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a b s t r a c t

We study cooperation strategies for companies that continuously review their inventories and face Pois-
son demand. Our main goal is to analyze stable cost allocations of the joint costs. These are such that any
group of companies has lower costs than the individual companies. If such allocations exist they provide
an incentive for the companies to cooperate.

We consider two natural cooperation strategies: (i) the companies jointly place an order for replenish-
ment if their joint inventory position reaches a certain reorder level, and (ii) the companies reorder as
soon as one of them reaches its reorder level. Numerical experiments for two companies show that
the second strategy has the lowest joint costs. Under this strategy, the game-theoretical Shapley value
and the distribution rule—a cost allocation in which the companies share the procurement cost and each
pays its own holding cost—are shown to be stable cost allocations. These results also hold for situations
with three companies.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Several companies or business units may have the same item on
stock to meet the demands of their customers. Instead of working
on their own, the companies may jointly place an order for replen-
ishment of their stocks and save on procurement costs. Consider,
for example, the inventory of band-aids in a hospital with several
departments. Each department has its own warehouse where it
stocks the band-aids. There is central purchasing of replenish-
ments, as is common practice in many Dutch hospitals. The or-
dered goods arrive in the central warehouse, from which they
are distributed to the departments. A major concern is how to
organize the central purchasing. Hospital management has several
options. First, they could base the purchase decision on the joint
inventory of band-aids in all departments. If this joint inventory
falls below a certain threshold, a replenishment order for all
departments is placed. Second, they could base it on the individual
stocks of the departments; if one department runs out of stock, a
replenishment order for all departments is placed. Finally, one
could decide to allow decentralized replenishment of stock by
the individual departments.

The main questions in such joint replenishment problems are
how much to order, when to order and how much money can be
saved. The distribution of these cost savings or of the joint costs
among the companies is also of importance. If a company believes
it pays too much of the costs, then it may not be willing to cooper-
ate in the first place. Therefore, our main goal is to study alloca-
tions of the costs.

This paper studies joint replenishments for multiple companies
that continuously review their inventories and face Poisson de-
mand. We consider two natural cooperation strategies. Under the
sum constraint strategy the companies jointly place an order for
replenishment if their joint inventory position reaches a certain
reorder level. Under the individual constraints strategy the compa-
nies reorder as soon as one of them reaches its reorder level. We
compare the resulting expected costs of these strategies with the
costs of non-cooperation. Numerical experiments show that the
individual constraints strategy is better, that is, it has the lowest
joint costs. Hence, this strategy saves costs compared to non-coop-
eration. Now, a natural question that arises is how to allocate the
saved costs among the companies.

Cooperative game theory is a very suitable tool for studying cost
allocations. A natural requirement for such allocations is that they
are stable. Stability means that the cost is allocated to the compa-
nies such that any group of companies pays at most its own cost;
the group has no incentive to disagree with the cost allocation. This
requirement is represented by the core—a stability concept from
cooperative game theory. The core is the set of all stable cost
allocations. Often, there are many stable allocations. Then the
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companies should select one of these. Under the individual con-
straints strategy, we study existence of stable cost allocations in
our model.

Two specific cost allocations are the Shapley value (Shapley,
1953), and the distribution rule (Meca et al., 2004). The Shapley va-
lue is a cost allocation that distributes marginal contributions to
the costs equally among the companies. The distribution rule con-
sists of two parts: (i) the joint procurement costs are allocated in a
proportional way to the companies, and (ii) each company pays its
individual inventory holding costs under cooperation. Our numer-
ical experiments show that both these cost allocations are stable
for the joint replenishment problem with continuous review and
Poisson demand under the individual constraints strategy.

There is a large literature on joint replenishment problems. The
papers by Arshinder and Deshmukh (2008) and Khouja and Goyal
(2008) are excellent surveys on this research subject. Initiated by
Balintfy (1964) and Silver (1965), nowadays complex stochastic
inventory control problems are studied. Since it is very difficult
to determine the optimal policies of these problems, the main fo-
cus is on studying the performance of certain classes of replenish-
ment policies. Federgruen et al. (1984) provides an efficient
heuristic algorithm to search for an optimal can-order policy in
case the companies face compound stochastic demand. Viswana-
than (1997) and Chiou et al. (2007) study classes of replenishment
policies that lead to low joint costs. More recent, Tanrikulu et al.
(2010) introduce a new policy for stochastic joint replenishment
problems under continuous review. This policy performs well in
case of large backup and order costs. Kiesmüller (2010) considers
inventory control when full truckloads are required. Two policies
are compared, one depends on the aggregate inventory position,
and the other on the individual inventory positions of the items.
Most of these papers focus on showing that a certain class of pol-
icies leads to lower costs than other well-known policies. However,
none of these papers study the allocation of the joint costs to the
companies.

There are a few papers that analyse cost allocations for joint
replenishment problems by means of cooperative game theory.
Hartman and Dror (1996) study allocations of joint costs in
inventory models under continuous review. A central warehouse
is set up to store the goods and to meet the demand of the
customers. In the case of three companies the authors show that
there exists a cost allocation that is stable, justifiable (the
allocated cost is in line with the cost savings) and computable
in polynomial time. More general, Dror et al. (2012) study the
computation of stable cost allocations in joint replenishment
problems, and the sensitivity of stable cost allocations to the cost
parameter values. A review on general game theoretical applica-
tions in supply chain management may be found in Leng and
Parlar (2005).

In Meca et al. (2004) cooperation in an inventory system with
stationary deterministic demand is studied. The companies face
procurement and holding costs. Further, the authors introduce
the distribution rule, which is a cost allocation designed for joint
replenishment problems. The authors show that this cost alloca-
tion is stable. In this paper, we extend their model to inventory sit-
uations with stochastic (Poisson) demand and integer order
quantities, and show that their result also holds for our model. Also
related is Chessa (2009), which contains an initial study on our
model with some other types of cost allocations.

