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• We consider an inventory and routing problem to minimize the maximum 

route travel time; 

• We present a tabu search algorithm with efficient improvement method in 

each iteration; 

• Lagrangian relaxation is applied to obtain the lower bounds of the problem; 

• Numerical results demonstrate the tabu search provide solutions close to the 

lower bounds. 
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An Inventory-Routing Problem with the Objective of Travel 

Time Minimization 
 
Abstract:  In this paper, we consider an inventory-routing problem (IRP) in a large 

petroleum and petrochemical enterprise group. Compared to many other IRPs, the 

problem in this paper includes some special aspects due to some operational 

constraints, such as hours-of-service regulations of the company and the industry. 

Also, in some cases, it is more important to avoid stock out for any station, rather than 

purely focusing on transportation cost minimization. The objective is to minimize the 

maximum of the route travel time, which is not addressed in the literature so far. We 

present a tabu search algorithm to tackle the problem, which builds in an efficient and 

effective procedure to improve the search quality in each iteration. Moreover, lower 

bounds of reasonable sized problems, which are intractable in the formulated 

mathematical model by existing optimization software, are obtained via Lagrangian 

relaxation technique. Computational results indicate that the lower bounds are tight 

and the tabu search is capable of providing near optimal, close-to-lower-bound 

solutions in a computational time effective manner.  
 
 
Keywords: Logistics; Distribution; Inventory Routing; Tabu Search; Lagrangian 
Relaxation 
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1. Introduction 

This paper studies a problem which is observed in a large petroleum and 

petrochemical enterprise group in China. The company relies on the product of 

gasoline for the majority of its sales and owns almost 40,000 gas stations spread all 

over China. Hundreds of oil depots are also maintained to replenish gasoline to the 

gas stations. Considering the number of depots and gas stations involved, the daily 

operations of gasoline distribution within this network is particularly complex. The 

problem can be formulated as an inventory-routing problem (IRP) with the following 

features:  

1. The distribution of gasoline to gas stations is operated independently by each 

province. Therefore, the overall network is divided into sub-networks. For each 

province, there might be dozens of oil depots and thousands of gas stations. The 

network within each province is further divided into different districts according 

to the company’s current operational policy. Normally, each district has several oil 

depots and hundreds of gas stations. This is the basic operating unit for gasoline 

distribution within the company.  

2. For each operating unit, the depots are regularly replenished to maintain a proper 

level of inventory to avoid stock outs. A central scheduling office determines the 

time and the amount to be delivered to each gas station, which has limited storage 

capacity with the daily demand represented by a consumption rate.  

3. The product is distributed by a fleet of tank trucks, which belongs to a third party 

logistics (3PL) service provider. The 3PL previously belonged to the enterprise but 

now operates as an independent company to serve the function of transportation 

department of the enterprise.  

4. When a truck arrives at a gas station, the gasoline is delivered at a delivery rate, 

i.e., the delivery cannot be instantaneous. An order up to level policy is applied to 

each gas station for inventory replenishment. Therefore, the maximum inventory 

level will be and should be reached once the gas station is visited by a truck.  

5. In order to improve the utilization of transportation resources, a minimum delivery 

quantity (Campbell, 2004a) is specified for each station. This subsequently 
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specifies the earliest time a station should be visited. Moreover, the central 

scheduling office should guarantee that each gas station will not run out of stock, 

which specifies the latest time that the station should be visited given the 

consumption rate. These two constraints naturally pose a delivery time window 

for each gas station.  

Each day, a fleet of vehicles depart from the oil depot and visit the gas stations 

following the routes designated by the central scheduling office. At the end of the day, 

the fleet returns to the depot or a specified parking area. For IRPs, one objective is to 

minimize the total transportation cost, which has received much attention in the 

literature (Andersson et al. 2010). However, the consideration of time is also very 

important in this problem.  

