N
N

N

HAL

open science

Equilibrium Existence and Uniqueness In Network
Games with Additive Preferences
Yann Rébillé, Lionel Richefort

» To cite this version:

Yann Rébillé, Lionel Richefort. Equilibrium Existence and Uniqueness In Network Games with Ad-

ditive Preferences. 2012. hal-00732962

HAL Id: hal-00732962
https://hal.science/hal-00732962

Preprint submitted on 17 Sep 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00732962
https://hal.archives-ouvertes.fr

Lemna

EA 4272

Working Paper

Equilibrium Existence
and Uniqueness
In Network Games
with Additive Preferences

(O
>
(O
p -
—
D
O
e
c
D
&
=
(&
o
o

Yann Rébillé*
Lionel Richefort*

2012/39

* Université de Nantes — LEMNA - France

Laboratoire d’Economie et de Management Nantes-Atlantique
INSTITUT Université de Nantes

d'ECONOMIE Chemin de la Censive du Tertre — BP 52231 :
et de MANAGEMENT 44322 Nantes cedex 3 — France L ]

de NANTES - IAE www.univ-nantes.frliemn-iae/recherche
Tél. +33 (0)2 40 14 17 17 - Fax +33 (0)2 40 14 17 49

UNIVERSITE DE NANTES



Equilibrium Existence and Uniqueness in
Network Games with Additive Preferences

Yann Rébillé* Lionel Richefort!

Abstract

A directed network game of imperfect strategic substitutes with
heterogeneous players is analyzed. We consider concave additive sep-
arable utility functions that encompass the quasi-linear ones. It is
found that pure strategy Nash equilibria verify a non-linear comple-
mentarity problem. By requiring appropriate concavity in the utility
functions, the existence of an equilibrium point is shown and equi-
librium uniqueness is established with a P-matrix. Then, it appears
that previous findings on network structure and sparsity hold for many
more games.
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1 Introduction

It has been found that the linear complementarity problem (henceforth LCP)
is a fundamental mathematical problem associated with major economic
problems such as linear and quadratic programming problems, bimatrix game
problems, as well as more general equilibrium problems (Cottle et al., 1992).
In this present paper, we are interested in a new application of complemen-
tarity problem: finding a Nash equilibrium in network game problems. This
class of games has the property that an action of a player affects the marginal
payoff of his neighbors, i.e., a player’s payoff depends on own effort as well
as on the efforts exerted by his neighbors (Jackson, 2008).

Specifically, we concentrate on network games where efforts are strategic
substitutes. That is, an increase in one player’s strategy makes the best re-
sponse of his neighbors decrease.! The literature in this area has focused on
games where preferences are quasi-linear and Nash equilibria in pure strate-
gies (henceforth PSNE) exist. The analysis of equilibrium uniqueness is then
achieved by studying the following LCP (Corbo et al., 2007; Ballester et al.,
2010). Given a network of relationships A € IR]I *N and a vector of peaks?
e* >> 0, determine an effort profile & > 0 such that

.
(I+A)&—e >0, [(I+A)Té—e*] 6=0, (1)

where I stands for the identity matrix and the superscript T denotes the
transpose of a matrix or a vector.® The first inequality checks that the sum
between a player’s own effort and the effort exerted by his predecessors is
not less than his peak. The second equality states that a player exerts no
effort if the total effort exerted by his predecessors is equal or higher than
his peak.

In such games, sufficient conditions for the uniqueness of PSNE have
been established with I + A belonging to particular classes of matrices, and
have then be related to some eigenvalues of A: the largest eigenvalue (or
spectral radius) (Ballester et al., 2006; Corbo et al., 2007; Ballester and

IThis outcome may arise in local public good games, when the players in a neighbor-
hood have an incentive to “free-ride” (Bramoullé and Kranton, 2007; Bloch and Zengi-
nobuz, 2007; Corbo et al., 2007; Galeotti et al., 2010; Ballester and Calvé-Armengol, 2010;
Bramoullé et al., 2011; Allouch, 2012), or in games of common property resources, when
the players have an incentive to exert too much effort, i.e., to consume more than the
efficient level (Ilkilig, 2010).

’In these games, it is assumed that each player [ has a unique effort level ef that
maximizes his preferences. Thus, e} is player I’s peak. It corresponds to a “satiation”
point above which marginal utility becomes negative.