The outline of this paper is as follows. In Section 2 we intro-
duce our model. Section 3 analyses the costs of non-cooperating
companies. Joint replenishment is studied in Section 4, where
we consider two natural cooperation strategies. We compare their
costs with the cost of non-cooperation. Section 5 studies cost
allocations. Finally, Section 6 concludes. All proofs are in
Appendix A.
2. Model

We consider the inventory control problem of a single product
for multiple companies under continuous review. Our model is an
extension of the model of Meca et al. (2004) to Poisson demand. Let
N denote the set of companies; we will mainly consider situations
with two companies, N = {1,2}. The demand for the product at the
different companies occurs in discrete units, and the demand pro-
cesses are independent Poisson processes with rate ki for company
i, i 2 N.

To meet their demands the companies place orders for replen-
ishment of their stocks. We assume that the lead time of an order
is zero time units and that backorders are not allowed. The replen-
ishment policy for company i is to place an order for Qi items when
its inventory position falls below ri items. Hence, such a policy is
defined by the reorder level ri and the order quantity Qi. The state
of company i is determined by the inventory position Zt

i at time t,
and let Zi denote the steady state random variable.

To evaluate the benefits of cooperation, let us specify the cost
structure of the companies. We identify procurement costs and
inventory holding costs. The procurement costs are the costs asso-
ciated with procuring (replenishing) the units stocked. We assume
that each replenishment order (either by a single company or by
multiple cooperating companies) incurs the fixed procurement
cost A. There are no minor ordering costs for individual companies.
The inventory holding costs are the costs of carrying the items in
inventory. Let company i have holding cost hi per unit in stock
per time unit. Then the inventory holding costs equal hiZ

t
i per time

unit when the inventory at time t equals Zt
i . Since backorders

cannot occur, the inventory position of a company is equal to its
inventory level.

3. Non-cooperating companies

In this section we consider non-cooperating companies that
place their orders independently. The lead time is zero, so that
company i uses the following replenishment policy: place an order
for an amount Qi each time the inventory level drops to 0. It is obvi-
ous that the inventory level processes Znc;t

i

� �
i2N of the companies

are independent processes, and that process Znc;t
i has state space

Si = {ni: 1 6 ni 6 Qi}. For completeness, and to support the more
complicated expressions for cooperating companies, we review
below the results for a single company.

The marginal inventory level equilibrium distribution is (see
e.g., Hadley and Whitin, 1963, p. 183)

v iðjÞ ¼ lim
t!1

PðZt
i ¼ jÞ ¼ 1

Q i
; j ¼ 1; . . . ;Q i; ð1Þ

with expectation EZnc
i ¼ 1

2 ðQi þ 1Þ.
The expected procurement cost per unit time can be obtained

from a renewal argument. The inventory level process Zt
i forms a

renewal process that regenerates each time an order is placed.
Thus, the long run average procurement costs are

lim
t!1

1
t

ANiðtÞ ¼ A
ki

Q i
; ð2Þ

where Ni(t) is the number of replenishment orders in the time inter-
val (0, t]. By the renewal property limt!1NiðtÞ=t ¼ 1=ETi with prob-
ability 1, where Ti is the cycle time for company i, so that

ETi ¼ Qi=ki: ð3Þ

Observe that vi(Qi)�1 is the mean recurrence time to state Qi of the
Markov jump chain on Si, so that k�1

i v iðQiÞ�1 is the mean time for
the inventory level process to return to state Qi.

The total expected cost rate Knc
i ðQiÞ for company i is
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Knc
i ðQ iÞ ¼ A

ki

Q i
þ hiEZnc

i ¼
Aki

Q i
þ 1

2
hiðQ i þ 1Þ: ð4Þ

This is a convex function in Qi. Company i will select an integer
quantity that minimizes this expected cost per time unit. This quan-
tity Qnc

i is called the optimal replenishment quantity for company i,
and it equals bxc or dxe with x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Aki=hi

p
.

4. Joint replenishment

In this section we consider cooperating companies. Cooperation
means that the companies join their orders for replenishment of
their inventories; this way they save on procurement costs. We
introduce and study two cooperation strategies. We compare their
costs, also with the costs of non-cooperation. We first consider two
companies, and then extend our results to multiple companies.

Note that the companies may want to keep information about
their inventory levels private or they may not communicate with
each other. Then joint replenishment may be implemented via an
intermediary, who acts as a central purchasing agent. The compa-
nies inform the intermediary about their individual inventory lev-
els. Using this information, the intermediary can keep track of the
joint inventory level, issue an order when the reorder level is
reached, and assign the ordered items to the individual companies.

4.1. Sum constraint strategy

A natural candidate for a replenishment strategy for two com-
panies is that the companies jointly order up to some desired
inventory levels (Q1,Q2) as soon as their total inventory level falls
below a certain level. This happens when the aggregate demand
reaches a target level. Without loss of generality assume that
Q1 P Q2. Let ni denote the inventory level of company i, and let
(n1,n2) be the state of the system. A joint order for replenishment
is placed when the total inventory level n1 + n2 drops to Q1 units,
that is, when the joint demand reaches Q2 units. Note that this en-
sures nonnegative inventory levels for both companies.

A replenishment order is issued when the total inventory level
drops to Q1, so that the state space eS is

eS ¼ fðn1;n2Þ : ni 6 Q i; i ¼ 1;2; n1 þ n2 P Q 1 þ 1g: ð5Þ

We name this strategy the sum constraint strategy as it involves a
constraint on the sum of the inventory levels. Notice that this policy
requires very little information; only the total inventory level is
needed.

The joint inventory level (n1,n2) evolves as a continuous time
Markov chain at the state space eS. Let ~pðn1;n2Þ denote the equilib-
rium probability for state (n1,n2). The flow balance equations (‘‘rate
out equals rate in’’) are

ðk1 þ k2Þ~pðn1;n2Þ

¼

k1 ~pðn1 þ 1;n2Þ þ k2 ~pðn1; n2 þ 1Þ; n1 < Q 1; n2 < Q 2

k1 ~pðn1 þ 1;n2Þ; n1 < Q 1; n2 ¼ Q 2;

k2 ~pðn1;n2 þ 1Þ; n1 ¼ Q 1; n2 < Q 2;

ðk1 þ k2Þ
XQ2

n0
2
¼1

~p Q1 þ 1� n02;n
0
2

� �
; n1 ¼ Q 1; n2 ¼ Q 2:

8>>>>>>><>>>>>>>:
ð6Þ

The equilibrium distribution ~p is a truncated binomial distribution:

~pðn1;n2Þ ¼
1

Q 2

Q1 � n1 þ Q 2 � n2

Q 1 � n1

� �
pQ1�n1 ð1� pÞQ2�n2 ; ð7Þ

for all ðn1;n2Þ 2 eS, with p = k1/(k1 + k2) the proportion of demand for
company 1. This distribution follows directly from substitution into
the balance Eq. (6).
Let eT be the joint cycle time under cooperation. The probability
that the cycle did not end by time t is PðeT > tÞ. In that case, the
total demand is smaller than Q2 units. Since the joint demand is
Poisson with rate k1 + k2, the expected length of a cycle is

EeT ¼ Z 1

0
PðeT > tÞdt ¼

Z 1

0

XQ2�1

k¼0

ððk1 þ k2ÞtÞk

k!
e�ðk1þk2Þtdt ¼ Q2

ðk1 þ k2Þ
:

ð8Þ

The expression for the expected cycle time is natural since it is the
expected time until replenishment, that is, until Q2 demands have
occurred. Standard Markov chain theory yields that EeT ¼ ½ðk1þ
k2Þ~pðQ1;Q2Þ��1, where ~pðQ1;Q2Þ�1 is the mean recurrence time to
state (Q1,Q2) of the Markov jump chain with transition probabilities
p and 1 � p, and k1 + k2 the rate at which jumps occur.

The lemma below gives the joint cost rate for the companies if
they use the cooperation strategy under the sum constraint. The
proof of this lemma is in Appendix A.

Lemma 1. Consider the cooperation strategy under the sum
constraint. The expected joint costs per time unit given order
quantities (Q1,Q2) equals
eK ðQ 1;Q 2Þ ¼ A
k1 þ k2

Q 2
þ 1

2
h1ð2Q 1 � pðQ 2 � 1ÞÞ

þ 1
2

h2ðQ2 þ 1þ pðQ2 � 1ÞÞ: ð9Þ
The results can readily be extended to multiple companies.

Then all companies jointly reorder when their total inventory level
falls below a certain level. Without loss of generality assume that
the order quantities are non-increasing: Q1 P Q2 P � � �P QjNj,
where jNj denotes the cardinality of N. Let

eS ¼ n ¼ ðniÞi2N : ni 6 Q i; i 2 N;
X
i2N

ni P
XjNj�1

j¼1

Qj þ 1

( )
: ð10Þ

be the state space. The equilibrium distribution ~p is a truncated
multinomial distribution:

~pðnÞ ¼ 1
Q jNj

P
i2NðQ i � niÞ

� �
!Q

i2NðQ i � niÞ!
Y
i2N

pQi�ni
i ; ð11Þ

where n 2 eS and pi ¼ ki=
P

j2Nkj is the proportion of demand for
company i. The expected cycle time is

EeT ¼ Q jNj
X
i2N

ki

,
; ð12Þ

and the average joint cost is

eK ðQÞ ¼ A
P

i2Nki

Q jNj
þ
X
i2N

hi

2
ð2Q i � piðQ jNj � 1ÞÞ; ð13Þ

where Q = (Qi)i2N.

4.2. Individual constraints strategy

In this section another natural replenishment strategy is stud-
ied. Namely, both companies reorder as soon as one of the compa-
nies reaches its individual reorder level, ni = 0. Hence, this strategy
is named joint replenishment under individual constraints. The
state space corresponding to this strategy is

S ¼ fðn1;n2Þ : 1 6 ni 6 Q i; i ¼ 1;2g: ð14Þ

A joint order for replenishment is placed as soon as a company runs
out of inventory. The global balance equations are analogous to (6),
except for the case n1 = Q1, n2 = Q2, where the right-hand side is
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k1
PQ2

n02¼1
~p 1;n02
� �

þ k2
PQ1

n01¼1
~p n01;1
� �

. The corresponding equilibrium

distribution p is a truncated binomial distribution:

pðn1;n2Þ ¼
1

GðQ 1;Q 2Þ
Q 1 � n1 þ Q 2 � n2

Q1 � n1

� �
pQ1�n1 ð1� pÞQ2�n2 ;

ð15Þ

for states (n1,n2) 2 S with normalizing constant

GðQ1;Q 2Þ ¼
XQ1�1

z1¼0

XQ2�1

z2¼0

z1 þ z2

z1

� �
pz1 ð1� pÞz2 ; ð16Þ

where zi = Qi � ni. This is shown by substitution of the equilibrium
distribution into the balance equations.

Let us now consider the cycle time T. Let T1 and T2 denote the
time from a replenishment until a reorder level for companies 1
and 2 if the companies would operate on their own. T1 and T2 are
independent random variables. If Ti > t then company i did not reach
its reorder level by time t, thus, the total demand for company i so
far during this cycle is less than Qi. The expected cycle time is

ET ¼
Z 1

0
PðT > tÞdt ¼

Z 1

0
PðT1 > tÞPðT2 > tÞdt

¼
Z 1

0

XQ1�1

k¼0

ðk1tÞk

k!
e�k1t

XQ2�1

‘¼0

ðk2tÞ‘

‘!
e�k2tdt ¼ GðQ 1;Q 2Þ

k1 þ k2
: ð17Þ

Standard Markov chain theory yields that
ET ¼ ½ðk1 þ k2ÞpðQ1;Q2Þ��1, where p(Q1,Q2)�1 is the mean recur-
rence time to state (Q1,Q2) of the Markov jump chain with transi-
tion probabilities p and 1 � p, and k1 + k2 the rate at which jumps
occur.