In this paper, we address the IRPs from the perspective of travel time 

minimization. The objective is to minimize the maximum route travel time among all 

vehicles due to two reasons. Firstly, vehicles should deliver products to gas stations 

earlier than the latest allowable visiting time. If a gas station runs out of stock, it 

might not only be viewed as a business problem, but also a social problem by the 

local community. Therefore, it can be argued that in some cases, it is more important 

to avoid stocking outs, rather than purely focusing on transportation cost minimization. 

The similar priority rule is also applicable to the distribution of some scarce resources 

such as blood, and critical rescue goods stored for use in emergencies. The delivery of 

these resources has a strong focus on speed of delivery. Secondly, in the petrol 

delivery network, all vehicles should return to the depot within the work shift so that 

the total driving hours are maintained at a safe level and workers’ preference on 

getting off duty on time are catered for. Furthermore, the maximum amount of 

accumulated driving time is limited by the regulations of the company. Similar 

regulations can be observed in the U.S., Europe and many other countries (e.g., Goel, 

2010; Goel and Kok, 2012). Hence, the hours-of-service of each vehicle should be 

leveraged so that each driver has similar working hours, while the hours-of-service 

regulation is complied with at the same time. Although there is a large body of 

research addressing IRPs with objective of transportation cost minimization (Ng et al., 
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2008; Coelho et al., 2012a), there is almost no work considering time in the objective 

function.  

The IRPs are difficult to solve (Campbell and Savelsbergh, 2004a). According to 

the published work, it is not easy to develop an exact algorithm for solving IRP with 

reasonable sizes (Archetti et al., 2007; Engineer et al., 2012). In practice, the tank of 

the gas station in urban area is relatively small due to limited space within the city and 

safety requirements. Thus, the delivery quantity for the gas station in the urban area is 

relatively small compared to vehicle capacity. As a first step, we concentrate on a 

simplified version of the problem, assuming that the vehicle capacity is 

un-constrained, which is similar to the uncapacitated assumption in Valle et al. (2011). 

However, we are well aware that in practice, more often than not, vehicles have 

limited capacity. We believe our contribution will serve as a basis for solving more 

realistic cases. 

The remainder of this paper is organized as follows. We review the related 

literature in Section 2. The problem definition and the mathematical model are 

presented in Section 3 and a tabu search algorithm is proposed in Section 4. Section 5 

employs the Lagrangian relaxation technique to obtain the lower bound for the 

problem. Section 6 presents computational results of the tabu search algorithm and the 

lower bounds, followed by the concluding Section 7. 

 

2. Literature Review   

The IRPs are observed in various industries and have received the attention of the 

academic communities since 1980, such as supermarket chains (Gaur and Fisher, 

2004), industrial gas industry (Bell et al., 1983; Campbell and Savelsbergh, 2004a, 

2004b), vending machine chain (Huang and Lin, 2010), automobile industries 

(Blumenfeld et al., 1987; Alegre et al., 2007; Ohlmann et al., 2008), meat industry 

(Oppen et al., 2010), oil refineries (Persson and Göthe-Lundgren, 2005), frozen food 

distribution companies (Custódio and Oliveira, 2006), blood distribution 

(Hemmelmayr et al., 2009) and maritime transportation industry (Al-Khayyal and 

Hwang, 2007; Dauzère-Pérès et al., 2007), etc. Recently, Andersson et al. (2010) 
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reviewed related literature published until 2008, where more than 100 papers or book 

chapters are classified accordingly to three types of planning horizon: instant time 

horizon, finite time horizon, and infinite planning horizon. IRPs are solved exactly by 

Archetti et al. (2007), Solyali and Süral (2011), Coelho and Laporte (2012), 

Adulyasak et al. (2012), etc. Also, efficient heuristic algorithms are proposed by 

Bertazzi et al. (2002), Zhao et al. (2007), Campbell and Savelsbergh (2004), Archetti 

et al. (2011), Coelho et al. (2012b, 2012c), Michel and Vanderbeck (2012), and 

Archetti et al. (2012), etc. In this paper, we only review the work published after 2008, 

which is not covered by the survey of Andersson et al. (2010). 

