
Adaptive Linear Combination of Heuristic Orderings in

Constructing Examination Timetable

Syariza Abdul-Rahmana,b, Andrzej Bargielab, Edmund K. Burkeb, Ender
Özcanb, Barry McCollumc, Paul McMullanc

aUniversiti Utara Malaysia, School of Quantitative Sciences, 06010 Sintok, Malaysia
bUniversity of Nottingham, School of Computer Science, Jubilee Campus, Nottingham

NG8 1BB, UK
cQueen’s University Belfast, School of Electronics, Electrical Engineering and Computer

Science, University Road, Belfast, BT7 1NN, Northern Ireland, UK

Abstract

In this paper, we investigate an adaptive linear combinations of graph color-
ing heuristics with a heuristic modifier for solving the examination timetabling
problem. We invoke a normalisation strategy for each parameter in order to
generalise the specific problem data. Two graph coloring heuristics were used
in this study (largest degree and saturation degree). A score for the diffi-
culty of assigning each examination was obtained from an adaptive linear
combination of these two heuristics and examinations in the list were or-
dered based on this value. The examinations with the higher difficulty score
value were chosen for scheduling based on two strategies. We have tested
for single and multiple heuristics with and without a heuristic modifier with
different combinations of weight values for each parameter on the Toronto
and ITC2007 benchmark data sets. We have observed that the combina-
tion of multiple heuristics with a heuristic modifier offers the most effective
way to obtain good solution quality. Experimental results showed that our
approach has obtained promising results. We conclude that this adaptive
linear combination of heuristics is a highly effective method and simple to
implement.

Keywords: examination timetabling, constructive heuristic, linear
combination, graph colouring

Preprint submitted to European Journal of Operational Research January 15, 2013

exo
TextBox
 




1. Introduction

The examination timetabling problem has been much studied and a wide
variety of approaches have been taken across a variety of associated problem
descriptions. In general, the task is NP hard ([1]). The real world problem
is rich and varied, involving significant levels of information. It has become
increasingly difficult in recent years due to the increasing size of student
enrolments and different choices of courses ([5]). The manual solution of
this problem is typically suboptimal (feasible but not a very good solution)
since high quality exploration of the space is beyond the scope of ad-hoc
search. Examination timetabling problems have been well documented in the
academic literature with a good coverage of various methods and strategies
to solve this problem ([3], [4]).

The examination timetabling problem can be defined as the assignment
of a finite set of examinations to a finite set of time-slots while, at the same
time, satisfying various problem constraints. It involves two types of con-
straints; hard constraints and soft constraints. The hard constraints are
strictly required to be adhered to in any circumstances. Satisfying the hard
constraints produces a feasible solution. For example, students cannot sit
two examinations at the same time. On the other hand, soft constraints do
not affect the feasibility of the solution but they need to be satisfied as much
as possible for the solution to be of high quality. Of course, soft constraints
usually have to be violated to some degree in a real world situation. The
extent to which the defined soft constraints are satisfied reflects the quality
of the obtained timetable. An example of a soft constraint is that students
should have as much time between examinations as possible. Based on a
survey ([5]), there are many different such constraints that have been high-
lighted by different academic institutions in Britain. Examples of real-world
application within examination timetabling problem is in [35].

The examination timetabling problem can be mapped through an iden-
tity relationship onto a graph colouring mathematical formalism. Indeed,
this observation underpins some of the earliest and most well known ap-
proaches to examination timetabling problems ([2]). In the graph colouring
formalism, the vertices represent examinations and the edges connecting ver-
tices represent hard constraint i.e. conflicts between the examinations. For
more details on graph representation in timetabling problem see [6].

Timetabling approaches have been widely investigated at the interface
of artificial intelligent and operation research over the last decades or so.

2



One of the earliest approaches in educational timetabling is graph colouring
approaches that are designed based on graph theory ([2]). Many other ap-
proaches upon meta-heuristic technique and hybridisation have shown great
success such as evolutionary algorithm ([7]), tabu search ([8]), ant algorithm
([9]) and simulated annealing ([10]). These approaches aim to improve the
initial solutions by employing search strategy to escape from local optima.

Recently, variants of local search approaches are widely used to solve
timetabling problem. These approaches work by navigating the solution
search space and exploring neighbourhood structures in a different way from
meta-heuristics. These local search approaches include very large neighbour-
hood search ([11]), variable neighbourhood search ([27]) and iterated local
search ([12]). The reliant on parameter setting of these approaches has lead
to the introduction of other approaches such as hyper-heuristic ([13]), case-
based reasoning ([14]), fuzzy approaches ([15]) and granular information pro-
cessing ([16]) within the timetabling arena. A review on major approaches
in examination timetabling can be found in [3] and [4].

The successful assignment of an examination to a time-slot is closely re-
lated to the initial ordering strategy in which all examinations are processed.
Consequently, examinations are first ordered according to the perceived dif-
ficulty of being scheduled in the available time-slots. The examinations are
then taken from the order and assigned one by one to the time-slot. The ex-
amination deemed to be the most difficult is scheduled first in the timetable
in the hope that the remaining scheduling problem is less difficult than the
original one and at the same time the relatively least difficult examinations
will have less assignment trouble later on in the process. The approaches to
timetabling which encompass this basic graph colouring implementation are
called constructive approaches and are often used during the initialisation
strategy of a meta-heuristic process. In the past, there have been various
ordering strategies employed in the context of examination timetabling ([2],
[6]). Commonly used ordering strategies are: saturation degree, largest de-
gree, largest weighted degree, largest enrolment and colour degree. Generally,
hyper-heuristic is one of approaches that used graph colouring heuristics as
low-level heuristics to construct solution. This approach works as a high-
level heuristic and intelligently chooses a set of low-level heuristics based on
learning mechanism ([17]).

Since none of the ordering strategies provides a guarantee of successful
scheduling, there has been a wide study on ordering heuristics within adap-
tive approaches reported in the academic literature. In our previous study

3



([18]), we introduced several strategies to choose examinations and time-slots
using ordering heuristics within the framework of squeaky wheel optimisa-
tion. This work is an extension of the adaptive heuristic orderings technique
proposed by [19] where the approach promotes difficult examinations to be
scheduled first at each of iteration using a heuristic modifier. In an other
study, [20] implemented an adaptive approach to examination timetabling
by hybridising the low level graph heuristics based on a learning mechanism
and modifying the solutions by high-level heuristic indirectly.

With most of the approaches taken within the overall family of construc-
tive methods, it is often the case that a single heuristic is used during the
initial ordering phase. In considering the difficulty of an examination, it is
useful to take into account other factors that affect the ordering of examina-
tions. Considering many factors at one time represents the real world situa-
tion. The difficulty of scheduling an examination can be approximated more
reliably if several heuristics lend support to the final ordering of examina-
tions. Consequently, the current constructive study by [21] combined graph
colouring heuristics with weights within liner approach as to measure the
difficulty of a vertex of weighted graph. The study used the vertex-selection
heuristics to represent the difficulty of a vertex and it is continually updated
throughout the timetabling process. Studies by [22] and [15] have also de-
ployed this strategy by considering more than one heuristic at one time and
it has been shown that it has an effect on the ordering of the examinations.
Based on the ‘difficulty factor ’, [22] used graph colouring heuristics i.e. the
combination of largest enrolment and largest degree as ordering strategy for
assigning examinations to time slots. Several variations of relative weight of
each criterion were considered in order to produce a number of different feasi-
ble timetables. Further, [15] combined two graph colouring heuristics within
the framework of fuzzy methodology in order to deal with uncertainty in
ordering the examination based on its difficulties. Three graph colouring
heuristics were used, i.e. largest degree, largest enrolment and saturation
degree with three combinations of two heuristics. The study indicated that
the solution quality was superior compared with using only a single heuristic.