Define P(n1,n2) as the probability that the system reaches the
state (n1,n2) in a cycle. Clearly, the regeneration point is reached
for sure—P(Q1,Q2) = 1—and

Pðn1;n2Þ ¼ pPðn1 þ 1;n2Þ þ ð1� pÞPðn1;n2 þ 1Þ: ð18Þ

Hence,

Pðn1;n2Þ ¼
Q 1 � n1 þ Q 2 � n2

Q 1 � n1

� �
pQ1�n1 ð1� pÞQ2�n2 ; ð19Þ

for all states (n1,n2) 2 S. Further, define the probability P(0,n2) as
the probability that the cycle terminates from state (1,n2) due to
an arrival of a demand for company 1; P(0,n2) = pP(1,n2). Similarly,
define P(n1,0) = (1 � p)P(n1,1). The probability that firm 1 ends a cy-
cle is

XQ2

n2¼1

Pð0;n2Þ ¼
XQ2�1

z2¼0

Q 1 � 1þ z2

z2

� �
pQ1 ð1� pÞz2 ¼ IpðQ1;Q 2Þ; ð20Þ

where Iqða; bÞ ¼
Pb�1

s¼0
sþ a� 1

s

� �
qað1� qÞs is the generalized

incomplete beta function (Abramowitz and Stegun, 1972, section
26.5). Further,XQ1

n1¼1

Pðn1;0Þ ¼
XQ1�1

z1¼0

z1 þ Q 2 � 1
z1

� �
pz1 ð1� pÞQ2 ¼ I1�pðQ 2;Q1Þ ð21Þ

is the probability that firm 2 ends the cycle. The cycle terminates via
a demand for company 1 or 2 and therefore these probabilities sum
to 1; this is directly verified from the property Iq(a,b) + I1�q(b,a) = 1
of the generalized incomplete beta function.

The probabilities P(n1,n2) allow for an alternative formulation of
the expected cycle time and the normalizing constant of the equi-
librium distribution. The cycle ends because of a demand for com-
pany 1 or company 2. If company 2 ends the cycle then the
expected cycle length is the expected time it takes for
Q1 � n1 + Q2 demands to occur times the probability that company
2 triggers the replenishment order while company 1 still has n1
items on stock. A similar interpretation holds for the case that
company 1 ends the cycle. This leads to

ET ¼
XQ1

n1¼1

Q 1 � n1 þ Q2

k1 þ k2
Pðn1;0Þ þ

XQ2

n2¼1

Q 1 þ Q 2 � n2

k1 þ k2
Pð0;n2Þ

¼ Q 2

k2
I1�pðQ 2 þ 1;Q 1Þ þ

Q 1

k1
IpðQ 1 þ 1;Q 2Þ: ð22Þ

By (17)

GðQ1;Q 2Þ ¼
Q 2

1� p
I1�pðQ 2 þ 1;Q 1Þ þ

Q 1

p
IpðQ 1 þ 1;Q 2Þ ð23Þ

is an alternative expression for the normalizing constant.
The joint costs for the companies are as follows.

Lemma 2. In case of cooperation under individual constraints, the
expected joint costs per time unit given order quantities (Q1,Q2) equal

KðQ 1;Q 2Þ ¼ Aðk1 þ k2Þ=GðQ 1;Q2Þ

þ Q 2

GðQ1;Q 2Þ
XQ1�1

z1¼0

½h1ðQ 1 � z1=2Þ

þ h2ðQ 2 þ 1Þ=2�
z1 þ Q 2

z1

� �
pz1 ð1� pÞQ2

þ Q 1

GðQ1;Q 2Þ
XQ2�1

z2¼0

½h1ðQ 1 þ 1Þ=2

þ h2ðQ 2 � z2=2Þ�
Q 1 þ z2

z2

� �
pQ1 ð1� pÞz2 : ð24Þ

The companies minimize the costs K by selecting a pair

Q N
1 ;Q

N
2

	 

of optimal integer order quantities, N = {1,2}.

The result can readily be extended to multiple companies. Now
all companies reorder as soon as one of them reaches its re-order
level. Let

S ¼ fn ¼ ðniÞi2N : 1 6 ni 6 Q i; i 2 Ng; ð25Þ

be the state space. The equilibrium distribution p is a truncated
multinomial distribution:

pðnÞ ¼ 1
GðQÞ

P
i2NðQ i � niÞ

� �
!Q

i2NðQ i � niÞ!
Y
i2N

pQi�ni
i ; ð26Þ

where n 2 S, and

GðQÞ ¼
X
n2S

P
i2NðQ i � niÞ

� �
!Q

i2NðQ i � niÞ!
Y
i2N

pQi�ni
i : ð27Þ

The expected cycle time is

ET ¼ GðQÞ
X
j2N

kj

,
; ð28Þ

and the average joint cost is

KNðQÞ ¼ A

P
j2Nkj

GðQÞ þ
X
i2N

Q i

GðQÞ

�
X
j–i

XQj�1

zj¼0

X
j–i

hjðQ j � zj=2Þ þ hiðQ i þ 1Þ=2

" #

�
ðQ i þ

P
j–izjÞ!

Q i!
Q

j–izj!
pQi

i

Y
j–i

p
zj

j : ð29Þ
4.3. Comparison of strategies

We now study the costs of the three strategies: non-coopera-
tion, sum constraint and individual constraints. We first consider
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two companies and show that the sum constraint strategy is not
optimal compared to both independent companies and the individ-
ual constraints strategy. Then we numerically investigate the cost
structure for two and three companies.

A strategy is said to be better than another one if it has lower
expected joint costs.

Theorem 1. We have the following ordering:
Fig. 1. The joint cost K(Q,Q) and total individual cost K1(Q) + K2(Q) as a function of
the order quantity Q for A = 20, k = 60, and h = 6.

Table 1
The effect of cooperation for two companies.

A Cost effectiveness

Average Minimum Maximum

50 0.87 0.81 0.94
100 0.87 0.80 0.96
150 0.86 0.80 0.96
200 0.86 0.79 0.96
250 0.87 0.79 0.96

Table 2
The effect of cooperation for three companies.

A Cost effectiveness

Average Minimum Maximum

50 0.72 0.69 0.74
100 0.70 0.66 0.73
150 0.69 0.65 0.72
200 0.68 0.65 0.72
250 0.68 0.65 0.71
� Non-cooperation is better than cooperation under the sum
constraint.
� The individual constraints strategy is better than the sum-con-

straint strategy.
� The optimal order quantity under cooperation with the individual

constraints does not exceed the individual optimal order quantity,
Q N

i 6 Q nc
i for any company i.

The first and second item in this theorem state that the sum-
constraint strategy does not perform well. This follows from the
observation that under the sum-constraint strategy replenishment
usually occurs when both companies have an inventory level larger
than 1 unit. This implies larger holding costs for the companies
than under, for example, non-cooperation.

