors do only consider chains of lengths 1 and 2 (when one or
two incompatible pairs are involved in the exchange), but their ap-
proach can be used for chains of any size. The problem is again
modeled as a weighted directed graph with n + m nodes:
V = {1, . . . , n + m}, n being the number of incompatible patient–do-
nor pairs and m the number of altruistic donors. Let the nodes
{1, . . . , m} represent the altruistic donors, nodes
{m + 1, . . . , m + n} represent the incompatible pairs, and a dummy
patient compatible with all donors j 2 {m + 1, . . . , m + n} be associ-
ated with each altruistic donor. An example is given in Fig. 5.

Within this description denote by k0 the maximum length of a
chain (in terms of nodes) started by an altruistic donor and let
Cðk; k0Þ define the set of all cycles in G with length at most k involv-
ing only incompatible pairs, and of all cycles with length at most k0

with one altruistic donor. Replacing CðkÞ by Cðk; k0Þ the cycle formu-
lation can be directly used to solve the problem.

For the other formulations the main impact is on the cardinality
constraints that define the maximum size of the cycle. They will
now have to be separated in two sets: one for cycles including
one altruistic donor, and another for cycles that only include
incompatible pairs.

For the edge formulation in Section 3.1 assume also that k0 6 k.
The following additional set of constraints must be added:X
16j6k0

xijijþ1
6 k0 � 1 8 i1; i2; . . . ; ik0 ; ik0þ1

� �
2 Paths a ð10Þ

where Paths_a is the set of simple paths of length k0 with
i1 2 {1, . . . , m} and i2; . . . ; ik0þ1 2 fmþ 1; . . . ;nþmg.
Similarly, for the edge-assignment formulation in Section 4.1
we define L = n + m. In addition to variables yl

i; l; i ¼ mþ 1; . . . ; L
for the incompatible pairs consider variables yl

l for l = 1, . . . , m
and yl

i for l = 1, . . . , m, i = m + 1, . . . , L. Then Eq. (3a) limiting the size
of cycles is divided into the two following inequalities:X
i2flg[fmþ1;...;Lg

yl
i 6 k0 8l 2 1; . . . ;m ð11aÞ

X
iPmþ1

yl
i 6 k 8l 2 mþ 1; . . . ; L ð11bÞ

The same idea is applied to Eq. (7d), resulting in:X
ði;jÞ2A:i;j2flg[fmþ1;...;Lg

xl
ij 6 k0 8l 2 1; . . . ;m ð12aÞ

X
ði;jÞ2A:i;jPmþ1

xl
ij 6 k 8l 2 mþ 1; . . . ; L ð12bÞ
5.2. Inclusion of compatible pairs

Opening kidney exchange programs to compatible pairs will re-
quire slight modifications in the IP models discussed in this paper.
The set of vertices V will now represent both compatible an incom-
patible pairs, VC � V denoting the subset of compatible pairs. For
the cycle formulation, one will have to consider the existence of
loops ii of size 1 for all vertices of set VC. All the other formulations
will have to consider that it is now possible that patient i gets a
kidney from donor i. Therefore variables xij must be extended to in-
clude variables xii"i 2 VC.

5.3. Multiple donors

Within kidney exchange programs it is possible that instead of
a single donor a patient has multiple donors associated. If that is
the case, and if the patient is selected for kidney transplantation,
a donor that would allow the cycle where the corresponding pa-
tient appears to be created will be selected. In such cases,
depending on the scoring system used, two situations can occur:
(i) the weight of an arc from a vertex i to a vertex j has a compo-
nent that depends on which donor is chosen in each pair i and j
(for instance, in the UK system this weight has a component that
relates to the difference in age between the donors in i and j
[23]): (ii) the weight of arc (i, j) 2 A does not depend on the donor
selected in pair i.

For the first case, a possible way of modeling the problem is by
considering different vertices for all donors of a patient Pi, each
vertex representing the pair Pi;D

j
i

� �
; j ¼ 1 . . . NDi, where NDi is

the number of donors of patient Pi. More precisely denote by P
the set of patients in the pool. For each patient p 2 P let us define
set DðpÞ as the set of vertices associated with patient p, the set of
sets fDðpÞ; p 2 Pg defines a partition of the set of vertices V.