3We keep this notation for the rest of the paper.



Calv6-Armengol, 2010) and the lowest eigenvalue (Bramoullé et al., 2011,
Allouch, 2012). The eigenvalues of a network adjacency matrix carries details
about local structural properties of networks (Cvetkovi¢ et al., 1997). There
arc two main results. First, using the Perron-Frobenius theory of nonnegative
matrices, it has been found that equilibrium uniqueness is guaranteed for
all e >> 0 whenever the spectral radius of A is low enough (Ballester
et al., 2010). This condition derives from contraction of the best response
functions and holds for directed and undirected networks. It says that there
exists a unique equilibrium point whenever the density of the link structure
is sufficiently low.

Second, using the theory of potential games and spectral graph theory,
a sharper condition has been found: the LCP specified by (1) admits a
unique solution for all e >> 0 if the lowest eigenvalue of A is high enough
(Bramoullé et al., 2011). This result provides the best known sufficient con-
dition for the uniqueness of PSNE in these games (when the spectral radius
is low enough, the lowest eigenvalue is high enough, but not vice versa). It
entails that there exists a unique equilibrium point whenever the sparsity
(or tightness) of the link structure is sufficiently high. It is, however, based
on two important assumptions: (i) the network is undirected, i.e., A is sym-
metric, and (ii) best response functions are piece-wise linear. In fact, there
has been few attempts to establish uniqueness when best response functions
are non-linear, and all of them consider the case of undirected networks, a
special case of directed networks (Bramoullé et al., 2011; Allouch, 2012).

This present paper tackles the problem of equilibrium uniqueness in di-
rected network games of imperfect strategic substitutes with non-linear best
response functions. The focus here is on concave additive separable utility
functions that encompass the quasi-linear ones. First, we find that PSNE
are characterized by a complementarity problem that extends the problem
specified by (1). Second, by requiring appropriate concavity in the utility
functions, the existence of a PSNE is shown. Then, using the methodology
introduced by Rosen (1965) for concave games, we establish the uniqueness of
PSNE with a P-matrix* (Fielder and Pték, 1962). As a corollary, it appears
that previous findings related to network structure and sparsity (Bramoullé
et al., 2011) hold for more general preferences, and therefore for many more
games.

The remainder of the paper is organized as follows. Section 2 defines
the game. Sections 3 and 4 establish equilibrium existence and equilibrium
uniqueness, respectively. Section 5 discusses the relationship between unique-
ness and network sparsity. Section 6 concludes. Note that all vectors con-

4A formal definition of P-matrix is given in Section 4.



sidered in this paper are column vectors, and are denoted by lowercase bold
letters. We reserve the use of uppercase bold letters for matrices.

2 The model

There are N players and the set of players is NV = {1,..., N}. Let ¢; denotes
player’s [ individual effort and e = (e1,...,en) € ]R]I an effort profile of
all players. Players are arranged in a weighted and directed network. The
basic representation of the network is given by its N x N weighted adjacency
matrix A, where \y; € [0,00) denotes the intensity of the link from player k
to player [. We may interpret it as the rate of substitution from player k’s
effort to player I’s effort (by convention, Ay = 0 for all k). Notice that the
network is directed and weighted, i.e., A is asymmetric and nonnegative.

We shall consider from now on preferences that admit an additive sep-
arable utility representation with respect to individual effort and collective
effort. The utility of an agent [ is given by

Uup (61, El) = (61) -+ wy (El) R

where player’s [ collective effort is given by Ey = e;+ ., Amey. Since col-
lective effort is based on the collection of individual efforts, we may assume
that the utility function is defined for all (e;, ;) such that Ej, e; > 0. Utility
is taken to be cardinal and may admit an interpretation in terms of benefits
and costs (see Remark 1).

Technical assumptions

o for all [, v} (0) + w; (0) > 0,

o for all [, v; (00) + w; (c0) < 0,

e for all [, v; and w; are continuously differentiable and concave, with v; or
w; strictly concave.

The first assumption implies that under autarky (i.e., if the network is
empty) the agent will provide some effort, otherwise in any network he will
free-ride (we do not assume, however, that preferences are monotonic). The
second assumption implies that the preferences are single-peaked w.r.t. in-
dividual effort for any given level of collective effort and allows a trade-off
between individual and collective effort. The third assumption reflects the
convexity of preferences.