The cost structure (24) prohibits an analytical comparison of
these costs with those for non-cooperation. For identical compa-
nies that have equal parameters for holding costs, demand rates,
and therefore also for the order quantities, the costs structure sim-
plifies to

KðQ ;QÞ ¼ Ak=Q þ hQ

1�
2Q

Q

� �
1
2

� �2Q
;

ð30Þ

where h, k and Q, denote respectively the common holding costs,
demand rates and order quantities. The derivation of this expres-
sion is in the appendix.

Invoking Stirling’s approximation 2Q
Q

� �
1
2

� �2Q � 1ffiffiffiffiffi
pQ
p , an

approximate expression for the joint cost is

KðQ ;QÞ � ðAk=Q þ hQÞ= 1� 1=
ffiffiffiffiffiffiffiffi
pQ

p	 

: ð31Þ

Taking the derivative with respect to Q we obtain that the optimal
order quantity is approximated by the solution of

2h
ffiffiffiffi
p
p

Q 5=2 � 3hQ 2 � 2Ak
ffiffiffiffi
p
p

Q 1=2 þ Ak ¼ 0: ð32Þ

It is straightforward to compare these costs (31) with those under
non-cooperation. To this end, note that if the procurement cost A de-
creases, then replenishing inventory becomes cheaper. Hence, the
companies replenish more often and the order quantity per replen-
ishment decreases for both individual firms and cooperating firms. If
the procurement cost A is low enough then the order quantities are
equal to one unit, Q⁄ = 1 and Qnc = 1. In this case, cooperation leads to
the same cost as no cooperation: K(1,1) = 2(Ak + h) = K1(1) + K2(1).
This is also true for even lower values of A. Therefore, we determine
the largest value of the procurement cost A such that the cost of
cooperation is equal to the total individual cost.

Theorem 2. For two identical companies cooperation under individ-
ual constraints is better than non-cooperation if and only if A > h/k.

Fig. 1 gives the joint costs K(Q,Q) and the total individual costs
K1(Q) + K2(Q) for parameter values A = 20, k = 60, and h = 6. Both
cost functions are convex in the order quantity Q. The optimal joint
costs (198.7) are lower than the individual optimal costs (246.0);
the same relation holds for the optimal order quantities (15 and
20, respectively).
For non-identical companies, the cost structure, as in (24), (29),
prohibits an analytical comparison of the joint costs and the total
individual costs. Note that in general the optimal strategy may
be rather complicated, see e.g., Ignall (1969). The explicit expres-
sion for the costs is amenable for numerical comparison. This is a
common approach in literature, see e.g., Federgruen et al. (1984).
For numerical comparison, we randomly select the problem
parameters (A, (ki,hi)i2N) from the following ranges similar to those
used in the numerical tests in Viswanathan (1997)

A 2 f50;100; . . . ;250g; ki 2 f20;25; . . . ;40g; and
hi 2 f2;6;10g; i ¼ 1;2:

We consider the cost effectiveness, that is the optimal joint cost di-
vided by the total optimal cost under non-cooperation. For two
companies (Table 1) and three companies (Table 2) we observe that
cooperation under the individual constraints outperforms non-
cooperation.

Hence, in all the test instances comparing the numerical
optimum of the joint cost K with the analytical optimum of the
individual total costs reveals that cooperation outperforms



Table 3
The optimal cost, the Shapley value and the distribution rule for two companies with
problem parameters A = 200, k1 = 20, k2 = 40, h1 = 10, h2 = 10.

Companies 1 2 1, 2

Optimal cost 287.86 405.00 549.95
Shapley value 216.40 333.55
Distribution rule 197.98 351.97
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non-cooperation. We further observe that cooperation is more
beneficial for more companies. Some further observations from
the experiments are as follows.

(i) The cost function K under the individual constraints strategy
appears to be convex. Hence, it has a unique minimum.

(ii) Cooperation under the optimal quantities for non-coopera-
tion yields lower costs: K Q nc

1 ;Q
nc
2

� �
6 K1 Q nc

1

� �
þ K2 Qnc

2

� �
.

(iii) Cooperation results in shorter expected cycle times. That is,
on average a joint order for replenishment is placed more
often than any individual order.

(iv) Under cooperation the procurement costs per time unit are
smaller than under individual optimization. Under coopera-
tion the firms pay A per cycle instead of 2A. On the other
hand, the expected cycle time is smaller. Apparently the
reduction in procurement costs dominates the decrease in
cycle time.

(v) If the optimal order quantity under cooperation of firm j
is the same as the individual optimal order quantity,
QN

j ¼ Q nc
j , then the holding cost of this firm is larger

under cooperation than under individual optimization.
This has two causes. Under cooperation for each sample
path of demands firm j has a weakly larger inventory
level with probability 1. This causes a larger average
inventory for firm j, so larger holding costs. On the other
hand, with positive probability company k – j ends the
cycle. Then the cycle time is lower than under individual
optimization.

5. Cost allocation

We have seen that the individual constraints strategy saves
costs. Thus the companies are willing to cooperate. In this section
we investigate how to allocate the joint costs among the compa-
nies. For this, we use cooperative game theory as a tool. We start
with a description of the game theoretic concepts and then proceed
with a numerical investigation.

The replenishment game is a cooperative cost game (N,c), see
e.g., Peters (2008). N is the player set consisting of the companies.
A coalition U of players is a nonempty subset of N. The cost
function c assigns to any coalition of players a cost. In this game,
the cost of firm i is the minimal cost of cost function Knc

i ðQiÞ, as

defined in (4); cðfigÞ ¼ Knc
i Q nc

i

� �
for i 2 N. Let QU

i

n o
i2U

be the

optimal order quantities that minimize the cost KU({Qi}i2U). The
cost of coalition U is the minimal cost of the joint cost function

KU as defined in (29), KU Q U
i

n o
i2U

	 

. A game (N,c) is called concave

if c(U1 [ U2) + c(U1 \ U2) 6 c(U1) + c(U2) for any coalitions U1, U2.
An allocation of the joint cost c(N) should be in the core C(N,c)

of the game,

CðN; cÞ ¼ x 2 RN :
X
i2N

xi ¼ cðNÞ;
X
i2T

xi 6 cðUÞ for all U

( )
; ð33Þ

if this set is nonempty. Then all coalitions U pay a quantity that is
at most equal to their cost c(U). Hence, no coalition wants to devi-
ate from the cooperation within coalition N. Such an allocation is
called a stable allocation. Since the core often contains more than
one allocation, a natural question that arises is which core element
to select.