Encouraged by these studies, we extend this work by combining heuristics
with a heuristic modifier and adapting different weights to each heuristic to
analyse its effectiveness. The aim is to obtain new difficulty values that are
extracted from the combination of graph colouring heuristics with a heuristic
modifier using a linear approach. Different weights are assigned to each
parameter and the effect of weights associated with ordering using different

4



heuristics on the quality of the examination schedules is investigated. It is
worthy of note that by using information from these heuristics and a heuristic
modifier, improvements can be seen in the obtained solution. This approach
has been tested on two datasets i.e. Toronto and ITC2007 (The Second
International Timetabling Competition) benchmark datasets and have shown
to produce high quality solutions that are comparable to other approaches
in the literature ([4]).

A review on the adaptive ordering heuristics is explained in Section 2.
Section 3 provided the implementation, the instances we focus on and the
analysis of the results. Finally the conclusion is provided in Section 4 with
some future direction.

2. An Adaptive Linear Combination of Heuristics Orderings

An adaptive approach to examination timetabling based on priorities was
proposed by [19]. This approach was extended by [18] who introduced ad-
ditional strategies to improve the solution quality by including methods to
choose the ordering of examinations and their assignment to time-slots. The
method is based on the idea of squeaky wheel optimisation initiated by [23].
Squeaky wheel optimisation is a greedy approach and works by iteratively
cycling around three procedures: Constructor, Analyzer and Prioritizer. In
relation to the examination timetabling problem, the procedures are as fol-
lows:

• Constructor. First, the constructor generates an initial solution for a
set of unscheduled examinations based on the initial ordering (which
can be generated by a chosen graph colouring heuristic). The unsched-
uled examinations are individually assigned to the best time-slot i.e.
whichever generates the least penalty. During the assignment, there
is a possibility that some of the examinations cannot be assigned to a
time-slot due to the existence of conflicts with other examinations. In
this case, such examinations remain unscheduled.

• Analyzer. Once the constructor has completed the assignment, each
examination is analysed to check whether there was a problem related
with the assignment i.e. whether there is conflict with other examina-
tions during the assignment. A strategy is used to increase the priority
of the problematic examination so that it will be given a higher priority

5



in the next iteration. A certain value is added to the difficulty value of
the unscheduled examination in order to indicate that this unscheduled
examination is more difficult to handle than other examinations. This
difficulty value will therefore increase at the end of each iteration if an
examination remains unscheduled during the assignment.

• Prioritizer. Increasing the difficulty by adding a certain value to a
heuristic may change the ordering of examinations. At this stage, the
updated difficulty value will be ranked in a decreasing order and the
most difficult examination will be chosen to be scheduled first in the
next iteration. The process continues until some stopping criterion is
met and finally the best solution found is returned.

This approach constructs the solution considering the hard constraint of
the tested problem and the quality of the constructed solution is measured
based on the soft constraint violation. The type of hard and soft constraints
and the evaluation of the quality of the constructed timetable differ across
different problem instances. For further detail on the hard and soft constraint
evaluation on the tested benchmark datasets see [4] and [25].

In order to modify the difficulty value of an examination over time, the
idea of a heuristic modifier introduced by [19] is used. The formula for ex-
amination difficulty is presented in equation 1. The difficulty of examination
i at iteration t is a discrete variable that is an estimation of the difficulty of
scheduling the examination after completing the iteration, while the heuristic
of examination i is a chosen graph colouring heuristic value that estimates
the difficulty. heurmodi(t) for examination i at iteration t is a heuristic mod-
ifier value. At each iteration, heurmodi(t) is increased by a modify function
whenever examination i cannot be scheduled (illustrated in equation 1). This
approach can be considered as an online learning algorithm where the feed-
back from the search process while solving the problem is used to construct
the next solution during the iteration.

difficultyi(t) = heuristici + heurmodi(t) (1)

where,

heurmodi(t+1) =

{
modify(heurmodi(t)) , if examination i cannot be scheduled
heurmodi(t) , otherwise

6



An adaptive linear combination of heuristic orderings in this study is
a combination of a number of normalised graph colouring heuristics with
normalised difficulty measures from the heuristic modifier. It is a flexible
approach because different weights can be assigned to different parameters
used in the combination. Information from the chosen heuristics and heuristic
modifier are used to identify new orderings of examination to be scheduled.
The new ordering of an examination based on an adaptive linear combination
of heuristic orderings is represented by the following equation:

difficulty scorei(t) =
n∑

j=1

wj × heuristicNij + wHM × heurmodi(t) (2)

where,

heuristicNij =
heuristicij

maxheuristicj
(3)

heurmodNi(t) =
heurmodi(t)

choosemax(heurmod(t))
(4)

n∑
j=1

wj + wHM = 1 (5)

The difficulty scorei(t) is used as a difficulty measure for examination
i at iteration t based on the information evaluated. In the present study,
a zero-one normalisation method is used to obtain the normalised value be-
tween 0 and 1 for each heuristicNij and heurmodNi(t) to ensure a simple
generalisation characteristic of the problem data. The heuristicNij in equa-
tion 3 is the normalised graph colouring heuristic j for examination i, while
heurmodNi(t) in equation 4 is the normalised heuristic modifier for exami-
nation i at iteration t. The maxheuristicj is the maximum identified value
of heuristic j, while the choosemax function is provided to give an alterna-
tive to the heuristic modifier to change dynamically or statically. Given in
equation 5 is the total weight for heuristic j, wj and heuristic modifier, wHM

is equal to 1.

2.1. Graph Colouring Heuristics

Two types of graph colouring heuristics were used in this suite of ex-
periments. In order to compare their contribution to solution quality, a

7



series of experiments has been carried out, firstly, using each single heuris-
tic separately, and subsequently combining both heuristics with and without
a heuristic modifier. The purpose is to compare the performance of sin-
gle and multiple heuristics and to identify the most effective combination of
heuristics with the heuristic modifier. It should be noted that, although not
investigated here, more graph colouring heuristics can be used within this
approach.

• Largest Degree (LD). The ordering of examinations is based on the
number of conflicting examinations where the examination with the
largest conflict will be scheduled first. The heuristicij holds the num-
ber of conflicting examinations of heuristic j (e.g. largest degree) for
examination i. The heuristicNij is the normalised value of heuristicij
with maxheuristic i.e. the largest number of conflicting examination.
This heuristic is classified as a static heuristic because of the heuristic
value for each examination remains unchanged throughout the itera-
tion. In solving the un-capacitated problem, the examination to be
scheduled is checked whether they are conflicted with other examina-
tions in assigning the time-slot and room. If the assignment cannot be
made, then the heurmodi(t) is increased twice. Subsequently, it also
increased the difficulty score of examination i.