For the edge formulation (see Section 3.1) the Eq. (1c) need to
be replaced by:



X
k2DðpÞ

X
j:ðk;jÞ2A

xkj 6 1 8p 2 P ð13Þ

These constraints guarantee that only one of the (possible) mul-
tiple donors associated with a patient will be selected. The same
principle will have to be followed in the edge assignment formula-
tion by replacing Eq. (6c) by the ones above. And similarly for the
extended edge formulation by replacing Eq. (9c) by equationsX
l2L

X
k2DðpÞ

X
j:ðk;jÞ2A

xl
kj 6 1 8i 2 P: ð14Þ

Finally, for the cycle formulation two considerations must be
made: all cycles in CðkÞ can contain at most one vertex with patient
p, and Eq. (2b) must be replaced by:X
k2DðpÞ

X
c:k2VðcÞ

zc 6 1 8p 2 P ð15Þ

For the second case the IP models discussed do not suffer any
structural changes and are handled as follows: for all patients i
with multiple donors, an arc (i,j) will exist if there is at least one
donor in pair i compatible with patient j. If the arcs are weighted
and two or more donors in i are compatible with patient j the larg-
est weight associated to a transplant from i to j is assigned to the
arc between nodes i and j. The associated IP models will be the
same as described in previous sections but a final straightforward
procedure will be required, if a multiple donor node appears in the
optimal solution to determine which donor within this node
should be selected. If only one donor is compatible with the asso-
ciated recipient, he/she is selected. Otherwise for weighted arcs the
donor associated with the maximum weight is selected; for un-
weighted graphs if more than one donor is compatible with the pa-
tient, additional criteria are required for the selection of a donor.

6. Linear relaxations and comparison of the bounds for
different models

It is well known that the strength of the LP relaxation is one of the
most important factors for a formulation to be effective when a LP
based branch-and-bound algorithm is used as a resolution method.
Let IP be some optimization program and A and B be two different
integer linear formulations of IP, which define linear relaxation
upper bounds (for the maximization problem) UB(A) and UB(B).
We say that formulation A dominates formulation B if UB(A) 6 UB(B).
In this section we present a comparison, from a theoretical point of
view, of the strength of the formulations described in the previous
section. A first result on interaction of the upper bounds of optimal
solutions provided by linear relaxations of edge and cycle formula-
tions (Theorem 1) was presented and proven in [2].

Theorem 1. The cycle formulation dominates the edge formulation.

As mentioned above the IP formulations with exponential num-
ber of variables or constraints sometimes provide better bounds
with linear relaxations than compact formulations. We now show
that the cycle formulation also dominates the extended edge for-
mulation and that the extended edge formulation dominates the
edge-assignment formulation.

Assume that the extended edge formulation satisfies the follow-
ing properties: (i) L = jVj, denote by K = {1, . . . , L}; (ii) the non elim-
inated variables are xl

ij such that i P l or j P l, and (iii) the model
contains constraints (8). The following results remain true for the
reduced extended edge formulation given in the second half of
Section 4.2.

Theorem 2. The cycle formulation dominates the extended edge
formulation.
Proof 1. For each l, let Xl be the set of vectors xl ¼ xl
ij; ði; jÞ 2 A

� �
defined by constraints (7b), (7d), (7e), (8) andP

j:ði;jÞ2Axl
ij 6 1;8i 2 V . Each element of Xl corresponds either to a

cycle of cardinality at most k, or to a set of disjoint cycles with a
total number of edges not exceeding k. The extended edge formu-
lation can be rewritten as:

maximize
X

l

X
ði;jÞ2A

wijxl
ij ð16aÞ

subject to
X

l

X
j:ði;jÞ2A

xl
ij 6 1 8i 2 V ð16bÞ

xl 2 Xl ð16cÞ

Now let Ul be the set of vectors of Xl that induce at most one
cycle. Ul can replace Xl in the above formulation, although to obtain
an explicit formulation in variables xl

ij constraints preventing mul-
tiple cycles would have to be added. Consider the following relax-
ation of the above model:

maximize
X

l

X
ði;jÞ2A

wijxl
ij ð17aÞ

subject to
X

l

X
j:ði;jÞ2A

xl
ij 6 1 8i 2 V ð17bÞ

xl 2 convðUlÞ 8l 2 K ð17cÞ

where conv(Ul) denotes the convex hull of Ul. The optimal value of
the above model is less than or equal to the optimal value of the
LP relaxation of the extended edge model. Indeed, the optimal value
of problem (17a), (17b) and (17c) is less than or equal to the optimal
value of the linear relaxation of the problem (16a) and (16b) with
xl 2 Ul. But this value is obviously less than or equal to the optimal
value of the linear relaxation of problem (16a), (16b) and (16c) be-
cause Ul # Xl.