We assume that the strategy of utility-maximizing individual effort in-

volves a simultaneous-move game G(A, v, w), where (v, w) denote the pref-
erences profile of the players. For all players, utility maximization occurs

4



where the effort level is such that marginal utility is equal to zero. Letting
A =1+ A, we find that all PSNE admitted by G are characterized by a
non-linear complementarity problem.

Property 1. Let G(A,v,w) be a network game. Then, a profile & € ]Rf is
a PSNE if and only if & satisfies

v' (&) +w (Kﬂ%) <0, [v’ (&) +w (KTé)}Té =0, (2)

where for all l, (v'(&)), = v)(é) and (w'(AT8)), = W€ + D gz M)

The proof is straightforward from the Karush-Kuhn-Tucker’s conditions
of utility maximization with individual effort constrained to be nonnegative.
Then, we observe that the complementarity problem specified by (2) extends
the LCP specified by (1).

Remark 1 (Public goods in networks). To fix ideas on the generality of the
problem analyzed in this paper, consider a network game with quasi-lincar
preferences, i.e., for all [,

w (e, By) = viep + wy (),

where v; is a constant, w) (0) > —v; > wj (00) and w;" < 0. In this context, a
profile é € ]Rf is a PSNE if and only if é satisfies

v+w (KTé> <o, [V—l—w’ (KTé)}Tézo.

If, for all I, —v; is in the range of wj, the problem leads to a LCP where
éec ]Rf is such that

Ko~ (w) ' (v)20. [Ae—(w) " (-v)] e=o.

which turns out to be equivalent to the LCP specified by (1), since e* >> 0
is the vector such that, for all I, v; + w;(e;) = 0. This model, pioneered
by Bramoullé and Kranton (2007)°, is the traditional model analyzed in the
literature on local public goods games (Bloch and Zenginobuz, 2007; Ballester
and Calvé-Armengol, 2010; Bramoullé et al., 2011). It is therefore a limiting
case of the model developed and analyzed in this present paper.

The next section presents sufficient conditions pertaining the existence of
a solution to the problem specified by (2).

5In Bramoullé and Kranton (2007), the utility of an agent [ is given by
uy (er, By) = by (By) — cieq,

where b; is a twice-differentiable strictly concave benefit function with b; (0) = 0, b > 0
and b < 0, and ¢; < b] (0) is a constant that denotes the individual marginal cost of effort.

5



3 Equilibrium existence

In games where PSNE are characterized by the LCP specified by (1), the
proof of equilibrium existence is straightforward: the set of individual best
responses defines a piece-wise linear mapping from a convex compact subset
of a Euclidean space into itself, and the existence of an equilibrium point is
guaranteed. Establishing the existence of a solution to the complementarity
problem specified by (2) is less immediate. To achieve this task, we follow an
analytic approach to check that the best response of each agent satisfies the
hypothesis of Brouwer’s Fix Point Theorem. We obtain the following result.

Theorem 1. Let G(A,v,w) be a network game. Then, G admits a PSNE
whenever each agent satisfies the technical conditions.

Proof. Let | be an agent. Since u; = v, + w; is stricly concave, uj (0) =
v (0) +w; (0) > 0 and w; (M) = v] (M) + w; (M) < 0 for some M > 0 there
exists a unique e; > 0 such that v (e]) = v; (e]) +wj (e;) = 0. Moreover, e}
is [’s maximum.

Let F; > 0 be a level of collective effort exerted by other agents than [.
Agent’s [ utility is given by

U; (61, e+ Fl) = (61) -+ wy (61 -+ Fl) .

By assumption, u; (.,. + ) is strictly concave, so u; (.,. + F})" is strictly
decreasing and continuous. The best response given Fj is

n-1 . /
b (F)) — [ul<7+ﬂ)} (O) ,1ful(0,0—|—Fl) >0
¢ (F) { 0 , otherwise.

Since
Uy (., .+ F‘l)/ <y (., .)/

we have

b (F7) < b (0) = ej.

So the autarkic equilibrium effort is always greater than the equilibrium effort
in a network.
Let us check that the best response is continuous w.r.t. F;. Let F; > 0.