We consider two specific cost allocations and check if they be-
long to the core. The first one is the Shapley value (Shapley, 1953).
It is defined as follows. Let r be a permutation of the players, with
player r(k) in position k. The marginal vector mr(c) is a vector that
assigns to each player its marginal contribution to the cost for the
permutation r:
mr
rðiÞðcÞ ¼

cðfrðiÞgÞ; i¼1;
cðfrð1Þ;rð2Þ; .. .;rðiÞgÞ�cðfrð1Þ;rð2Þ; .. .;rði�1ÞgÞ; i>1:

�
ð34Þ

The Shapley value /(c) is an allocation of the joint cost c(N) such that
each player pays its average marginal contribution to the costs:

/ðcÞ ¼ 1
jNj!

X
r

mrðcÞ: ð35Þ

The distribution rule d is a cost allocation designed for inventory cost
games. This rule is an extension of the distribution rule for deter-
ministic inventory cost games (Meca et al., 2004), which was shown
to be stable. The distribution rule consists of two parts. The first part

is the distribution of the joint average order costs A
P

j2Nkj

	 

=GðQNÞ

among the firms proportional to the square of the individual opti-

mal order costs Aki=Qnc
i

� �2. The second part is the individual holding
cost of each firm as experienced under cooperation; recall (29). The
distribution rule allocates

di ¼
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to company i.
Notice that the Shapley value is a general solution for coopera-

tive games, while the distribution rule is tailor-made for inventory
situations. Neither is better than the other. A cost allocation is cho-
sen based on its properties.

For two companies, cooperation is better than non-cooperation,
c(N) < c({1}) + c({2}), as seen in Table 1. Consequently, the two-firm
replenishment game is concave and the core

CðN; cÞ ¼ fx 2 R2 : x1 þ x2 ¼ cðNÞ; x1 6 cðf1gÞ; x2 6 cðf2gÞg
ð37Þ

is a nonempty set. Then the Shapley value is a stable allocation be-
cause it belongs to the core of the game (Shapley, 1971). The distri-
bution rule belongs to the core of the game in all test instances, and
is therefore stable; see Table 3 for an example.

For three companies, the corresponding replenishment game is
a concave game in all test instances, as summarized in Table 2. Fur-
ther, the Shapley value and the distribution rule are both stable
allocations. See Table 4 for an example. Our numerical results indi-
cate the following conjecture.

Conjecture 1. The Shapley value /(c) and the distribution rule d are
stable cost allocations for replenishment situations.

These stability results extend those for deterministic inventory
situations (Meca et al., 2004) to Poisson demand.



Table 4
The optimal cost, the Shapley value and the distribution rule for three companies with problem parameters A = 250, k1 = 25, k2 = 30, k3 = 25, h1 = 10, h2 = 2, h3 = 6.

Companies 1 2 3 1, 2 1, 3 2, 3 1, 2, 3

Optimal cost 358.57 174.21 276.87 424.78 497.58 350.95 553.26
Shapley value 265.51 100.01 187.74
Distribution rule 291.30 79.23 182.73

Fig. 2. The cost d1 by the distribution rule as a function of the procurement cost A, is
represented by the solid line. The dashed lines indicate the upper bound c({1}) and
lower bound c(N) � c({2}) in the core for the cost allocated to company 1.
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We also investigate how sensitive the cost allocations are to
changes in the parameters in a two-company setting. First, we
consider the Shapley value. In a two-company game this value
equals /(c) = ((c({1}) � c({2}) + c(N))/2, (c({2}) � c({1}) + c(N))/2)
by definition. Since the core is the line segment between the two
allocations (c({1}),c(N) � c({1})) and (c(N) � c({2}),c({2})), the
Fig. 3. The cost d1 by the distribution rule as a function of the demand rate d1 and holdin
illustrates the upper bound c({1}) in the core for the cost allocated to company 1. The p
Shapley value always lies in the center of the core. This means that
the cost savings due to cooperation are shared equally among the
companies. Thus, both companies have the same strong incentive
to cooperate if the cost is allocated according to the Shapley value.

Next, we analyse the sensitivity of the distribution rule d. If both
companies are identical, then they will order identical quantities.
By definition, the distribution rule allocates the same cost to both
companies. Hence, the cost allocation lies in the center of the core,
and coincides with the Shapley value. This means that the cost sav-
ings are shared equally among the companies, so they always have
the same strong incentive to cooperate.

Fig. 2 illustrates the sensitivity with regard to the procurement
cost A if the companies are not identical. In this situation, the allo-
cated cost for company 1 shows an increasing trend, although not
monotonically. The reasons for this are as follows. First, the compa-
nies can only order integer quantities, hence a discretisation effect
occurs. Second, due to the increase in procurement cost, both com-
panies will order larger quantities. However, company 2 has a lar-
ger demand rate and his increase in order quantity is larger than
for company 1. These effects result in the non-smooth cost alloca-
tion for company 1.

Finally, we consider the sensitivity with regard to changes in
demand rate and holding cost. In Fig. 3 one sees that the allocation
to company 1 by the distribution rule, increases with the demand
rate and the holding cost. Also, the position in the core increases
slightly from the bottom half of the core to the top half. In all cases,
the cost allocation does not get near the bounds of the core. Hence,
both companies receive reasonable large parts from the cost sav-
ings. Therefore, the incentives for cooperation remain strong.
g cost h1, is represented by the solid plane. The plane indicated by the dashed lines
lane indicated by the solid lines illustrates the lower bound in the core.
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We conclude that changes in the parameters have a very small
effect on the incentives of the companies to cooperate if the distri-
bution rule is used. These incentives remain strong. In case of cost
allocation via the Shapley value, the incentives even remain the
same.