Considering the infinite planning horizon, Bertazzi (2008) determines shipping 

policies that minimize the sum of transportation cost and inventory cost both at the 

supplier and at the retailers. The bounds of direct shipping over shipping with routing 

are developed subject to given conditions. Archibald (2009) also considers direct 

deliveries. In the work of Li et al. (2010), the effectiveness of the direct shipping 

strategy is evaluated. Raa and Aghezzaf (2008, 2009) assume that the demand rate is 

constant.  

The IRPs with finite planning periods are addressed by Bard and Nananukul 

(2009a, 2009b), Kang and Kim (2010), Toriello et al. (2011) and Solyali and Süral 

(2011), etc., where both exact and heuristic algorithms are presented.  

There is a set of work which considers different network structures in the IRPs as 

well. For example, Ohlmann et al. (2008) address the inbound vehicle routing 

problem, with the constraints that limit the amount of inventory in the logistical 

network and present a two phase solution procedure. Moin et al. (2011) address the 

multi-product IRP in a many-to-one distribution network with finite planning periods. 

Zhao et al. (2008) and Li et al. (2011a) address an integrated IRP in a three-echelon 

logistics system, which consists of a supplier, a central warehouse and a group of 

retailers. 

Variations of IRPs can be found in the literature by considering different 

constraints or assumptions. Abdelmaguid et al. (2009) investigate the IRP with 

backlogging. Stochastic IRPs are considered by Chen and Lin (2009), Hvattum et al. 
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(2009) and Hvattum and Løkketangen (2009). Grønhaug et al. (2010) address a 

maritime IRP in the liquefied natural gas business. Huang and Lin (2010) study the 

multi-item IRPs with demand uncertainty. Benoist et al. (2011) present a randomized 

local search method for real-life IRP, which takes into account pickups, time windows, 

drivers’ safety regulations, and orders. Li et al. (2011b) consider the IRPs with split 

deliveries while Liu and Lee (2011) address the IRP with time windows.  

Recently, there emerged a set work which focuses on the petrol delivery 

problems. Various formulations and solution methodologies are proposed. Avella et al. 

(2004) study the case of a company that delivers different types of fuel to a set of fuel 

pumps. The objective is to minimize total travel cost. A branch-and-price algorithm is 

proposed. Cornillier et al. (2008) investigate a multi-period petrol station 

replenishment problem with the objective to maximize the total profit which equals to 

the revenue minus the sum of routing costs and of regular and overtime costs. 

Heuristic algorithm is proposed. Ng et al. (2008) present a case study on a single 

period tanker assignment and routing problem for petrol products in Hong Kong and 

develop a decision support system. Multiple objectives are considered simultaneously 

such that the number of tankers used and the number of drops in trips are minimized, 

profit in terms of total products delivered and utilization of resources are maximized. 

Muyldermans and Pang (2010) formulate the petrol delivery problem as the 

Multi-Compartment Vehicle Routing Problem with the objective of travel distance 

minimization and provide a local search procedure for this problem. Derigs et al. 

(2011) also formulate the petrol distribution problem as VRP with compartments. A 

heuristic algorithm is proposed, which combines local search and meta-heuristics. 

Cornillier et al. (2012) consider the multi-depot petrol station replenishment problem 

with time windows. Stations specify their demand by indicating the minimum and 

maximum quantities to be delivered for each ordered product and require the delivery 

within a predetermined time window. A heuristic algorithm is proposed to maximize 

the overall daily net revenue. Popovic et al. (2012) present a variable neighborhood 

search heuristic for solving a multi-product multi-period IRP in fuel delivery with 

multi-compartment homogeneous vehicles, and deterministic consumption that varies 
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with each petrol station. The objective is to minimize the total cost of vehicle routing 

and inventory management. 