One way to write a linear program equivalent to model (17a),
(17b) and (17c) is to replace conv(Ul) by its extreme point
representation. An extreme point of Ul is either the null vector or
the inducing vector pc of a cycle c in G of cardinality at most k,
containing node l and not containing nodes i < l. Let CðkÞ be the set of
all cycles of cardinality at most k and Cl be the set of cycles defined by
Ul, that is Cl ¼ fc 2 CðkÞ : l 2 VðcÞ# fl; . . . ;ngg (recall that V(c)
denotes the set of vertices of cycle c). Now observe that fCl; l 2 Kg
is a partition of CðkÞ, hence xl 2 conv(Ul) if and only if there exist
nonnegative scalars uc, with c 2 Cl, such that xl ¼

P
c2Cl ucpc andP

c2Cl uc 6 1. So xl 2 conv(Ul), l 2K can be rewritten as:

xl
ij ¼

X
c2Cl :ði;jÞ2c

uc 8ði; jÞ 2 A;8l 2 K; ð18aÞ

X
c2Cl

uc 6 1 8l 2 K; ð18bÞ

uc P 0 8c 2 Cl;8l 2 K: ð18cÞ

Let wc ¼
P
ði;jÞ2cwij for c 2 CðkÞ. Using (18a), (18b) and (18c), the

model (17a), (17b), (17c) can be written as follows.

maximize
X

c2CðkÞ
wcuc ð19aÞ

subject to
X

c2CðkÞ:i2VðcÞ
uc 6 1 8i 2 V ; ð19bÞ

X
c2Cl

uc 6 1 8l 2 K; ð19cÞ

uc P 0 8c 2 Cl; l 2 K: ð19dÞ

It is straightforward to see that constraints (19c) are always sat-
isfied with respect to constraints (19b). Thus problem (19a), (19b),
(19c), (19d) is the cycle formulation and from the previous



discussion its optimal value is less than or equal to the value of the
LP relaxation of the extended edge model. h
Theorem 3. The extended edge formulation dominates the edge-
assignment formulation.
Fig. 6. An optimal solution for k = 3 is, for e.g. the cycle 1–4–5–1.
Proof 2. Let �xl
ij; ði; jÞ 2 A; l 2 K be an optimal solution of the linear

relaxation of the extended edge model 7a, (7b)–(7e). We build a
feasible solution for the LP relaxation of the edge-assignment
model with same objective value.

Define the variables �xij and �yl
i as:

�xij ¼
X
l2K

�xl
ij 8ði; jÞ 2 A ð20Þ

�yl
i ¼

X
j:ði;jÞ2A

�xl
ij 8i 2 V ; i P l ð21Þ

The verification that the objective value is the same for both
solutions uses (20) and it is straightforward. Also, constraints
(1b) and (1c) follow directly from (7b) and (7c) respectively, and
(20). Similarly, (3a) follows from (7d) and (21), and (4a) is obtained
from summing both sides of (21) over l and both sides of (20) over
j. We show next that (4b) is satisfied.

By (20) and (21) �yl
i þ �xij ¼

P
p:ði;pÞ2A�xl

ip þ
P

l2K�xl
ij. Now observe

that the only common variable in the two previous sums is �xl
ij.

Hence �yl
i þ �xij 6

P
l2K
P

p:ði;pÞ2A�xl
ip þ �xl

ij 6 1þ �yl
i, the last inequality

following from (7c) and from (21) and the nonnegativity of the
variables.

Finally, 0 6 �yl
i 6 1 and 0 6 �xij 6 1 are a consequence of the

nonnegativity of �xl
ij and constraints (1c) and (4a), already verified.

Thus there always exists a feasible point for the edge-assignment
formulation which provides the same objective value as an optimal
solution for the extended edge formulation. Hence we conclude
that the value of the LP relaxation of the edge-assignment
formulation is greater than or equal to the value of the LP
relaxation of the extended edge formulation. h

Next we show that the extended edge formulation and the edge
formulation do not dominate each other.

Remark 1. The edge formulation does not dominate the extended
edge formulation.
Proof 3. We present an example in which the value of the LP relax-
ation of the edge formulation is larger than the one of the extended
edge formulation. Let k = 3, the set of nodes (incompatible pairs) be
V = {1,2,3,4,5} and the set of arcs be
A = {(1,2), (1,3), (1,4), (2,3), (3,1), (3,4), (4,1), (4,5), (5,1)}, wij = 1
"(i, j) 2 A – Fig. 6. The optimal value for this instance is 3, given
for e.g. by cycle 1–4–5–1.