• Saturation Degree (SD). The ordering of examinations is based on the
number of remaining time-slots where the examination with the small-
est number of available time-slots is scheduled first. The number of
remaining time-slots of unscheduled examinations will keep changing
as the conflicting examinations are assigned to time-slot. This heuristic
is classified as a dynamic heuristic. The number of remaining time-slots
of unscheduled examination will keep changing as the conflicting exam-
inations are assigned to time-slots. The ordering of unscheduled exam-
inations may change due to the current successive assignment. Since
the saturation degree value of an examination decreases from time to
time, it requires an adjustment. In this study, the complement of an
examination is used where the saturation degree of an examination is
(max number of time slot− saturation degree of an examination).
The saturation degree value is initialised with 0 and keeps increasing
until the maximum number of time-slots is reached if the examination
cannot be scheduled during the iteration. The complement of satura-
tion degree is used to increase the difficulty of an examination by adding

8



it to the heuristic modifier. As for the capacitated problem (i.e. the
problem with room capacity requirement), its saturation degree value
also considers the availability of rooms for the remaining time-slot. For
example, the number of remaining time-slots of an examination that
can be used to schedule is seven. Assuming that three of the remain-
ing time-slots are considered invalid due to the unavailability of rooms.
In these circumstances, the number of remaining time-slots of an ex-
amination that can be scheduled is reduced to four considering room
availability at the same time. Using this heuristic, the priority of choos-
ing an examination is given to the higher value of difficulty. The next
examination to be scheduled is determined by the difficulty score of
the remaining unscheduled examination, where the largest value of the
difficulty score is scheduled first. In this approach, heuristicij holds
the complement of the number of remaining time-slot of examination i.
The maxheuristic of saturation degree is the total number of time-slot
given for the dataset.

2.2. Heuristic Modifiers (HM)

In our previous study, [18] used various modify function for heuristic mod-
ifiers to change the order of examinations based on their difficulty value. The
difficulty values were updated and increased with four strategies: custom, ad-
ditive, multiplicative and exponential. The examination ordering was based
on only one graph colouring heuristic during the timetabling. In this study,
the same modify function i.e. additive and exponential are employed as in
[18] and the linear approach adapts the normalisation strategy in order to
generalise the ordering of difficulty score by combining a number of graph
colouring heuristic with a heuristic modifier.

• Additive (AD). The modifier is increased by one at each iteration, if
an examination cannot be scheduled. This strategy has a modest ef-
fect on the difficulty of a given examination. If the difference between
the heuristic value of a given examination i and its predecessor in the
priority list is large, then it will take longer in using this approach to
reorder the given examination i, emphasizing that this examination i
is difficult to schedule:

modify(heurmodi(t)) = heurmodi(t− 1) + 1, heurmodi(0) = 0 (6)

9



• Exponential (EX). This modifier will upgrade the priority significantly,
if the examination is difficult to schedule. The examination order will
change significantly due to the large increment in the difficulty value.

modify(heurmodi(t)) = c× heurmodi(t− 1), heurmodi(0) = 1, (7)

where c = 2.

Once the heuristic modifier and the difficulty of an examination have been
updated, the difficulty value of the heuristic modifier is normalised statically
or dynamically based on the choosemax function. After all the heuristic val-
ues and the heuristic modifier have been updated with the chosen weights,
all the values are summed up to obtain difficulty score. The examinations
are then ordered decreasingly based on difficulty score before an assign-
ment is made. The pseudocode of the implemented approach for the Toronto
benchmark datasets is described in Algorithm 1. It is worthy to note that
the Toronto benchmark datasets are un-capacitated problem.

The initial ordering of examinations at the beginning of the timetabling
process is set based on the largest degree graph colouring heuristic. The
saturation degree value of each examination i is set to be equal to 0 at the
beginning of each iteration if it is chosen as the heuristic of the algorithm.
This saturation degree value will keep increasing up to the maximum num-
ber of time-slots. Once the timetabling process begins, the normalise value
for each of the chosen heuristics for each examination j is calculated using
equation 2, 3 and 4. Next, the new difficulty score for each examination
j is obtained and they are sorted in decreasing order. The most difficult
examination (examination i) with the highest difficulty score is chosen first
for time-slot assignment and is checked for the hard constraint violation. If
examination i can be scheduled, then it is scheduled with the least penalty
time-slot. In the case of more than one same least penalty time-slot avail-
able, then the best time-slot is selected randomly from the list. In the case
of examination i being violated, then it is left unassigned and at this stage
the heuristic modifier of examination i is increased based on the identified
type of modify function of the heuristic modifier. For the saturation degree
heuristic, the saturation degree value for each examination i is updated after
each successive examination assignment. The process of the examination as-
signment using adaptive linear combination of heuristic orderings continues

10



Algorithm 1 Constructing an examination timetable based on adaptive
linear combination of heuristic orderings for the Toronto benchmark datasets

Choose heuristic(s) and do the initial ordering based on LD
Assign weight for each of the chosen heuristics
for t = 1 to number of iterations do
if Saturation degree then

Set the saturation degree for each examination as 0
end if
for i = 1 to number of examinations do
for j = i to number of examinations do

Calculate the normalise value of chosen heuristics:
choosemax(heurmodNj(t)) , HeuristicNLD,j, HeuristicNSD,j

(refer equation 2, 3 and 4) with weight value
Calculate the difficulty scorej(t) for each examination according
to the chosen heuristics using equation 1

end for
Sort(difficulty score(t)) in a decreasing order
Choose examination i that has the highest difficulty score to be sched-
uled
if i can be scheduled then

Schedule i in the time-slot with the least penalty
In the case of the availability of multiple time-slots with the same
penalty, choose one randomly

else
Increase and modify heuristic modifier of i (refer equation 6 and 7)

end if
if Saturation degree then

Update the Saturation degree
end if

end for
Evaluate solution, store if it is the best found so far

end for

11



until all examinations i has been assigned to time-slot. At the end of the
process, the solution quality of the constructed timetable is evaluated and
the best solution quality is stored.

2.3. The choosemax Function

The normalised value of the heuristic modifier is determined by the choose-
max function that gives significant modification to the heurmodNi(t).

• Static (S). The heurmodi(t) is normalised with the total number of
iterations used in the algorithm. The larger the heurmodi(t), the more
significant the value of heurmodNi(t).

• Dynamic (D). The heurmodi(t) is normalised with the current maxi-
mum number of heurmod of all examinations that change during the
iteration. This value continues to change until the end of the iteration.

2.4. The weight assignment

Since this approach required weight assignment for each parameter, this
study needs a strategy to assign the weight value. Each of the heuristics
and the heuristic modifiers is assigned with different weight values. Using
this approach, the weight values are assigned to each heuristic and heuristic
modifier with the value from 0 to 1 with a 0.1 increment for each variable.
The total of all weight values is equal to 1 (equation 6). The combination of
these weight values is tested for each of the variables in order to assess the
performance of the heuristics and the heuristic modifier when different weight
values are incorporated. It is important to know which heuristic is performing
well by obtaining good quality solutions and to note the importance of the
heuristic modifier in this combination, so that the higher weight value is
given to the appropriate parameters.

2.5. Shuffling the Ordering of Examinations

The present study employed the shuffling strategy used in our previous
study [18] in order to shuffle the examinations in the ordering, where the
top-window (TW) strategy is used to choose examinations. These are or-
dered based on the difficulty score and from a fixed size of top-window, an
examination is chosen randomly. The insight of this strategy is to give more
possibility to an examination to be chosen from a group of difficult examina-
tions. An appropriate examination to be chosen might appear in a certain size

12



of grouped examinations that has been ordered based on the difficulty score.
The initial test has shown that the incorporation of the shuffling strategy
could assist in finding a better examinations ordering. This study uses the
top-window size from two to nine, as suggested by [18]. Since there is also a
possibility that examinations have the same value of difficulty score, another
strategy introduces a random preference (REQ) in order to choose different
examinations when several sequences of examinations have equal scores.