1%t case: u; (0,0 + F)" = v} (0) + w] (F}) < 0.

Then, b, (F}) = 0. Since w] is continous, there exists some neighborhood V/
of F} such that v; (0) +wj (F)) < 0 for F € V. Thus, b, (F) =0 for F € V so
b; is continuous at Fj.



2" case: u; (0,0 + F}) = v (0) + w) (F}) > 0.
By definition, (e;, F}) with e; = b; (F}) is a solution to the equation
z (e, F)=v/(e) +w;(e+ F) =0.
oz,

Now, Z& (e, 1) = v) (er) +wy (e, + F) < 0 by strict-concavity, so accord-
ing to the implicite function theorem there exists some differentiable and
invertible function v such that

Iy = (e)
on some open neighbourhood V' of e, satisfying
zi (e, (e)) = v (e) + wj (e + v (e)) = 0.
Thus, b (F})) = e, =y 1 (F) on U =~"1 (V) > F}, so ; is continuous at F.
Consider the mapping

B: [ [0.¢] — TLI0,¢]
e > (bz (Zk:k;ﬁl /\kl€k>>l

B is continuous w.r.t. e since b; and (e — Zk:k ” )\klek) are continuous for

all [. According to Brouwer’s Fix Point Theorem, B admits a fix point e and
e is a PSNE of the network game G by construction. O

The next section is devoted to the special case of a unique PSNE to
the game G. Following Cottle et al. (1992)’s terminology, we present a
global uniqueness result® as we provide conditions under which the solvable
complementarity problem specified by (2) has only one solution. From now
on, we assume that each agent satisfies the technical conditions.

4 Equilibrium uniqueness

It is well-known that matrix classes play a central role in the theory of the
LCP. One of the most fundamental class is the one consisting of P-matrices.”

5By contrast, Bramoullé et al. (2011) present a local uniqueness result since their proof,
based on Taylor approximation of best responses, provides conditions under which a given
equilibrium is the only equilibrium in one of its neighborhoods.

"Cottle et al. (1992) defines the traditional LCP as follows. Given M € RY*" and
qcE RY, determine z > 0 such that

) z=0.

Mz+q>0, (Mz+q
It is well-known that the above LCP has a unique solution for all vectors q if and only if
M is a P-matrix (Samelson et al., 1958). See also Theorem 3.3.7 in Cottle et al. (1992,
p.148).



In this section, we establish the uniqueness of solutions to the complemen-
tarity problem specified by (2) with such a matrix. Let us introduce the class
of P-matrices.

Definition 1 (Fiedler and Pték, 1962). Let M be a real matrix. Then, M
is said to be a P-matriz if all its principal minors are positive.

An essential feature of P-matrix is that it does not reverse the sign of
any nonzero vector (Fiedler and Ptak, 1962), i.e.,

Vx#0, 3k /x(Mx), > 0.

Note that M is a P-matrix whenever M is a P-matrix.

To establish equilibrium uniqueness, we follow the analytic approach in-
troduced by Rosen (1965) for proving uniqueness in concave games. We
obtain the following result.

Theorem 2. Let G(A,v,w) be a network game. Then, G admits a unique
PSNE whenever A is a P-matriz.

Proof. Let [ be an agent. Each agent [ satisfies its maximisation program
given others efforts, (ex);.44»

max v (e;) +w; (e, + F}) : s.t. >0

where ] = Zk:k# Niel€e-

Let p; be the Karush-Kuhn-Tucker’s multiplier associated to the con-
straint —e; < 0. Under the technical conditions, v; (.) + w; (. + F)) is strictly
concave and differentiable. The first order conditions are therefore sufficient,

v (e) +wy (e +F)+mwm=0
with
wer =0, g > 0.

Let us assume that there are two PSNE, €® # e'. Let {r}, € RY.

Multiplying agent’s [ first order condition at €” by r; (¢] — €f) and agent’s [

first order condition at e by r; (e) — e}) we have,

+r (e —e)) ) =0,

i (ef —€)) [vl’ () +wy (e? + Z /\kleg>

ke:k Al

8See Plemmons (1977) for a survey of the properties associated to real square matrices
whose principal minors are positive.