According to the classification of the published work in Andersson et al. (2010), 

our problem focuses on the instant time horizon with deterministic demand. Routing 

of the fleet with homogeneous vehicles should be determined. Also, our problem is a 

variation of IRPs by considering a different objective function while most researchers 

take cost minimization as the objective. We would like to re-emphasize that in some 

real-life cases, while cost is still important, time has higher priority in the network of 

IRPs. Thus, our work attempts to take travel time minimization as the objective 

function.  
 

3. Problem Formulation  

We consider a logistic network in which the product of gasoline is distributed 

from the oil depot to a set of gas stations each day using a fleet of homogenous 

vehicles. For each gas station, an initial inventory level is given and the maximum 

inventory level is determined by its tank capacity. The problem is formulated based on 

the following assumptions:  

• The oil depot is assumed to have infinite inventory.  

• Each gas station has a product consumption rate.  

• The order up to level policy is applied for each visit. That is, if a station is 

visited at time t, then the delivered product quantity is such that the 

inventory level will be brought to its maximum value (tank capacity).  

• The vehicle’s delivery rate is the amount of product that can be delivered per 

hour. It is obvious that the delivery rate should be greater than the 

consumption rate for any gas station.  

• A station should only be visited if it meets the minimum delivery quantity 

requirement. This improves the utilization of delivery vehicles and creates 

better insurance against running out of product (Campbell and Savelsbergh, 

2004a). This constrains the earliest time that a station should be visited. 

Conversely, stock out is not allowed for each station, which specifies the 
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latest time that a station should be visited. Thus, each station has a specific 

delivery time window.   

As mentioned in Section 1, higher priority is assigned to route travel time. 

Therefore, this IRP is investigated with the objective of minimizing the maximum of 

vehicle travel time within the network. The decision is to determine the route for each 

vehicle such that each gas station is visited once within its delivery time windows. For 

each route, it is interesting that the visiting sequence of gas stations not only affects 

the vehicle travel time of this route, but also determines the delivery time and delivery 

quantity for the visited gas stations.  

Before presenting the mathematical model, the following set of indices and 

parameters are defined. 

i      index of the gas station, which belongs to the gas station set {1,2,..., }N n=  

k      index of vehicles, which belongs to the vehicle set {1,2,..., }V K=  

o      the depot  

Ii      the initial inventory level of gas station i 

Ci     The tank capacity at gas station i 

ui     The product consumption rate in gas station i 

R     the vehicle’s delivery rate 

min
iq    the minimum delivery quantity when station i is visited.  

[ , ]a b
i it t  the delivery time windows of station i, where minmax(0, ( ( )) / )a

i i i i it q C I u= − −  

and /b
i i it I u= .  

ijTI     the travel time between station i and station j. 

The variables that need to be determined are as follows: 

ijkx    equals to 1 if vehicle k visits arc ( , )i j , 0 otherwise. 

ikd     the delivery quantity to station i by vehicle k.  

ikt     the delivery start time of vehicle k at station i 
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d
ikt     the departure time of vehicle k from station i.  

0kt     the time the vehicle k reaches the depot at the end of the route.  

0
d
kt     the time the vehicle k departs from the depot at the beginning of the route.  

The mathematical model is presented below: 
 

)maxmin( 0kk
t                                 (1) 

Subject to:
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ijkjk
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ijk txttx ∑∑

==
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nj ,...2,1=  1, 2,...,k K=         (7) 

 0
( )

n

ik jik i i i ik
j

d x C I u t
=

= − +∑   ni ,...,2,1=    1, 2,...,k K=     (8) 

 
0 0d

kt =                   1, 2,...,k K=                  (9) 

 
/d

ik ik ikt t d R= +    ni ,...,2,1=   1, 2,...,k K=              (10) 