2.6. Time-slot Choice

Once an examination is chosen, it is assigned to the most appropriate
time-slot. The assignment is made to ensure the smallest penalty cost from
among all the available time-slot assignments. Previous studies [? 19, 31]
have indicated that the first time-slot that generates the least penalty is
chosen for an assignment. Since there is a possibility that some time-slots
generate the same least penalty, a random element is incorporated in making
this choice, introducing a variation of assignments in the timetable. In such a
situation, there is a possibility of an examination being assigned to a different
time-slot during another iteration, even though the order of examinations in
the current iteration is the same as in the previous iteration.

2.7. Illustration of the Implementation

Tables 1 and 2 show an example of how the ordering is achieved using
various combinations of heuristics after a certain number of iterations. In
this example, the total number of time-slots is 10. Table 1 illustrates the
ordering using a single heuristic. Since we want to use only one heuristic
for the ordering, then the weight value for the single heuristic that is chosen
is set to 1.0 and the weight for other heuristics are set as 0. Referring to
column 2 of an unordered list in Table 1, the values are assumed as largest
degree values. In that case, the maxheuristic for largest degree is equal to
19. The calculation of the difficulty score value for the single ordering of
LD in column 5 is based on equation 1 where the difficulty score for e4 =
(1.0)19/19 = 1.0, e1 = (1.0)17/19 = 0.89 and so on.

The example for SD is shown in column 3 of Table 1. The single ordering
for SD is dynamic. After each assignment of a time-slot, the new examination
ordering is obtained. Initially, as implemented by [18], the saturation degree
value is set to 0 for all examinations. Assumed that e2 is chosen as the first
examination to be assigned to a time-slot. Once e2 is assigned to a time-slot,
the saturation degree value for the unscheduled examinations is updated by

13



Table 1: Examples of ordering by combinations of single heuristics (LD = largest degree;
SD = saturation degree; HM = heuristic modifier; diff score = difficulty score)

Unordered list Ordering by Ordering by Ordering by
single LD single SD single HM

exams LD HM exams diff score exams diff score exams diff score
e1 17 4 e4 1.00 e2 - e2 1.00
e2 14 20 e1 0.89 e4 0.1 e4 0.75
e3 16 10 e10 0.84 e6 0.1 e6 0.70
e4 19 15 e3 0.84 e10 0.1 e8 0.60
e5 9 0 e2 0.74 e3 0.0 e10 0.60
e6 11 14 e6 0.58 e1 0.0 e3 0.50
e7 8 7 e5 0.47 e9 0.0 e7 0.35
e8 8 12 e7 0.42 e5 0.0 e1 0.20
e9 8 0 e9 0.42 e7 0.0 e9 0.00
e10 16 12 e8 0.42 e8 0.0 e5 0.00

considering the conflict with other examinations in a previous assignment.
Assumed that e4, e6 and e10 have conflicts with e2, then the saturation
degree of these examinations are increased by one and the difficulty score
(using equation 1) for e4 = (1.0)1/10 = 0.1, e6 = (1.0)1/10 = 0.1 and e10
= (1.0)1/10 = 0.1, while the difficulty value for the rest of the examinations
are zero due to no conflict with e2. The calculation of the difficulty value for
each unassigned examination continues until no more examinations are to be
assigned to a time-slot. The ordering by single heuristic modifier (HM) in
column 1 in Table 1 is based on the number of times an examination cannot
be scheduled during the previous iterations. It is assumed that the figures
in column 1 are the number of times these examinations cannot be assigned
into a timetable during the previous iterations. By considering equation 1,
the difficulty score for ordering by single HM for e2 = (1.0)20/20= 1.0, e4 =
(1.0)15/20 = 0.75, e6 = (1.0)14/20 = 0.70 and so on.

Table 2 illustrates the example of combinations of more than one heuristic.
It is assumed that the total number of time-slot to be assigned is 10. The
ordering by LDSD is a dynamic ordering. Considering the weight for LD,
wLD = 0.2 and the weight for SD, wSD = 0.8. Furthermore, it is assumed

14



Table 2: Examples of ordering by combinations of multiple heuristics (LD = largest degree;
SD = saturation degree; HM = heuristic modifier; diff score = difficulty score)

Ordering by LDSD Ordering by LDHM Ordering by LDSDHM
exams diff score exams diff score exams diff score

e2 - e4 0.800 e2 -
e4 0.280 e6 0.676 e4 0.500
e1 0.258 e10 0.648 e10 0.408
e3 0.168 e3 0.568 e6 0.396
e10 0.168 e8 0.564 e3 0.368
e6 0.116 e7 0.364 e8 0.324
e5 0.095 e1 0.279 e1 0.299
e7 0.084 e2 0.147 e7 0.224
e9 0.084 e5 0.095 e5 0.095
e8 0.084 e9 0.084 e9 0.084

that e2 is the first examination to be chosen for assignment and it has been
assigned to a time-slot and assuming also that e2 has conflict only with e4 and
e1. In this case, the saturation degree values for e4 and e1 are increased by 1.
By using equation 1 and considering the largest degree value from Table 1,
the difficulty score for this combination for e4 = (0.2)(19/19) + (0.8)(1/10)
= 0.280, for e1 = (0.2)(17/19) + (0.8)(1/10) = 0.258, e3 = (0.2)(16/19) +
(0.8)(0/10) = 0.168 and so on, where these calculations are based on the
combination of information from the largest degree and saturation degree
heuristics. Let us consider the weight for LD, wLD = 0.2 and the weight
for HM, wHM = 0.8 for ordering the examinations using combination of
LDHM. Considering the largest degree and HM values from Table 1, the
difficulty score (equation 1) for e4 = (0.2)(19/19) + (0.8)(15/20) = 0.800, e6
= (0.2)(11/19) + (0.8)(14/20) = 0.676 , e10 = (0.2)(16/19) + (0.8)(12/20)
= 0.648 etc. In the next combination of heuristics, let us consider the weight
for LD, wLD = 0.2, the weight for SD, wSD = 0.4 and the weight HM, wH
M = 0.4 for ordering the examinations with combination of LDSDHM. It
is assumed that e2 is the first examination to be chosen for assignment at
certain iteration and it has been assigned to a time-slot and has conflict only
with e4 and e1. Considering the information from Table 2, the difficulty score
for e = (0.2)(19/19) + (0.4)(1/10) + (0.4)(15/20) = 0.500, e10 = (0.2)(16/19)

15



+ (0.4)(0/10) + (0.4)((12/20) = 0.408, e6 = (0.2)(11/19) + (0.4)(0/10) +
(0.4)(14/20) = 0.396 etc.

3. Experiments

In the experiment described, two benchmark problems are tested. Due to
the stochastic nature of the proposed approaches, 50 different timetables were
constructed for each dataset from the Toronto and ITC2007 benchmark with
each combination of heuristic(s) and heuristic modifier. Various combinations
of heuristic(s) and heuristic modifier are considered in order to determine and
compare the performance of the proposed approaches. Different weights are
also assigned to each heuristic and heuristic modifier with the total weight
equal to one for each combination. The stopping condition for this approach
is set as 2000 iterations for the Toronto, while the experiment for ITC2007 is
based on the running time given in the competition. The best penalty value
obtained from 50 runs is highlighted in bold for each problem instance.