Observe that all cycles contain vertex 1. Hence in the extended
edge formulation xl

ij ¼ 0 for all (i, j) and l P 2, and the optimal LP

value is 3. The optimal LP solution for the edge formulation is
x12 = x13 = x23 = x41 = x45 = x51 = 0.5, x34 = 1, and x31 = x14 = 0, with
value 4. h
Remark 2. The extended edge formulation does not dominate the
edge formulation.
3 Currently implemented kidney exchange programs work in general with a
maximum value of k = 3. However this value has already been exceeded by large: the
maximum number of simultaneous transplantations performed up to now being 6
Proof 4. Consider the example illustrated by Fig. 7, where k = 3,
the set of nodes is V = {1,2,3,4} and the set of arcs is
A = {(1,2), (1,3), (2,3), (3,1), (3,4), (4,1), (4,2)}, wij = 1 "(i, j) 2 A. The
optimal value for this instance is 3.
The optimal LP solution for the edge formulation is
x12 = x23 = x34 = x41 = 0.66(7), x13 = x31 = 0.33(3), and x42 = 0, with
value 3.33(3). An optimal LP solution for the extended edge
formulation is x1

12 ¼ x1
23 ¼ x1

34 ¼ x1
41 ¼ 0:75, x2

23 ¼ x2
34 ¼ x2

42 ¼ 0:25
and xl

ij ¼ 0 for all other variables, with value 3.75. h

Theorem 3 and Remark 2 imply that the edge-assignment for-
mulation does not dominate the edge formulation. It is an open
question whether the edge formulation dominates the edge-
assignment formulation. However, if the reduction procedure is
applied (Section 4.1), the edge formulation does not dominate
edge-assignment. The example presented by Fig. 6 can be consid-
ered. The optimal value of LP solution for the edge formulation is
4, and the reduced edge-assignment formulation has value 3.

Despite the results presented in this section, compact formula-
tions can turn out to be effective computationally because of their
polynomial size, as will be shown in the computational study pre-
sented in the next section.

7. Computational analysis

Computational experiments were carried out to compare the
proposed and known formulations in terms of time needed to find
an optimal solution and of the LP gaps with respect to upper
bounds of linear relaxations of the models. CPU times and bounds
were obtained with CPLEX 12.2 on a computer with a Quad-Core
Intel Xeon processor at 2.66 gigahertz, 16 gigabytes of RAM and
running Mac OS X 10.6.6. Only one core of the processor was as-
signed to these experiments.

Two generators where used to create the instances for the com-
putational study:

(1) the instance generator described in [35], which creates ran-
dom graphs based on probability of blood type and of
donor–patient compatibility. These instances will be
referred to as blood-type test instances;

(2) a random generator implemented by the authors of this
paper used to generate graphs with three different densities:
low, medium and high. To do that different values are set for
the probability of having 1 (i.e. compatibility) on each posi-
tion of the adjacency matrix of a graph. Low density graphs
are generated with probability 0.2. This value leads to an
average density similar to the one obtained for the blood-
type test instances. The probability is set to 0.5 for medium
density, and to 0.7 for high density graphs.

The computational analysis was performed as follows. First, for
cases with up to 50 nodes and k ranging from 3 to 6, fifty instances
of the same size were generated with both generators for the three
density levels.3 The performance of all formulations was tested for all
instances. Besides that, for this set of problem instances we compared
[6].



Fig. 7. An optimal solution for k = 3 is the cycle 1–2–3–1.
the average number of constraints and variables for different models
and the percentage reduction in size for the edge-assignment and ex-
tended edge formulations when reduction procedures are imple-
mented (see Sections 4.1, 4.2). Afterwards the formulations with
generally better performance on ‘‘small’’ instances were selected
for testing on larger problem instances (n > 50). Ten instances were
generated for different large problem instance sizes.

In the remainder of this document the following notation will be
used to refer to each formulation: E – edge formulation; C – cycle
Table 1
Results for small instances.

n k C E EA EE

tc/T gap tp/T #opt gap T #opt gap T gap

Blood-type test instances
10 3 0/0 0.0 0/0 0.5 0 1.0 0 0.0

4 0/0 0.0 0/0 0.0 0 0.0 0 0.0
5 0/0 0.0 0/0 0.0 0 0.0 0 0.0
6 0/0 0.0 0/0 0.0 0 0.0 0 0.0

20 3 0/0 0.0 0/1 5.6 0 6.5 0 2.8
4 0/0 0.0 0/0 1.5 0 1.9 0 1.1
5 0/0 0.1 1/0 0.7 0 0.9 0 0.8
6 0/0 0.0 9/1 47(47) 0.2 0 0.2 0 0.2