 
0≥ikt , 0d

ikt ≥ ,    ni ...,2,1,0=  1, 2,...,k K=              (11) 

 

The objective is to minimize the maximum route travel time among all the 

vehicles. Constraints (2) ensure that each gas station is visited only once. Constraints 

(3)-(5) characterize the flow on the path to be followed by each vehicle. Constraints 
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(6), which contain a large number M, eliminate sub-tours in each route. Constraints (7) 

specify the time window constraint for each gas station. Constraints (8) determine 

delivery quantity for each gas station, when it is visited by vehicle k. Constraints (9) 

and (10) determine the time that vehicle k leaves the depot and the stations.  

 

4. The Tabu Search Algorithm 

If we assume that there is only one vehicle in this problem, the problem is 

obviously more complex than a Traveling Salesman Problem (TSP). Therefore, this 

problem is a NP-Hard problem. Due to the high complexity of the problem, exact 

methods become inapplicable for solving large scale instances that often arise in 

practice. Attention can be paid to meta-heuristic methods that are able to produce near 

optimal solutions for such problems within reasonable computing time. Tabu search is 

a local search meta-heuristic proposed independently by Glover (1986) and Hansen 

and Jaumard (1990). According to recent literature, tabu search is widely applied for 

solving vehicle routing problems (Cordeau, et al., 1997; Archetti et al., 2006; 

Zachariadis et al., 2009). It is proved to be an effective meta-heuristic method for 

large scale VRP problems. Thus, as a first attempt for solving the problem in this 

paper, a tabu search algorithm is proposed.   

 

4.1 Initial solution construction 

To construct an initial feasible solution, we first sequence the gas stations in 

non-decreasing order of b
it . Gas stations are subsequently inserted into the vehicle 

routes in a greedy manner. The obtained initial solution consists of several (vehicle) 

routes. Each route can be treated as the route of a TSP and therefore can be improved 

by a method adapted from the Unstring and String (US) algorithm proposed by 

Gendreau et al. (1992). The steps of constructing the initial solution are presented 

below.  

 Step 1: sequence the gas stations in non-decreasing order of b
it . In case there is a 

tie of value b
it , stations are sequenced in non-increasing order of available empty 
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capacity, i.e., i iC I− .  

   Step 2: take the first station in the sequence as current station, append the station 

to the route that the travel time of the route with current station appended is 

minimized.  

Step 3: repeat Step 2 until all stations are inserted into vehicle routes.  

 

4.2 Adapted US algorithm to improve the initial and neighbor solutions 

Gendreau et al. (1992) propose the US algorithm to improve the solution for the 

TSP. The algorithm first deletes selected nodes from the route and then re-inserts 

these nodes into the route by some pre-designed rules. The work shows that this 

algorithm is a very efficient method for the TSP. This procedure is widely employed 

in tabu search algorithm to improve the neighborhood solutions (Cordeau et al., 1997; 

Archetti et al., 2006; etc.). We modify the standard US algorithm in Gendreau et al. 

(1992) to improve the solutions of the tabu search algorithm in this paper according to 

the problem features. In the adapted US algorithm, the search is more extensive in 

some steps but less in other steps. The detailed differences are listed below:  

1. For each route, there are time window constraints for customers and maximum 

operation hour constraint for the vehicle. Thus, there might be fewer customers in 

each route, compared to standard VRP for the similar sized problems. Hence, only 

type 1 unstring step and type 1 string step in Gendreau et al. (1992) are employed 

in the adapted algorithm.  

2. In the standard US algorithm, the two adjacent nodes of the insertion point are 

selected from the p-neighborhood of the insertion point. Here we simplify it by 

selecting the two nearest nodes within the p-neighborhood of the insertion point as 

the two adjacent nodes.  

3. For a given route in the solution of the tabu search, we enumerate all the possible 

sequences and select the best one if the number of nodes does not exceed 7 in the 

route considering the computational power advancement in the past two decades.  