3.1. Experimental Data

The Toronto benchmark datasets used in this study were introduced by
[24] and it is widely used as test bed in the examination timetabling commu-
nity with different problem dimensions and characteristics. These datasets
can be accessed at ftp://ftp.mie.utoronto.ca/pub/carter/testprob/. Since
there is a problem relating to the circulation of datasets under the same name,
[4] introduced notations to differentiate various version of the datasets. In
this study, the notation introduced is used to specify the datasets and version
I is used as a test bed to the proposed approaches.

The objective of the Toronto benchmark problem is to create a feasible
timetable so that no student is required to sit two examinations at any one
time. To achieve a high quality timetable, the soft constraints need to be
satisfied as much as possible. Thus, during the timetable construction, it is
required that student’s examinations are assigned as far apart as possible in
order to give a wider student spread in the timetable. The proximity cost
function introduced in [24] in conjunction with the introduced datasets was
used in order to measure the quality of the obtained timetable and to describe
the average penalty of students distributed in the examination schedule.

The ITC2007 datasets are used for the evaluation of the approach pro-
posed in this paper, where the focuses are on the examination timetabling
track. It differs from the Toronto datasets in that ITC2007 is a capacitated

16



problem that requires room assignment for each examination. Moreover,
time-slot-related constraints and room-related constraints are also consid-
ered as the hard constraints to be adhered to. In order to obtain a good
quality timetable, several new soft constraints are also taken into account
to fulfill the real world requirements; there are seven soft constraints to be
satisfied simultaneously with their contribution to the quality of the obtained
timetable. For more details on the constraints and the mathematical formu-
lation of the ITC2007 datasets see [25].

3.2. Experimental Result

3.2.1. Toronto

The results of the experiments for different combinations of graph colour-
ing heuristics are provided in Table 3. The results show the best penalty value
obtained from 50 runs for different combinations of heuristics. The compar-
ison shows that the combination of LDSDHM performed the best with ten
out of thirteen datasets and one tie with SDHM, while SDHM obtained best
results for two datasets. This circumstance shows that by considering in-
formation from more than one parameter simultaneously, the new difficulty
measure can be obtained and at the same time a new ordering of examina-
tions can be generated. It can be seen that the single SD performed well
in comparison with the single LD and this may be because of the dynamic
nature of this heuristic. The single HM also performed well and obtained the
best results for six out of thirteen datasets when compared with the other
single heuristics.

Table 4 illustrates the combination of weights and algorithmic approaches
for the best results obtained from the experiments. It shows that most of the
best results are obtained using the dynamic heuristic modifier. The value
of the dynamic heuristic modifier is updated by finding the highest value of
heuristic modifier each time the assignment process is completed. Taking
the shuffling strategy into account, best results are obtained for ten out of
thirteen datasets using the top-window strategy, while random preference
works more effectively with three out of thirteen datasets. As observed in
the table, the weight for HM is the highest for six of the datasets, while four
of the dataset obtained the best result with high weight value for SD and the
other three datasets performed well with LD as highest value of weight.

The best approaches so far within Toronto benchmark datasets are de-
scribed by [12], [27] and [28]. The study by [12] investigated a multi phase
local search based algorithms that starts with a greedy scheduler to create a

17



Table 3: Comparison of single and combination of heuristics for the Toronto benchmark
datasets (LD = largest degree; SD = saturation degree; HM = heuristic modifier)

Problem LD SD HM LDSD LDHM SDHM LDSDHM Best
car91 5.32 5.26 5.43 5.22 5.25 5.18 5.12 5.12
t(s) 468 387 888 357 642 389 368
car92 4.61 4.58 4.63 4.55 4.49 4.42 4.41 4.41
t(s) 259 22 487 208 365 222 215
ears83 I 38.41 39.83 39.52 38.62 38.47 39.06 36.91 36.91
t(s) 27 24 25 24 29 24 25
hec92 I 11.7 11.68 11.72 11.52 11.52 11.42 11.31 11.31
t(s) 4 4 3 4 4 5 4
kfu93 15.24 14.97 15.53 14.97 15.08 14.75 14.93 14.75
t(s) 106 234 422 127 128 236 137
lse91 12.23 11.98 11.79 11.55 11.64 11.51 11.41 11.41
t(s) 72 97 260 75 77 98 80
pur93 I 5.93 6.05 6.42 5.93 5.95 5.92 5.87 5.87
t(s) 229 361 1586 290 821 877 920
rye92 10.25 9.89 9.76 9.95 9.65 9.61 9.63 9.61
t(s) 131 202 521 172 136 194 156
sta83 I 158.63 158.08 157.75 157.84 157.97 157.77 157.52 157.52
t(s) 10 14 11 9 10 14 11
tre92 9.25 8.94 8.85 8.94 8.76 8.81 8.76 8.76
t(s) 45 43 55 42 53 43 41
uta92 3.61 3.67 3.67 3.6 3.59 3.54 3.54 3.54
t(s) 358 292 850 283 416 295 302
ute92 I 27.14 26.92 26.79 26.79 26.55 26.27 26.25 26.25
t(s) 12 20 24 13 13 19 14
yor83 I 41.88 40.96 41.48 40.73 41.1 40.08 39.67 39.67
t(s) 22 25 26 22 26 24 22

18



feasible timetable by allowing for the number of time-slot to be increased. A
penalty-decreaser and penalty-trader then were used to improve the solution
quality. In another study, [27] demonstrated that VNS and a hybridisation
with a genetic algorithm where the genetic algorithm imitated the concept
of hyper-heuristic and case-based reasoning. In a recent study by [28], the
great deluge algorithm was hybridised with a heuristic procedure known as
the ‘electromagnetic-like mechanism’ within timetabling approaches where it
based on particle swam optimisation. It worked by forcing the search to a
promising area by dynamically changing the decay rate of the great deluge
algorithm.

Table 4: The combination of weights and algorithmic approaches for the Toronto bench-
mark datasets (LD = largest degree; SD = saturation degree; HM = heuristic modifier; St
= static; Dy = dynamic; REQ = random preference; TW = top-window; AD = additive;
EX = exponential; w = weight; av. = average result)

Problem av. Best {Parameter combination} wLD wSD wHM
car91 5.58 5.12 {LDSDHM, Dy, REQ, EX} 0.1 0.2 0.7
car92 4.86 4.41 {LDSDHM, Dy, TW(4), AD} 0.2 0.3 0.5
ears83 I 37.27 36.91 {LDSDHM, St, TW(4), AD} 0.3 0.1 0.6
hec92 I 12.23 11.31 {LDSDHM, Dy, TW(3), AD} 0.2 0.5 0.3
kfu93 15.10 14.75 {SDHM, Dy, TW(4), EX} 0.0 0.1 0.9
lse91 12.55 11.41 {LDSDHM, Dy, REQ, EX} 0.1 0.5 0.4
pur93 I 6.42 5.87 {LDSDHM, St, TW(4), AD} 0.2 0.6 0.2
rye92 10.21 9.61 {SDHM, Dy, REQ, EX} 0.0 0.1 0.9
sta83 I 158.55 157.52 {LDSDHM, Dy, REQ, EX} 0.5 0.4 0.1
tre92 9.16 8.76 {LDSDHM, Dy, REQ, EX} 0.8 0.1 0.1
uta92 I 3.67 3.54 {LDSDHM, Dy, REQ, EX} 0.2 0.2 0.6
ute92 27.12 26.25 {LDSDHM, Dy, REQ, EX} 0.8 0.1 0.1
yor83 I 41.83 39.67 {LDSDHM, Dy, REQ, EX} 0.1 0.8 0.1