30 3 0/0 0.0 0/0 4.0 6 4.9 0 1.2
4 0/0 0.0 1/1 0.6 1 0.7 0 0.5
5 0/0 0.0 10/2 42(42) 0.0 0 0.0 0 0.0
6 2/0 0.0 185/0 12(12) 0.0 0 0.0 0 0.0

40 3 0/0 0.1 0/48 5.6 85 45 6.1 0 2.7
4 0/0 0.0 3/28 0.9 49 1.0 0 0.9
5 1/0 0.0 54/4 18(18) 1.5 2 0.6 0 0.6
6 11/1 0.0 1727/1 4(4) 2.4 3 0.2 0 0.2

50 3 0/0 0.0 0/134 49 3.6 112 30 3.9 0 2.0
4 0/0 0.0 12/109 47 0.6 42 44 0.7 1 0.3
5 2/0 0.1 213/7 3(3) 0.0 14 48 0.4 1 0.2
6 45/6 0.0 – – 8 0.1 1 0.0

Low density test instances
10 3 0/0 0.2 0/0 21.8 0 33.2 0 0.3

4 0/0 0.5 0/0 11.6 0 15.2 0 0.9
5 0/0 0.0 0/0 7.0 0 8.2 0 0.2
6 0/0 0.2 0/0 1.1 0 1.7 0 1.1

20 3 0/0 1.4 0/0 21.5 1 23.7 0 2.6
4 0/0 0.4 0/0 5.7 1 6.2 0 1.5
5 0/0 0.6 1/1 1.9 1 1.9 0 1.2
6 0/0 0.4 7/1 0.8 0 0.8 0 0.7

30 3 0/0 0.5 0/44 4.9 714 33 4.9 0 1.1
4 0/0 0.1 0/33 0.2 348 42 0.2 1 0.1
5 0/0 0.0 8/65 0.0 86 0.0 1 0.0
6 2/0 0.0 188/226 0.0 17 0.0 1 0.0

40 3 0/0 0.0 0/512 20 0.1 – 0.5 0 0.1
4 0/0 0.0 2/571 30 0.0 851 9 0.0 4 0.0
5 1/1 0.0 – – 453 30 0.0 5 0.0
6 10/2 0.0 – – 246 45 0.0 3 0.0

50 3 0/0 0.0 0/506 3 0.0 – 0.0 0 0.0
4 0/0 0.0 – – – 0.0 20 0.0
5 2/1 0.0 – – – 0.0 15 0.0
6 42/11 0.0 – – 618 20 0.0 7 0.0
formulation; EA – reduced edge-assignment formulation; EE – re-
duced extended edge formulation. Computational results are pro-
vided in Tables 1 and 3 where:

– n is the number of nodes in the graph;
– k is the maximum length of the cycle;
– tc and tp are the average CPU times (in seconds) to find all cycles

and paths, respectively. The time needed to carry out reduction
procedures for the EA and the EE formulations was less than 1 s
for all small instances and less than 3 seconds for all large
instances, and therefore it is not shown in the tables;

– T is the average CPU time the solver CPLEX [16] needed to reach
optimal solutions for the given set of instances (50 instances for
small problems, 10 for large problems); maximum CPU time
was set to 1800 seconds for all formulations;

– #opt is the number of instances from each set which were
solved to optimality within the time limit (1800 seconds).
Whenever this information is not provided in Table 1 it means
that all instances of the set were solved;

– gap is the average LP gap associated to a formulation:
gap ¼ UB�Opt

Opt � 100%, where UB is the upper bound provided by
C E EA EE

tc/T #opt gap tp/T #opt gap T #opt gap T gap

Medium density test instances
0/0 0.6 0/0 0.9 0 1.0 0 0.7
0/0 0.0 0/0 0.2 0 0.2 0 0.0
0/0 0.0 0/0 0.0 0 0.0 0 0.0
0/0 0.0 0/0 0.0 0 0.0 0 0.0

0/0 0.0 0/1 0.0 2 0.0 0 0.0
0/0 0.0 0/5 0.0 1 0.0 0 0.0
0/0 0.0 2/55 0.0 1 0.0 0 0.0
0/3 0.0 – 0 0.0 0 0.0

0/0 0.0 0/15 0.0 162 47 0.0 0 0.0
0/0 0.0 2/138 49 0.0 30 0.0 1 0.0
0/5 0.0 – – 4 0.0 0 0.0
4/267 49 0.0 – – 2 0.0 0 0.0

0/0 0.0 1/171 0.0 564 24 0.0 1 0.0
0/1 0.0 6/624 39 0.0 203 40 0.0 2 0.0
1/67 0.0 – – 106 49 0.0 2 0.0
– – – – 16 0.0 1 0.0