From preliminary experiments, we set p = 3 in the adapted US algorithm. In 
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Gendreau et al. (1992), the complexity of the original procedure is 4 2( )np nο + . As 

mentioned by the above item 2, the selection of the insertion point is simplified. Thus, 

the complexity of the corresponding step is decreased from 4( )pο  to 3( )pο . 

Therefore, the complexity of the adapted US algorithm is 3 2( )np nο + . 

 

4.3 The tabu search algorithm 

The tabu search algorithm starts from the initial feasible solution and improves 

the solution quality by generating a set of neighbors in the hope that better solutions 

will be found. A tabu list is maintained during the search to prevent the search from 

getting stuck at local optimal solutions.   

 

4.3.1 Neighbor generation 

A neighbor can be generated by swapping pieces of any two routes in the current 

solution. For any two routes, once a cutting point is specified in each route, the two 

pieces from the cutting point to the end of the route can be exchanged to generate one 

neighbor solution.  

Another way to generate neighbor solutions is to move one node in the longest 

route and insert it into the remaining routes with less travel time. This neighbor 

generation operation reflects the objective of min-max the route time.  

As mentioned earlier, each neighbor consists of several routes. These routes can 

be improved by the adapted US algorithm. Prins (2004) shows that for searching 

algorithm, better results can be obtained if each randomly generated neighbor can be 

improved to be optimal. Though it is generally not possible to obtain the optimal 

solution for each generated neighbor due to computational time constraint, it is still 

desirable to apply the adapted US algorithm to obtain better TSP tours within 

allocated time.   

 

4.3.2 The tabu list  

We define each item in the tabu list by two parts. The first part is the two routes, from 
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which the two neighbors can be generated. The second part is the cutting points in the 

routes with maximum route travel time. When generating a neighbor by switching the 

two pieces, if the selected two routes and the cutting point are identical to an item in 

the tabu list, no neighbor will be generated. On the other hand, when generating a 

neighbor by inserting a node from a route to another route, if the selected two routes 

and the cutting point, which is on the left side of the selected node, are identical to an 

item in the tabu list, this move is forbidden. According to preliminary experiments, 

the tabu list length is set to n , where n is the number of nodes in the network.  

 

4.3.3 The tabu search algorithm 

Before presenting the detailed steps, we first define the notations. Let *s  

denotes the initial solution. CS and BS indicate current solution and the best solution, 

respectively. It is obvious that a solution consists of several routes. The route with 

longest travel time is denoted byΩ. Y denotes the index of the remaining routes in 

current solution. Let X denote the position index inΩ, the counter “Non_I” to record 

the number of times the solution has not been improved and Div_Num to denote the 

number of times that diversification is executed. The detailed steps are illustrated in 

Algorithm 1.  



 16 

 
 

 



 17 

5. Lower Bound by Lagrangian Relaxation Technique  
In order to validate the performance of the tabu search algorithm, lower bounds 

of the problem are developed via Lagrangian relaxation technique. By relaxing some 

constraints, the original complex problem can be converted to a tractable one which 

then can yield a lower bound of the optimal solution to the original problem. The 

foundations of the Lagrangian relaxation technique and related applications can be 

referred to Fisher (1981, 1985) and Geoffrion (1974). Recent successful applications 

can be found, for example, in Kallehauge et al. (2006) and Imai et al. (2007), etc.   

    We select Constraints (2) in the original model to be relaxed with Lagrangian 

multipliers iα . Thus, the model can be presented as:  

0
1 1 0,

min((max ) ( 1))
n K n

k i ijkk i k j j i
LR t xa

= = = ≠

= + −∑ ∑ ∑
                        

(12)
 

Subject to constraints (3)-(11).  
 