Table 5 reports the comparison of results for the thirteen problem in-
stances of the Toronto benchmark for three different groups of approaches
i.e. constructive heuristic, hyper-heuristic and other improvement. The com-
parisons are made with other approaches that have been published in journal
articles. The comparison with constructive heuristic approaches shows that

19



the adaptive linear combination approach obtained one best result for sta83
I. Meanwhile, some other results of the adaptive linear combination approach
are very close to the best of constructive approaches such as ute92 and yor83
I. The comparison to other hyper-heuristic approaches shows that the adap-
tive linear combination approach obtained five best results out of thirteen
problem instances on hec92 I, rye92, sta83 I, ute92 and yor83 I. Note that
some of the hyper-heuristic approaches may incorporate a two phase algo-
rithm i.e. construction and improvement. The adaptive linear combination
approach is purely a constructive algorithm that constructs the examination
timetables using heuristic ordering. On the other hand, the comparison with
other improvement approaches indicates that most of the results from the
adaptive linear combination approach are far from the best results.

Table 5: Comparison of different approaches: constructive heuristics, hyper-heuristics and
other improvement approaches for Toronto benchmark datasets. (ALC = our approach)

Constructive Heuristic Hyper-heuristic Other Improvement
Problem [24] [19] [21] [26] [20] [12] [27] [28] ALC
car91 7.1 4.97 5.03 4.97 5.17 6.6 4.6 4.8 5.12
car92 6.2 4.32 4.22 4.28 4.32 6.0 3.9 4.1 4.41
ears83 I 36.4 36.16 36.06 35.86 35.70 29.3 32.8 34.92 36.91
hec92 I 10.8 11.61 11.71 11.85 11.93 9.2 10.0 10.73 11.31
kfu93 14.0 15.02 16.02 14.62 15.30 13.8 13.0 13.0 14.75
lse91 10.5 10.96 11.15 11.14 11.45 9.6 10.0 10.01 11.41
pur93 I 3.9 - - 4.73 - 3.7 - 4.73 5.87
rye92 7.3 - 9.42 9.65 - 6.8 - 9.65 9.61
sta83 I 161.5 161.90 158.86 158.33 159.05 158.2 156.9 158.26 157.52
tre92 9.6 8.38 8.37 8.48 8.68 9.4 7.9 7.88 8.76
uta92 I 3.5 3.36 3.37 3.40 3.30 3.5 3.2 3.2 3.54
ute92 25.8 27.41 27.99 28.88 28.00 24.4 24.8 26.11 26.25
yor83 I 41.7 40.77 39.53 40.74 40.79 36.2 34.9 36.22 39.67

The bold, italic and underline entries indicate the best results for constructive

heuristics, hyper-heuristics and other improvement approaches for the given prob-

lem instance

The weight combinations are divided into four different groups based
on the heuristic contribution. The initial test of the weight combinations

20



reveals that there is only little difference when using different type of weight
combinations with 0.1 increment. For instance, the weight combination of
(0.1, 0.1, 0.8) is not very different from the weight combination of (0.2,
0.1, 0.7) in terms of the performance of solution quality since these weight
combinations are almost the identical. In this case, the weight combinations
are divided into four different groups i.e. high LD, high SD, high HM and
balance. The group of high LD consists of weights (0.8, 0.1, 0.1), (0.7, 0.2,
0.1), (0.7, 0.1, 0.2); weights for high SD (0.1, 0.8, 0.1), (0.1, 0.7, 0.2), (0.2,
0.7, 0.1); weights for high HM (0.1, 0.1, 0.8), (0.1, 0.2, 0.7), (0.2, 0.1, 0.7)
and weights for balance (0.3, 0.3, 0.4), (0.4, 0.3, 0.3), (0.3, 0.4, 0.3).

In order to see the difference in solution quality when using various top-
window sizes and different groups of weight combination, a two-way analysis
of variance is performed. From the statistical analysis, F(31,58156) = 18.750
and ρ(0.000) < 0.05, it is clear that there are significant differences to solution
quality when different top-window sizes and groups of weight combination are
employed. Table 6 illustrates the effect of different top-window sizes. In most
cases different top-window sizes performed significantly differently to one
another. However, the top-window size 2 is not significantly different from
size 3, while the size 3 is not significantly different from sizes 2 and 4. The
result from the two-way analysis of variance shows that the solution quality
of each group is statistically different where ρ(0.000) < 0.05 for each group
comparison. In these circumstances, the solution quality that is tested with
the weight combination from any different group of heuristics is statistically
different.

Figures 1(a) and 1(b) illustrate the best performance of LDSDHM for
car92 I and tre92 considering all combinations of weights. It demonstrated a
pattern in the performance of best solution quality obtained for each of the
combinations. By looking at the median value, when the weight value of HM
is high enough then the solution quality value rapidly drop. On the other
hand, whenever the weight value of HM is gradually decreased, then the
solution quality also decreases progressively. Most of the peaks are obtained
from the lowest weight value of HM while most of the slumps are obtained
from the highest weight value of HM. This shows that the existence of the
heuristic modifier in this adaptive linear combination of heuristics has an
effect on the solution quality. Furthermore, by using the information from
the other two heuristics it has increased the effectiveness of the new ordering.
The results indicate that the combinations are most effective when the weight
of HM is very high, while the other heuristics may vary in certain ways.

21



Table 6: The effect of different top-window size for LDSDHM of Toronto benchmark
datasets.

Size Effect Size
2 6= (4, 5, 6, 7, 8 and 9 (p = 0.000))
2 ' (3 (p = 0.110))
3 6= (5, 6, 7, 8 and 9 (p = 0.000))
3 ' (2 (p = 0.110)) and (4 (p = 0.089))
4 6= (2, 5, 6, 7, 8 and 9 (p = 0.000))
4 ' (3 (p = 0.089))
5 6= (2, 3, 7, 8 and 9 (p = 0.000)), (4 (p = 0.018)) and (6 (p = 0.025))
6 6= (2, 3, 4, 8 and 9 (p = 0.000)), (5 (p = 0.025)) and (7 (p = 0.001))
7 6= (2, 3, 4, 5, 8 and 9 (p = 0.000)) and (6 (p = 0.001))
8 6= (2, 3, 4, 5, 6 and 7 (p = 0.000)) and (9 (p = 0.001))
9 6= (2, 3, 4, 5, 6 and 7 (p = 0.000)) and (8 (p = 0.001))

Figure 1: Best solution quality for each of weight combination of LDSDHM for (a) car91
I and (b) tre92.

(a)
(b)

Figure 2: Average performance of each top-window size and different group of weight
combination for LDSDHM.

22



Figure 2 illustrates the average performance of each top-window size and
and different group of weight combination for LDSDHM. It indicates that
the group of highLD contributes a higher penalty value at each top-window
size while the highSD, highHM and balance are almost identical in terms of
penalty value during smaller size of top-window performance. However, the
average performance for highSD, highHM and balance started to differ when
the top-window size is 6 and above. In these circumstances, this indicates
that by using a smaller chunk of top-window size with a good choice of weight
combinations may lead to a better quality solution.