+ 1 (egJ —ell) ,ull = 0.

”l(e?—ezl)[ (er) +wz< Z/\klek)

-

Adding up both equalities and summing over [, it comes
durilel —e) [Uz (ef) +wp (6’1 + D ko )‘k’lek)]
+ Yrile] —ef) [Uf (e) +w; (611 D ek /\klellc>]
+ el =)+ >0 m(e) —e)
=0.
Now, for all I, ufe? = 0 and pje} = 0, thus,
Sourilet = ef) [vf (ef) + wf (€ + Lpops ael) |
+ Xori(ed = eb) [vh (eh) +wt (e + S ek )|
+ me ) + 2 el
=0.
Since €}, ef, uf, pi, ;> 0 it holds
>l —ef) [U{ (e]) +w; (elo + Zk:k;ﬁl Akleg)]
+ (el —ef) [Uf (ef) +w; (ezl D ek )‘klellc)]

<0

or

Ineq., : Zn (e —€}) [vl' (e)) +wy (e? + Z )\k162>

1 ke:ke £l

(e D)=

Let x = e! —e" # 0. Since, Ais a P-matrix, AT is also a P-matrix. Then
for some Iy,

Ty, (KTX> o >0

9



that is,

(6}0 - 6?0)

<€I,10 -+ Z )\kl()e,lﬁ) — (6?0 + Z Ak1062>] > 0,

k:k#lo k:k#lo
the two factors having same sign. Since v, is concave, so v} is non-increasing,

thus
ez, — elo) [vh, (eh,) = vl (e1,)] =0

and wy, is concave, so wfo is non-increasing, thus

(€7, — i) [wllo (6?0 + Z >\k10€2> — wy, (ello + Z )xkloe,lc>] >0,

k:k#lo k:k#lo

with a strict inequality where strict concavity holds, so

(e, —€1) [(vfo (e) + wy, <e?0 + Z Akloeg)>

k:k£lo

_ <v{0 (eg,) +wy, (e}o + Z )\kloe,lf>>] > 0.
kbl

Choosing, r;, =1 and 7, = 0 for [ # [y, we obtain from the Ineq.,

(e — ) [( () + ( Ly A))

k:k#lo
- (”;o (e1,) +wy, (6110 + Z /\k10€;1€>>] <0,
k:k#l
a contradiction. So, x = e! — e? = 0 and uniqueness is established. =

It is worthy to note that our uniqueness result carries over one change in
the technical assumptions.

Remark 2 (Constrained effort). The second assumption in the technical as-
sumptions, i.e., v’ (00) + w' (00) < 0, implies that the agents’ best responses
take values in a bounded set. This assumption can be replaced directly by
assuming that e, € [0, M], for all [ € N, where 0 < M; < oo, the proof of
equilibrium uniqueness being slightly modified to take account of the bound-
edness constraints.

10



5 Uniqueness and network sparsity

When best response functions are piece-wise linear, the uniqueness of PSNE
is traditionally related to the largest and the lowest eigenvalues of the net-
work adjacency matrix in order to obtain informations on the typical link
structures that yield a unique equilibrium (Ballester et al., 2006; Ballester
and Calvé-Armengol, 2010; Bramoullé et al., 2011; Allouch, 2012).°

When the network is directed, the adjacency matrix is asymmetric and
its eigenvalues are generally complex numbers. By Theorem (3,3) of Fiedler
and Ptak (1962), the uniqueness condition we established with a P-matrix
may be related to the lowest real eigenvalue of the network adjacency matrix
and its principal submatrices. That is, the game G admits a unique PSNE if
the lowest real eigenvalue of A and its principal submatrices is high enough.
To our knowledge, however, there is no result that establishes a relationship
between structural properties of directed networks and the lowest real eigen-
value of their associated adjacency matrix. Previous works on the spectra
of directed network adjacency matrices has focused on the spectral radius of
adjacency matrices (Brualdi, 2010).

When the network is undirected or acyclic, things go much better. We
provide two results related to these particular link structures. The first one
concerns undirected networks and extends Bramoullé et al. (2011)’s result
to the case of additive separable preferences. A network is undirected if and
only if its adjacency matrix is symmetric. Since real symmetric matrices
are Hermitian, they do not admit complex cigenvalues. Let pimin(A) be the
lowest eigenvalue of the network adjacency matrix. We obtain the following
result.