5.1 Problem decomposition 
The purpose of the Lagrangian relaxation technique is to create a problem that 

can be decomposed into a number of subproblems with known usable structures 

(Jörnsten et al., 1985; Guignard and Kim, 1987). Normally, the resulting model 

decomposes the original problem into one subproblem for each vehicle (Kohl and 

Madsen, 1997). However, the min-max format in objective function indicates that the 

relaxed model cannot be easily decomposed at the first glance. Fortunately, the 

following property of the relaxed model implies that the relaxed model can be 

decomposed.  

    Property 1. For the optimal solution of the relaxed problem, each vehicle’s route 

can be identical.  

Proof: We assume that the routes are not identical in the optimal solution of the 

relaxed problem. The routes can be denoted by 11 2
1 1 1( , ,... )li i i ,…, 1 2( , ,..., )kl

k k ki i i ,…, 

1 2( , ,..., )Kl
K K Ki i i . l

ki  indicates the lth gas station in vehicle k’s route, where 

1,2,..., , 1, 2,..., kk K l l= = . kl  indicates the number of gas station in vehicle k’s route. 

Assume that vehicle k* has the maximum travel time among the routes of the optimal 
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solution. Thus, * 00
max{ }kk k

t t= . In (12), the term 
1 0,

n n

i ijk
i j j i

xα
= = ≠
∑ ∑  denotes the sum of 

iα  on vehicle k’s route. Thus, the objective function can be written as: 

*0
1 1 1

k

l
k

lK n

ik i
k l i

LR t α α
= = =

= + −∑∑ ∑ .                            (13) 

Let 
ks  denote part of the second term, i.e., 1 2 ... lk

k k k
k i i i

s α α α= + + + . The second 

term can be written as 
1

K

k
k

s
=
∑ . For the route of any vehicle p *( )p k≠ in the solution，

we have pk tt 00 * ≥ . If there is only one route has the value of *0k
t , we prove that each 

vehicle’s route can be identical.   

(1) * pk
s s<  

If vehicle p abandons its route and take the route that is identical to k*, we have 

*0 0p k
t t= , *p k

s s= . Thus, the value is not changed for the first term in (13), while the 

value of the second term is decreased. Therefore, we obtain a better solution by 

change vehicle p’s route. It is straightforward that we can replace the routes of any 

vehicle k with * kk
s s<  to improve the solution.   

(2) * pk
s s=   

This condition indicates that the sum of the multipliers for each route is identical. 

Probably, the set of gas stations is identical for the two routes. The only difference is 

the visiting sequence of gas stations. Let * 0min{ }pp p
t t= for all routes p with *p k

s s=  

Replacing the routes of all vehicle p and vehicle k* by the route of vehicle p*, the 

solution of (12) can be improved.   

(3) * pk
s s>  

In this case, it is obvious that a better solution will be obtained by replacing the 

route of vehicle *k by the best of the remaining routes. Similar to condition (2), let 

* 0min{ }pp p
t t=  for all routes p with *p k

s s<  Then, replace the routes of all vehicle p 
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and vehicle k* by the route of vehicle p*, the solution of (12) can be improved.   

Therefore, if there is only one route has the value of *0k
t , each vehicle’s route 

should be identical in the optimal solution of the relaxed problem. On the other hand, 

if there is more than one route have the value of *0k
t , such as * * *0 1 0 2 0k k k

t t t= =  we 

prove that these routes k1* and k2* can be converted to only one route.  

(4) * *1 2k k
s s≠  

Similar to case (1), the route with larger value of s will be replaced with the other 

route with a smaller value of s. Therefore, we obtain a better solution by reducing the 

value of the second term in (13).  

(5)  * *1 2k k
s s=   

Since the route travel time and the sum of the multipliers of the two routes are 

identical, any route can be replaced by the other route without changing the value of 

(13).  