0/0 0.0 1/440 47 0.0 745 3 0.0 4 0.0
0/4 0.0 – – 645 18 0.0 5 0.0
4/385 48 0.0 – – 116 34 0.0 6 0.0
- - - - 62 46 0.0 3 0.0

High density test instances
0/0 0.0 0/0 0.0 0 0.0 0 0.0
0/0 0.0 0/0 0.0 0 0.0 0 0.0
0/0 0.0 0/0 0.0 0 0.0 0 0.0
0/0 0.0 0/1 0.0 0 0.0 0 0.0

0/0 0.0 0/1 0.0 2 0.0 0 0.0
0/0 0.0 1/16 0.0 1 0.0 0 0.0
0/2 0.0 – – 0 0.0 0 0.0
1/52 0.0 – – 0 0.0 0 0.0

0/0 0.0 0/9 0.0 32 0.0 1 0.0
0/1 0.0 – – 5 0.0 1 0.0
1/66 0.0 – – 2 0.0 0 0.0
– – – – 1 0.0 0 0.0

0/0 0.0 1/64 0.0 238 36 0.0 2 0.0
0/5 0.0 – – 38 49 0.0 2 0.0
4/66 34(41) 0.0 – – 12 0.0 1 0.0
– – – – 4 0.0 1 0.0

0/0 0.0 3/238 48 0.0 250 15 0.0 10 0.0
– – – – 130 39 0.0 7 0.0
– – – – 25 0.0 5 0.0
– – – – 47 0.0 2 0.0



Table 2
Sizes of formulations and reduction for EA and EE. ‘‘Low’’ and ‘‘high’’ density test instances.

n k C E EA EE

#var #con #var #con #var #con rv% rc% #var #con rv% rc%

Low density test instances
10 3 3 2 17 55 22 53 70.6 76.4 7 16 96.4 86.1

4 5 4 17 62 25 65 66.3 71.2 12 24 93.9 80.0
5 7 4 17 63 27 73 63.3 67.7 16 28 91.8 75.9
6 8 5 17 55 28 75 62.0 66.7 18 30 90.5 74.2

30 3 82 28 174 5215 280 1318 56.2 68.5 169 242 96.8 74.8
4 336 30 174 26,634 401 2354 37.4 43.6 498 484 90.5 49.6
5 1377 30 174 131,770 496 2978 22.5 28.5 1008 674 80.8 29.8
6 5681 30 174 626,695 539 3225 15.6 22.4 1412 761 73.0 20.7

50 3 363 50 491 44,579 851 6782 51.8 62.5 684 770 97.2 70.4
4 2596 50 – >3 � 106 1342 13,059 24.0 27.8 2672 1752 89.1 32.6
5 19,010 50 – >3 � 106 1601 15,628 9.3 13.6 6140 2271 75.0 12.7
6 142,190 50 – >3 � 106 1665 16,332 5.7 9.6 7780 2399 68.3 7.7

High density test instances
10 3 100 10 62 1667 110 488 6.4 10.6 139 105 77.7 12.3

4 384 10 62 6856 114 506 2.8 7.1 211 114 66.1 5.3
5 1331 10 62 23,732 114 507 2.7 7.0 228 114 63.1 5.1
6 4075 10 62 65,993 114 507 2.7 7.0 229 114 63.0 5.1

30 3 2949 30 606 221,941 1026 12,290 4.2 6.0 3341 870 81.6 9.3
4 41,556 30 – >3 � 106 1066 12,887 0.4 1.4 5731 950 68.5 1.0
5 600,569 30 – >3 � 106 1066 12,896 0.4 1.4 6251 951 65.6 0.9
6 >3 � 106 – – >3 � 106 1066 12,896 0.4 1.4 6252 951 65.6 0.9

50 3 14,157 50 1719 1,911,261 2883 56,974 3.7 5.0 15,272 2377 82.2 8.6
4 >3 � 106 – – >3 � 106 2992 59,750 0.1 0.3 26,817 2595 68.8 0.2
5 >3 � 106 – – >3 � 106 2992 59,762 0.1 0.3 29,272 2595 66.0 0.2
6 >3 � 106 – – >3 � 106 2992 59,764 0.1 0.3 29,273 2595 65.9 0.2

Notations: – #var and #con are the average number of variables and constraints for a given n for different values of k;
– rv% and rc% are the average relative reductions on the number of variables and constraints in the EA and EE formulations after implementing reduction procedures.
Dashes for the formulations C and E mean that no test instance out of 50 was considered due to the bound on number of cycles or paths.
the linear relaxation of the formulation and Opt is the optimal
value of the problem.