6. Conclusions

In this paper we study stable cost allocations for companies that
jointly control their inventories. These inventories are reviewed
continuously, and the companies face Poisson demand. The paper
starts with the analysis of two natural cooperation strategies. First,
the sum constraint strategy prescribes the companies to place a
joint order for replenishment of their stocks when their joint
inventory position reaches a certain reorder level. Second, the indi-
vidual constraints strategy prescribes the firms to reorder as soon
as a company reaches its reorder level. We obtain explicit expres-
sions of the joint costs under cooperation, and of the individual
costs.

Comparison of the costs of these two strategies, also with the
cost of non-cooperation, shows that the individual constraints
strategy has the lowest costs for situations with two or three com-
panies. For two identical companies we characterize when cooper-
ation is beneficial. The numerical experiments show that stable
cost allocations of the joint cost exist, namely the distribution rule
and the Shapley value are stable allocations for two or three com-
panies. Further, when the parameters change, both cost allocations
still provide strong incentives to cooperate for two companies.

In future research we like to extend our model to include minor
ordering costs, positive lead time, backorders, batch arrivals at
multiple companies, and to study other suitable cost allocations.

Appendix A. Proofs

Proof of Lemma 1. We start by calculating the probability that a
demand for one of the companies ends the cycle. Let P(n1,n2) be the
probability that the system reaches state (n1,n2) in a cycle. The
regeneration point is reached for sure—P(Q1,Q2) = 1—and P(n1, -
(n1,n2) = pP(n1 + 1,n2) + (1 � p)P(n1,n2 + 1). Notice that this equa-
tion resembles the first case in (6), hence the solution is

Pðn1;n2Þ ¼
Q 1 þ Q 2 � n1 � n2

Q 1 � n1

� �
pQ1�n1 ð1� pÞQ2�n2 : ðA:1Þ

Next define the probability P1(Q1 � x,x) that a cycle terminates due
to a demand for company 1 in state (Q1 � x + 1,x). Then

P1ðQ1 � x; xÞ ¼ pPðQ1 � xþ 1; xÞ ¼
Q2 � 1
x� 1

� �
pxð1� pÞQ2�x

;

ðA:2Þ

for x = 1, . . . , Q2. Similarly, the probability P2(Q1 � y,y) that a cycle
terminates due to a demand for company 2 at state (Q1 � y,y + 1) is

P2ðQ1 � y; yÞ ¼ ð1� pÞPðQ 1 � y; yþ 1Þ ¼
Q2 � 1

y

� �
pyð1� pÞQ2�y

;

ðA:3Þ

for y = 0, . . . , Q2 � 1. The expected holding cost incurred during a
cycle that is terminated by company 1 in state (Q1 � x,x),
x = 1, . . . , Q2, is the expected cost times the cycle length:

½h1ð2Q 1 � xþ 1Þ=2þ h2ðQ 2 þ xÞ=2� Q 2

k1 þ k2
: ðA:4Þ

Similarly, the expected holding cost during a cycle that is termi-
nated by company 2 in state (Q1 � y,y), y = 0, . . . , Q2 � 1, is
½h1ð2Q 1 � yÞ=2þ h2ðQ 2 þ yþ 1Þ=2� Q2

k1 þ k2
: ðA:5Þ

Thus the expected holding cost during a cycle terminated by com-
pany 1 is

XQ2

x¼1

½h1ð2Q 1 � xþ 1Þ=2þ h2ðQ 2 þ xÞ=2� Q2

k1 þ k2
P1ðQ 1 � x; xÞ ðA:6Þ

¼ Q 2

k1 þ k2

XQ2

x¼1

h1 Q1 �
x� 1

2

� �
þ h2

Q 2 þ x
2

� 

Q2 � 1
x� 1

� �
pxð1� pÞQ2�x

ðA:7Þ

¼ Q 2

k1þk2
p
XQ2�1

y¼0

h1 Q 1�
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2

	 

þh2

Q 2þyþ1
2
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Q 2�1
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� �
pyð1�pÞQ2�1�y

ðA:8Þ

Let Y be the random variable with realisations y in this expression.
This variable Y is binomial distributed with Q2 � 1 trials and prob-
ability p of success. Therefore we proceed:

¼ Q 2

k1 þ k2
pE h1 Q 1 �

1
2

Y
� �

þ h2
1
2
ðQ 2 þ 1Þ þ 1

2
Y
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ðA:9Þ
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p h1 Q 1�
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pðQ 2�1Þ
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þh2
1
2
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2
pðQ 2�1Þ
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:

ðA:10Þ

In a similar fashion we derive the expected holding cost during a cy-
cle terminated by company 2.

XQ2�1

y¼0

h1ð2Q1 � yÞ=2þ h2ðQ 2 þ yþ 1Þ=2½ � Q 2

k1 þ k2
P2ðQ 1 � y; yÞ

ðA:11Þ
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2
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:

ðA:12Þ

Summarizing, the expected procurement and holding cost per cycle
are

Aþ Q2

k1þk2
p h1 Q1�

1
2

pðQ 2�1Þ
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þh2
1
2
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h1 Q 1�
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þh2
1
2
ðQ 2þ1Þþ1
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pðQ 2�1Þ

� �� 

:

ðA:13Þ

Dividing this by the expected cycle time results in the expected
joint cost per time unit. h
Proof of Lemma 2. The expected holding cost incurred during a
cycle are the holding cost per time unit times the cycle length

½h1ðQ 1 þ n1Þ=2þ h2ðQ 2 þ 1Þ=2�Q 1 � n1 þ Q2

k1 þ k2
ðA:14Þ

if firm 2 ends the cycle while the inventory position of firm 1 is n1,
and

½h1ðQ 1 þ 1Þ=2þ h2ðQ 2 þ n2Þ=2�Q 1 þ Q 2 � n2

k1 þ k2
ðA:15Þ

if firm 1 ends the cycle while the inventory position of firm 2 is n2.
Then the expected joint procurement and holding costs per cycle
under cooperation are
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Aþ
XQ1
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½h1ðQ 1 þ n1Þ=2þ h2ðQ 2 þ 1Þ=2�

� Q1 � n1 þ Q 2
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Pðn1;0Þ
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Pð0;n2Þ

ðA:16Þ

¼ Aþ Q 2
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XQ1�1

z1¼0

½h1ðQ 1 � z1=2Þ

þ h2ðQ2 þ 1Þ=2�
z1 þ Q 2
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pz1 ð1� pÞQ2

þ Q1
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XQ2�1
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þ h2ðQ2 � z2=2Þ�
Q 1 þ z2

z2
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pQ1 ð1� pÞz2 ðA:17Þ

The average cost per time unit K is obtained by dividing this cost by
the expected cycle time (17). h
Proof of Theorem 1. Let Q s
1;Q

s
2

� �
be the optimal order quantities

for cooperation under sum constraint. The expected joint cost per
time unit (9) and the assumption Q1 P Q2 imply that Qs

1 ¼ Qs
2.