3.2.2. ITC2007

The experiment on the twelve problem instances of ITC2007 is tested
with several combinations of weights with only top-window size 3 and 5.
The heuristic modifier is increased using additive and exponential with dy-
namic modification of the heuristic modifier value. Table 7 illustrates the best
penalty value obtained from 50 runs and each solution is provided with the
information of weight combination and algorithmic approach. As shown in
Table 7, it reveals diverse patterns of the weight combination of each heuristic
for different instances. As can be seen, about half of the problem instances
obtained good quality solutions when the weight of the SD is high. Mean-
while, the weight LD and HM are varied in specific ways. Since the ITC2007
benchmark datasets are tested with only certain parameter settings, unlike
the Toronto benchmark datasets, and with time limitation, these datasets
might not show the exact pattern of the whole weight behaviour. Moreover,
the ITC2007 benchmark datasets represent a capacitated timetabling prob-
lem and therefore, they differ from the Toronto benchmark datasets in terms
of various hard and soft constraint requirements.

As so far, most of the ITC2007 approaches have concentrated on the
multiple phases of solution that construct and improve the solution qual-
ity in sequence. The adaptive linear combination approach in this paper is
presented as a purely constructive approach that iteratively constructs the
examination timetable. In order to make a fair comparison, the constructed
solutions are then improved using an approach introduced by [29] that em-
ployed a reheat mechanism to the great deluge algorithm. This approach
is an effective method that has obtained two best results out of the twelve
problem instances while other problem instances are close to the best.

As can be seen in Table 8, it shows the comparison of the best penalty
values of the adaptive linear combination approach compared with other

23



approaches from the competition and post-competition. As can be seen,
in any ways, the results of the constructed solutions of the adaptive linear
combination approach cannot beat the best results obtained so far and are
quite far from them. However, the constructed solutions of the adaptive
linear combination approach are able to produce a feasible solution for all
problem instances and are better than some of the approaches from the
competition and post-competition. The proposed approach is able to produce
better results compared with [33] for Exam 10, [28] for Exam 4 and also [31]
for Exam 4, Exam 6 and Exam 8. On the other hand, some of the approaches
do not have solutions for some of the problem instances for example [32] for
Exam 10 and Exam 12, while [31] and [28] do not have solution for Exam 9,
Exam 10, Exam 11 and Exam 12.

Table 7: Different combination of weights and algorithmic approaches for ITC2007 bench-
mark datasets (LD = largest degree; SD = saturation degree; HM = heuristic modifier;
Dy = dynamic; TW = top-window; AD = additive; EX = exponential; w = weight); av.
= average result

Problem av. Best {Parameter combinations} wLD wSD wHM
Exam 1 11 883 11 060 {LDSDHM, Dy, TW(5), EX} 0.5 0.3 0.2
Exam 2 4 021 3 133 {LDSDHM, Dy, TW(3), AD} 0.4 0.1 0.5
Exam 3 20 305 19 098 {LDSDHM, Dy, TW(3), EX} 0.1 0.7 0.2
Exam 4 21 880 21 309 {LDSDHM, Dy, TW(3), AD} 0.3 0.6 0.1
Exam 5 8 230 7 975 {LDSDHM, Dy, TW(3), EX} 0.3 0.5 0.2
Exam 6 28 985 28 330 {LDSDHM, Dy, TW(5), EX} 0.1 0.8 0.1
Exam 7 16 540 15 912 {LDSDHM, Dy, TW(5), AD} 0.1 0.8 0.1
Exam 8 20 963 20 066 {LDSDHM, Dy, TW(3), EX} 0.7 0.1 0.2
Exam 9 2 212 2 165 {LDSDHM, Dy, TW(3), AD} 0.4 0.2 0.4
Exam 10 16 912 16 516 {LDSDHM, Dy, TW(3), AD} 0.1 0.3 0.6
Exam 11 47 650 45 873 {LDSDHM, Dy, TW(3), AD} 0.1 0.6 0.3
Exam 12 8 360 7 465 {LDSDHM, Dy, TW(3), AD} 0.7 0.2 0.1

When comparing the previous results with our improved solutions, it can
be seen that the method obtained promising results such as Exam 3 and
Exam 11 where they are placed as the third and second best approaches. On
the other hand, the results of other problem instances did not perform well.

24



On average, the approach is placed as the fifth best out of eleven approaches
published in the literature. Note that the results are obtained with only
one run as for comparison purposes, opposed to other approaches that were
obtained with multiple runs.

Table 8: Comparison of adaptive linear combination approach with different approaches of
ITC2007 benchmark datasets. (ALC(b) = adaptive linear combination with improvement)

Problem [33] [32] [30] [29] [31] [34] [28] ALC(b)
Exam 1 4 370 5 905 4 370 4 633 6 235 4 775 4 368 5 231
Exam 2 400 1 008 385 405 2 974 385 390 433
Exam 3 10 049 13 862 9 378 9 064 15 832 8 996 9 830 9 265
Exam 4 18 141 18 674 15 368 15 663 35 106 16 204 24 822 17 787
Exam 5 2 988 4 139 2 988 3 042 4 873 2 929 3 022 3 083
Exam 6 26 950 27 640 26 365 25 880 31 756 25 740 25 995 26 060
Exam 7 4 213 6 683 4 138 4 037 11 562 4 087 4 067 10 712
Exam 8 7 861 10 521 7 516 7 461 20 994 7 777 7 519 12 713
Exam 9 1 047 1 159 1 014 1 071 - 964 - 1 111
Exam 10 16 682 - 14 555 14 374 - 13 203 - 14 825
Exam 11 34 129 43 888 31 425 29 180 - 28 704 - 28 891
Exam 12 5 535 - 5 357 5 693 - 5 197 - 6 181

4. Conclusion

In this paper, an adaptive linear combination of heuristics with a heuris-
tic modifier under the framework of adaptive strategies is proposed for solv-
ing examination timetabling problems. Two graph colouring heuristics with
a heuristic modifier are employed with different weights for each parame-
ter. Each parameter is normalised in order to simply generalised the imple-
mented problem data. A difficulty score is used to determine the ordering of
the examinations and the most difficult examination with the highest diffi-
culty score is scheduled first based on two strategies. This approach is tested
with single and multiple heuristics with and without a heuristic modifier on
Toronto while the ITC2007 benchmark datasets are tested with only multi-
ple heuristics with heuristic modifier. The results show that by combining

25



multiple heuristics with a heuristic modifier, good solution quality can be
obtained. Furthermore, the results from the combination of LDSDHM are
comparable to the results of other constructive approaches published in the
literature within the Toronto benchmark problems. Meanwhile, the results
on the highly constrained ITC2007 problems are feasible and some are com-
parable to the previous approaches. In this study, the combination of weight
values that are invoked to the heuristics and heuristic modifier could signif-
icantly change the examination ordering based on the difficulty score value.
It is found that by changing the weight values of the heuristic and heuristic
modifier, good approximate solutions could be obtained. It is also identified
that the best top-window size to use for this approach is six and below as
the higher value of top-window size could cause the significant change in the
examination ordering. It is, therefore, concluded that this approach is simple
and effective, and hence has potential for practical use.

References

[1] Schindl, D. (2005). Some new hereditary classes where graph coloring
remains NP-hard. Discrete Mathematics, 295 (1-3), 197-202.