Values 0 in tables related to CPU time mean that the solver took
less than 1 s to solve the instances.

Since the number of paths associated with the edge formulation
increases sharply for larger values of k (k = 5 and k = 6), a bound of
3 million was set on the number of paths to be generated. The for-
mulation was not studied for instances where the number of paths
exceeded that value. The same bound was used for the number of
cycles in the cycle formulation. With respect to this limitation in
column #opt we show in parenthesis the number of instances
out of 50 (or 10 for larger instances) that were studied, if necessary.

7.1. Small test instances

Test instances of 10, 20, 30, 40 and 50 nodes were created with
the two generators, for the second one for the three graph densi-
ties. Fifty instances of each size were considered. Computational
results are presented in Table 1.

The results for blood-type test instances clearly show the domi-
nance of the C and EE formulations, both in terms of effectiveness
and efficiency: all instances are solved to optimality in general
with less CPU time than the E and EA formulations. The consider-
able increase in CPU time for the cycle formulation when k = 6
and n = 40, 50 is caused by the time needed to enumerate all the
cycles. As shown, the smaller average gap is associated to the C
formulation.

Although the density of the graphs of low density test instances is
of the same order of magnitude of the previously reported ones,
the E and EA formulations performed very poorly for larger in-
stances: in most cases the EA formulation exceeded the maximum
CPU time for all test instances of a given size (represented by (–) in
Table 1); in several cases the E formulation was not also
considered, either because the CPU time or the maximum number
of paths were exceeded. The additional difficulty raised up by these
instances may be partially explained by the larger LP gaps obtained
for smaller problems. Again, the C and EE formulations dominate
the others, both formulations having solved to optimality all
instances.

The importance of developing compact formulations is reflected
in the results obtained for medium density test instances, and cor-
roborated and strengthened by high density test instances. In this
cases the EE formulation proved to be extremely efficient at solving
larger problem instances. It was capable of solving to optimality
the both complete sets. The EA, although performing worse than
the EE, still solved to optimality almost 95% of the high density in-
stances considered.

Furthermore, none of the compact formulations suffered the
‘‘curse of dimensionality’’ that affects both the E and the C formu-
lations, which exceeded either the maximum number of cycles/
paths or CPU times for larger instances. In fact, the problems raised
up by non-compact formulations become more evident for high
density test instances: the number of cycles for the cycle formula-
tion exceeds the allowed limit for all test instances of size 50, for
values of k = 4, 5, 6; the edge formulation was not run even for in-
stances with 20 nodes and k = 5, 6 because number of paths exceed
the limit of 3 million previously set.

It is also worth mentioning that although for the blood-type and
low density instances most of the CPU time associated to the C for-
mulation was spent at generating cycles, in this case it was spent in
the optimization phase.

Table 2 shows the average number of variables and constraints
for problems of different size for the low and high density test in-
stances, as well as the percentage of reduction of the number of
variables and constraints for the EA and EE formulations after
implementing reduction routines presented in Sections 4.1 and
4.2. Evidently the impact of the reduction is high, in particular



Table 3
Results for large instances.

n k C EE

tc T #opt gap T #opt gap

Blood-type test instances
70 3 0 0 10 0.0 2 10 1.8
100 0 0 10 0.1 3 10 0.8
200 1 0 10 0.0 1221 4 0.4
300 3 2 10 0.0 – 0 –
500 23 11 10 0.0 – 0 –
800 141 148 10 0.0 – 0 –
900 223 398 9(9) 0.0 – 0 –
1000 343 479 7(7) 0.0 – 0 –

70 4 0 0 10 0.0 11 10 0.5
100 2 0 10 0.0 53 10 0.0
200 42 25 10 0.0 – 0 0.0

70 5 10 2 10 0.0 7 10 0.0
100 67 13 10 0.0 72 10 0.0

70 6 370 25 9(9) 0.0 4 10 0.0
100 3255 19 1(1) 0.0 102 10 0.0

Low density test instances
70 3 0 0 10 0.0 5 10 0.0
100 0 0 10 0.0 52 10 0.0
300 3 11 10 0.0 – 0 –
500 26 605 7(7) 0.0 – 0 –

70 4 0 1 10 0.0 385 10 0.0
100 2 5 10 0.0 – 0 –
200 44 341 8(8) 0.0 – 0 –

70 5 10 10 10 0.0 371 10 0.0
100 64 226 10 0.0 – 0 0.0
70 6 368 211 10 0.0 90 10 0.0
100 – – 0 – 240 4 0.0