Let Qs be this optimal order quantity. Notice that

K1ðQ sÞ þ K2ðQ sÞ

¼ A
k1 þ k2

Q s þ 1
2
ðh1 þ h2ÞðQ s þ 1Þ ðA:18Þ

6 A
k1 þ k2

Q s þ 1
2

h1ðð2� pÞQ s þ pÞ þ 1
2

h2ðð1þ pÞQ s þ 1� pÞðA:19Þ

¼ eK ðQs;Q sÞ: ðA:20Þ

Together with Ki Qnc
i

� �
6 KiðQsÞ for i = 1, 2 this proves that non-

cooperation is better than cooperation under the sum constraint.
For the second statement, consider a joint inventory situation

with parameters A, k1, k2, h1 and h2. We show that KðQs;QsÞ 6eK ðQs;QsÞ, the cost of cooperation under the individual constraints
while using the optimal quantities of the sum constraint strategy
do not exceed the optimal cost of cooperation under the sum
constraint. Then the proof is finished because the strategy (Qs,Qs)
need not be optimal for cooperation under the individual con-
straints, K QN

1 ;Q
N
2

	 

6 KðQs;QsÞ.

First, when cooperating under the individual constraints the
joint inventory position ranges from 2Qs down to ni + 1 with ni

between 1 and Qs, for some company i. When the companies
cooperate under the sum constraint then the joint inventory
position ranges from 2Qs down to Qs + 1. This lower bound is larger
than for cooperation under the individual constraints. Therefore,
the average inventory position of both companies are larger than
for cooperation under the sum constraints.

Second, in case of individual constraints inventory is replenished
when the inventory position of one of the firms—say firm i—drops
to 0; the joint accumulated demand equals 2Qs � nj, j – i. In case of
the sum constraint, replenishment occurs when the joint inventory
position reaches Qs. Then, the joint accumulated demand equals Qs.
This is lower than in case of individual constraints, Qs

6 2Qs � nj.
Therefore, the cycle time is lower than for cooperation under the
individual constraints. Together with the first result this implies
that both the holding cost per time unit and the order cost per time
unit are lower under cooperation with individual constraints. This
strategy is better than cooperation under the sum constraint.
For the third statement, without loss of generality consider i = 1.
Assume that the order quantity of company 2, Q2, is fixed. Then
under cooperation there is a positive probability that firm 2 ends
the cycle and initiates a new joint order. In that case, the cycle ends
before company 1 has reached its reorder level; its inventory
position is rather high, leading to rather large holding costs. A
lower order quantity would decrease these costs. If under coop-
eration firm 1 ends the cycle, then the situation is the same as
under individual optimization. Hence, the optimum order quantity
for company 1 under cooperation does not exceed the individual
optimal quantity Qnc

1 . h

Derivation of equation (30). According to (23), GðQ ;QÞ ¼
4QI1

2
ðQ þ 1;QÞ. By Lemma 2,

KðQ ;QÞ ¼ Ak=Q
2I1

2
ðQ þ 1;QÞ þ

1
2I1

2
ðQ þ 1;QÞ

�
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1
2
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: ðA:21Þ

The summation in this expression reduces to:
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ðA:23Þ

¼ hð3Q þ 1ÞI1
2
ðQ þ 1;QÞ � hðQ þ 1ÞI1

2
ðQ þ 2;Q � 1Þ: ðA:24Þ

Therefore,

KðQ ;QÞ ¼ Ak=Q
2I1

2
ðQ þ 1;QÞ þ

h
2

3Q þ 1ð Þ � hðQ þ 1Þ

�
I1

2
ðQ þ 2;Q � 1Þ
2I1

2
ðQ þ 1;QÞ : ðA:25Þ

Using the equality I1
2
ðQ þ 2;Q � 1Þ ¼ I1

2
ðQ þ 1;QÞ � 2Q

Q þ 1

� �
1
2

� �2Q

(Abramowitz and Stegun, 1972, (26.5.15)), we obtain

KðQ ;QÞ ¼ Ak=Q
2I1

2
ðQ þ 1;QÞ þ hQ þ hðQ þ 1Þ

2Q

Q þ 1

� �
1
2

� �2Q

2I1
2
ðQ þ 1;QÞ :

ðA:26Þ

Finally, because hðQ þ 1Þ 2Q
Q þ 1

� �
1
2

� �2Q ¼ hQ
2Q � 1

Q

� �
1
2

� �2Q�1, and

I1
2
ðQ þ 1;QÞ ¼ 1� I1

2
ðQ ;Q þ 1Þ ¼ 1

2�
2Q
Q

� �
1
2

� �2Qþ1, we conclude

KðQ ;QÞ ¼ Ak=Q
2I1

2
ðQ þ 1;QÞ þ hQ 1þ

2Q � 1

Q

 !
1
2

� �2Q�1

2I1
2
ðQ þ 1;QÞ

0BBBB@
1CCCCA

¼ Ak=Q þ hQ

1�
2Q

Q

 !
1
2

� �2Q

: ðA:27Þ

Proof of Theorem 2. By definition of the switch value, cooperation
under the individual constraints has lower cost than individual
optimization if and only if A > A. To determine the switch value,
we observe the following. If the procurement cost A is slightly
larger than A, then the optimal order quantities increase to 2
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(because they are integer valued). In other words, the switch value
is the smallest value of A such that the optimal order quantities are
equal to 2, and the costs of cooperation and non-cooperation are
the same. By Eq. (30), Kð2;2Þ ¼ 4

5 ðAkþ 4hÞ. Also, K1(2) + K2(2) =
Ak + 3h. The solution of K(2,2) = K1(2) + K2(2) is A = h/k. h
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