Corollary 1. Let G(A,v,w) be a network game and let the network be undi-
rected. Then, G admits a unique PSNE whenever py,(A) > —1.

Proof. Let A be an undirected network adjacency matrix. Therefore, A is
symmetric, and A is also symmetric. Hence, its eigenvalues are real. Since

Pmin(A) > —1 if and only if fin(A) > 0, A is a P-matrix. So, by Theorem
2, G admits a unique PSNE. O]

Remark 3 (Sparsity of undirected networks). The lowest eigenvalue of a sym-
metric and nonnegative adjacency matrix is a standard measure of the spar-
sity of the network (see, e.g., Bell et al., 2008). The higher the lowest eigen-

9There is a large literature in algebraic graph theory that studies the properties of
the eigenvalues and eigenvectors of adjacency matrices associated with a graph. One
fundamental result entails that any graph is completely determined by its eigenvalues and
eigenvectors. See Chapter 2 in Cvetovi¢ et al. (1997).

11



value, the sparser is the network. Then, Corollary 1 entails that the game G
admits a unique PSNE whenever the network is sufficiently sparse.

The next result concerns acyclic networks. A typical example is a river
network where links represent flows of water (Ambec and Sprumont, 2002).
It is well-known that a triangular matrix is a P-matrix if and only if all its
diagonal entries are strictly positive.'’ Since a network adjacency matrix is
similar to a triangular matrix if and only if the network is acyclic, we obtain
the following result.

Corollary 2. Let G(A,v,w) be a network game and let the network be
acyclic. Then, G admits a unique PSNE.

Proof. Let A be an acyclic network adjacency matrix. Therefore, A is sim-
ilar to a triangular matrix with diagonal entries equal to zero and all of
its eigenvalues are zero. Thus, all the eigenvalues of A are equal to 1, and
consequently, its determinant is equal to 1. The same observation holds for
all principal submatrices of A. It follows that A is a P-matrix. Hence, by
Theorem 2, G admits a unique PSNE. O

Remark 4 (Sparsity of acyclic networks). Corollary 2 entails that acyclic
networks are always sufficiently sparse to guarantee uniqueness of PSNE to
the game G.

6 Conclusion

In this paper, we have explored a wide class of network games with addi-
tive separable preferences that yield non-linear best response functions. This
class of games encompasses various well-known games including the volun-
tary contribution of public goods (Bramoullé and Kranton, 2007; Bloch and
Zenginobuz, 2007; Bramoullé et al., 2011).

We discuss two possible extensions of this work. First, our analysis is
restricted to additive utility functions. First-order conditions then produce a
complementarity problem which is non-linear. Consider now general C? util-
ity functions wu; (e, E;) for all [ that induce the following complementarity
problem. Given a network of relationships A € IRJI *N and u; twice differ-
entiable and continuous functions for all [, determine an effort profile € > 0
such that

~ ~ T
v (é,ATé> <0, [u' (é,ATé)] &=0,

10This is due to the fact that every principal minor of a triangular matrix equals a
product of diagonal elements.

12



where for all [,

(ll/ <é, KTé))l = g—zll <él,é1 + Z Aklék> + g—g (él,él + Z )\klék> .

Kkl kil

Establishing the existence of a unique solution to the above problem might
require to find the appropriate shape in the utility functions. It is however a
non-trivial issue.

Second, a characterization of the unique Nash equilibrium should be pos-
sible, at least when the equilibrium is interior. Letting F; > 0 be a level
of collective effort exerted by other agents than [, the utility of an agent [
is given by w; (e, e; + F}) = v (¢;) + w; (e; + F}) . Assume there is a unique
interior equilibrium &. It is such that, for all I, v] (&) +w; (é; + F;) = 0. That
is, when the range of —v] is included in the range of wyj, é; satisfies

F=fi(&)—é

where f; = (w])” o(—v}). When best responses are piece-wise linear, f; (¢;) =
e/ a constant, and the unique equilibrium profile may be expressed in terms
of a network centrality vector (Ballester and Calvé-Armengol, 2010; Tkilic,
2010). Then, it would be pertinent to derive a structural solution to the
above system of equalities. This is another open issue.
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