[2] Carter, M. W. (1986). A survey of practical applications of examination
timetabling algorithms. Operational Research, 34(2), 193-202.

[3] Carter, M. W., & Laporte, G. (1996). Recent developments in practical
examination timetabling. Selected papers from the first international
conference on practice and theory of automated timetabling (pp. 3-21).
Springer-Verlag.

[4] Qu, R., Burke, E. K., Mccollum, B., Merlot, L. T., & Lee, S. Y. (2009).
A survey of search methodologies and automated system development
for examination timetabling. Journal of Scheduling, 12(1), 55-89.

[5] Burke, E. K., Elliman, D., Ford, P. H., & Weare, R. F. (1996). Exam-
ination timetabling in British universities: A survey. Selected papers
from the first international conference on practice and theory of auto-
mated timetabling (pp. 76-90). Springer-Verlag.

[6] Burke, E. K., Kingston, J., & de Werra, D. (2004). Applications to
timetabling. In J. Gross, & J.Yellen (Eds.), Handbook of graph theory,
(pp. 445-474). Chapman Hall/CRC Press.

26



[7] Ersoy, E., Özcan, E., & Sima Uyar, A. (2007). Memetic algorithms
and hyperhill-climbers. In P. Baptiste, G. Kendall, A. M. Kordon, &
F. Sourd (Eds.), Lecture notes in computer science: Multidisciplinary
international conference on scheduling: theory and applications: se-
lected papers from the 3rd international conference, (pp. 159-166).

[8] White, G. M., Xie, B. S., & Zonjic S. (2004). Using tabu search with
longer-term memory and relaxation to create examination timetables.
European Journal of Operational Research, 153 (1), 80-91.

[9] Naji Azimi, Z. (2005). Hybrid heuristics for examination timetabling
problem. Applied Mathematics and Computation, 163(2), 705-733.

[10] Burke, E. K., Bykov, Y., Newall, J. P., & Petrovic, S. (2004). A time-
predefined local search approach to exam timetabling problem. IIE
Transactions, 36(6), 509-528.

[11] Abdullah, S., Ahmadi, S., Burke, E. K., & Dror, M. (2007). Investi-
gating Ahuja-Orlin’s large neighbourhood search approach for exami-
nation timetabling. OR Spectrum, 29(2), 351-372.

[12] Caramia, M., Dell’Olmo, P, & Italiano, G. F. (2008). Novel local search
based approaches to university examination timetabling. INFORMS
Journal of Computing, 20, 86-99.

[13] Burke, E. K., Mccollum, B., Meisels, A., Petrovic, S., & Qu, R. (2007).
A graph-based hyper-heuristic for educational timetabling problems.
European Journal of Operational Research, 176, 177-192.

[14] Burke, E. K., Petrovic, S,, & Qu, R. (2006). Case based heuristic se-
lection for timetabling problems. Journal of Scheduling, 9(2), 115-132.

[15] Asmuni, H., Burke, E. K., Garibaldi, J. M., McCollum, B., & Parkes,
A. J. (2009). An investigation of fuzzy multiple heuristic orderings in
the construction of university examination timetables. Computers and
Operations Research, 36(4), 981–1001.

[16] Abdul Rahim, S. K., Bargiela, A., & Qu, R. (2009). Granular modelling
of exam to slot allocation. In roceedings of the 23rd european conference
on modelling and simulation (ECMS), Madrid, Spain (pp. 861-866).

27



[17] Burke, E. K., Hyde, M., Kendall, G., Ochoa, G., & Özcan, E. (2010).
A classification of hyper-heuristic approaches. In M. Gendreau and J-Y
Potvin (Eds.) Handbook of metaheuristics (pp. 449-468). Springer.

[18] Abdul Rahman, S., Bargiela, A., Burke, E. K., McCollum, B., & Özcan,
E. (2009). Construction of examination timetables based on ordering
heuristics. In proceedings of the 24th international symposium on com-
puter and information sciences (pp. 727-732).

[19] Burke, E. K., & Newall, J. P. (2004). Solving examination timetabling
problems through adaptation of heuristic orderings. Annals of Opera-
tions Research, 129, 107-134.

[20] Qu, R., Burke, E. K., & McCollum, B. (2009). Adaptive automated
construction of hybrid heuristics for exam timetabling and graph
colouring problems. European Journal of Operational Research, 198(2),
392-404.

[21] Burke, E. K., Pham, N., Qu, R., & Yellen, J. (2010) Linear combina-
tions of heuristics for examination timetabling. Annals of Operations
Research, doi:10.1007/s10479-011-0854-y

[22] Johnson, D. (1990). Timetabling university examinations. Journal of
the Operational Research Society, 41(1), 39-47.

[23] Joslin, D. E., & Clements, D. P. (1999). ”Squeaky wheel” optimization.
Journal of Artificial Intelligence Research, 10, 353-37.

[24] Carter, M. W., Laporte, G., & Lee, S. (1996). Examination timetabling:
Algorithmic strategies and applications. Journal of the Operational Re-
search Society, 47(3), 373-383.

[25] McCollum, B., McMullan, P., Burke, E. K., Parkes, A. J., & Qu, R.
(2008). A new model for automated examination timetabling. Annals
of Operations Research, 2, 2-3.

[26] Pillay, N., & Banzhaf, W. (2009). A study of heuristic combinations for
hyper-heuristic systems for the uncapacitated examination timetabling
problem. European Journal of Operational Research, 197(2), 482-491.

28



[27] Burke, E. K., Eckersley, A. J., McCollum, B., Petrovic, S., & Qu, R.
(2010). Hybrid variable neighbourhood approaches to university exam
timetabling. European Journal of Operational Research, 206(1), 46-53.

[28] Turabieh, H., & Abdullah, S. (2011). An integrated hybrid approach
to the examination timetabling problem. Omega, 39, 598-607.

[29] McCollum, B., McMullan, P., Parkes, A. J., Burke, E. K., & Abdul-
lah, S. (2009). An extended great deluge approach to the examination
timetabling problem. In proceedings of the 4th multidisciplinary inter-
national conference on scheduling: theory and applications (MISTA09),
Dublin.

[30] Müller, T. (2009). ITC2007 solver description: a hybrid approach. An-
nals of Operations Research, 172(1), 429-446.

[31] Burke, E. K., Qu, R., & Soghier, A. (2010). Adaptive selection of
heuristics for improving constructed exam timetables. In proceedings
of the 8th international conference on the practice and theory of auto-
mated timetabling (PATAT 2010), 10-13 August 2010, Belfast, North-
ern Ireland. (pp. 136-152).

[32] Gogos, C., Alefragis, P., & Housos, E. (2008). A Multi-Staged Algorith-
mic Process for the Solution of the Examination Timetabling Problem.
Practice and theory of automated timetabling (PATAT 2008), Montreal,
19-22, August 2008.

[33] Müller, T. (2008). ITC 2007: Solver description. Practice and theory of
automated timetabling (PATAT 2008), Montreal, 19-22, August 2008.,

[34] Gogos, C., Alefragis, P., & Housos, E. (2010). An improved multi-
staged algorithmic process for the solution of the examination
timetabling problem. Annals of Operations Research, 3, 1-3.

[35] Kahar M. N. M. & Kendall G. The examination timetabling problem
at Universiti Malaysia Pahang: Comparison of a constructive heuristic
with an existing software solution. European Journal of Operational
Research, 207, 557-565.

29