Medium density test instances
70 3 0 0 10 0.0 127 10 0.0
100 0 4 10 0.0 270 5 0.0
300 5 279 10 0.0 – 0 –
400 13 204 4(4) 0.0 – 0 –

70 4 1 25 10 0.0 138 10 0.0
100 3 516 9(9) 0.0 460 7 0.0

70 5 – – 0 – 45 10 0.0
100 – – 0 – 360 7 0.5a

70 6 – – 0 – 33 10 0.0
100 – – 0 – 177 8 0.5a

High density test instances
70 3 0 2 10 0.0 161 10 0.0
100 0 5 10 0.0 505 7 0.6
200 2 167 10 0.0 – 0 –

70 4 2 301 9 0.0 90 10 0.0
100 – – 0 – 419 7 0.3a

70 5 – – 0 – 37 10 0.0
100 – – 0 – 402 8 0.2

70 6 – – 0 – 39 10 0.0
100 – – 0 – 247 10 0.0

a For the test instances which were not solved to optimality within the time limit
with any formulation the gap value for the best found lower bound is given by
gap ¼ UB�LB

LB � 100%, where LB is the best found lower bound and UB is the LP upper
bound for the optimal value.
for the low density test instances. No results are provided for these
formulations before reduction as they were clearly worse.

The results of the computational study for small instances show
that in general CPU times increase with increasing k and graph
density for the cycle formulation; however they decrease with
increasing density for the other models and decrease with increas-
ing k for compact formulations. Increasing times for the cycle and
edge formulations can be justified by the increasing number of
cycles/variables and paths/constraints; whereas decreasing times
for other models could be explained by smaller gaps. Indeed gaps
decrease for EE and EA with k and density, while remaining approx-
imately constant for C. This decrease in gaps may be explained as
follows: EE and EA are exact formulations if the problems are unca-
pacitated, that is, for k sufficiently large there is always an LP solu-
tion that is optimal for the integer program. When k increases the
problems become closer to being uncapacitated so the LP solutions
are closer to being integral and the LP values are closer to the inte-
ger optima. When the density increases the explanation is not so
clear; probably since more feasible cycles are available, it may be
easier for LP solutions to have some entire feasible cycles in their
composition, i.e. more variables equal to one.

7.2. Large scale test instances

This section reports the results obtained for the C and EE formu-
lations, for problems ranging from 70 to 1000 pairs (see Table 3);
10 instances of each size were generated. These formulations were
selected because they were the dominant for at least one set of the
previous computational simulations: blood-type, low, medium or
high density graphs.

Again for blood-type and low density graphs the C formulation
dominates over the EE for lower values of k, being able to solve
some problems with 1000 pairs for k = 3. However, as in the previ-
ous analysis results for medium and high density graphs confirm
the effectiveness of the compact formulation on dense graphs with
large values of k. With the cycle formulation it was possible to
solve instances for k = 3 and some instances for k = 4. This formu-
lation was not capable of solving any instance with k > 4 within
the limit on number of cycles considered. For these values of k
the EE was more efficient being able to solve to optimality some
instances.

To conclude, these results clearly indicate that appropriate
methods have to be implemented if one wishes to use any of the
formulations discussed in larger pools and for bigger size cycles.

8. Conclusions

This paper presents two new formulations for the Kidney Ex-
change Problem – edge-assignment and extended edge formula-
tions – that have the advantage over other formulations
proposed in the literature of having polynomially bounded number
of constraints and variables. A proof of dominance of some formu-
lations over others is also given and a discussion on the adaptabil-
ity of each formulation to different problem variants is provided.
Finally, computational results that compare the previous and pro-
posed formulations in terms of time needed to find an optimal
solution and of the gaps of linear relaxations upper bounds of the
models are provided.

Computational results show that the edge formulation has a
bad performance and that it is not effective at solving instances
larger than 50 pairs. The non-compact cycle formulation is very
efficient for low density graphs with small values of k. However
for larger values of k and especially if graphs are denser this for-
mulation becomes inefficient. In such cases compact formula-
tions provide better results – in particular the extended edge
formulation – and are able to solve larger problems. Therefore,
although we prove in this paper that linear relaxations of the
compact formulations do not provide better upper bounds for
optimal solutions than the cycle formulation, computational re-
sults reinforce the idea that compact formulations are of practi-
cal relevance.

As future work an interesting direction is to use decomposition
methods on the extended edge formulation, in order to solve larger



problems. The adaptation of these models to dynamic environ-
ments will also be the subject of additional research.
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