Thus, for the optimal solution of the relaxed problem, each vehicle’s route can be 

identical.                                                            □ 

According to Property 1, the route of each vehicle should have identical travel 

time. Let 1nt +  represents all 0kt . Thus, (12) can be re-written as:  

1
1 1 0,

min ( 1)
n K n

n i ijk
i k j j i

LR t xα+
= = = ≠

= + −∑ ∑ ∑                         (14) 

By Property 1, each vehicle’s route is identical. Thus, the original problem can 

be decomposed into sub-problems for each vehicle. Also, the variable ijkx  can be 

replaced by ijx . The second term of (14) consists of the total of the corresponding 

term in each sub-problem. By decomposing (14), the model of each subproblem is 

presented in (15) to (25). For the convenience of presentation, the depot that each 

vehicle returns to is represented by n + 1 in the model. 

1

1
1 1, 0

min( ) /
n n n

k n i ij i
i j j i i

LR t K x Kα α
+

+
= = ≠ =

= + −∑ ∑ ∑
                  

(15) 
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Subject to：      

,1
1

0 =∑
=

n

j
jx

                          
            (16) 

,1
1

1, =∑
=

+

n

j
njx

                    
                 (17) 

0
00

=−∑∑
==

n

j
hj

n

i
ih xx

    
1, 2,....,h n=                   (18) 

0 0dt =                                           (19) 

b
j

n

i
ijj

a
j

n

i
ij txttx ∑∑

==

≤≤
00    

1, 2,...,j n= ，               (20) 

0
( )

n

i ji i i i i
j

d x C I u t
=

= − +∑       ni ,...,2,1=               (21) 

/d
i i it t d R= +        ni ,...,2,1=                      (22) 

(1 )d
j i ij ijt t TI M x≥ + − −    ni ...,2,1,0=   1,,...,2,1 += nnj     (23) 

0≥it , 0d
it ≥      ni ...,2,1,0=                       (24) 

1,0=ijx    ni ...,2,1,0=    1,,...,2,1 += nnj             (25) 

The objective is the minimization of the travel time of each route. If we re-write 

tn+1 as iji

n

i

n

j
jn xttt )(

0

1

1
1 −= ∑∑

=

+

=
+ , thus, the objective function can be re-written as 

1

0 1 1
min( ( ) ) /

n n n

k j i i ij i
i j i

LR t t K x Kα α
+

= = =

= − + −∑∑ ∑ . Since K and iα are constants, the 

subproblem can be treated as a shortest path problem with time constraints 

(Desrosiers et al., 1995).  

 

5.2 Dynamic programming algorithm for solving the sub-problem 
We develop a dynamic programming (DP) algorithm to solve the subproblem. 

The algorithm extends the dynamic algorithm in Desrosiers et al. (1995) to avoid 

cyclic routes in the network. Before presenting the algorithm, the following notation 

is explained.  
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Let ij j i ic t t Kα= − + , which denotes the travel cost from node i to node j. For 

node i, there is a set of labels. Each label can be denoted by ( , , ( , ))k k k k
i ii i

T C Front v vt . 

k
i

T  and k
i

C indicate the travel time and cost of the kth path from o to i, respectively. 

k
i

T  also indicates the delivery start time of the vehicle for customer i. On the kth path, 

k
iv  denotes the immediate predecessor of i. k

ivt  denotes the route index from o to k
iv . 

iQ  is the set of labels for node i.
 

iP  refers the set of labels that is exploited in the 

DP procedure. N denotes the set of nodes.  o and d  denote the depot that the 

vehicle departs and returns to, respectively. V denotes nodes including N and d. 

( )iΓ denotes successors of node i. To avoid cyclic routes, if a node is included in the 

route from o to i, the node cannot be included in ( )iΓ .  

5.2.1 Label domination condition 

Similar to Desrosiers et al. (1995), among the set of labels of node i, we define 

the condition that one label dominates another label.  

Definition. 1 1 1 1( , , ( , ))k k k k
i ii i

T C Front v vt dominates 2 2 2 2( , , ( , ))k k k k
i ii i

T C Front v vt if 

and only if 1 2k k
i i

T T≤ , 1 2k k
i i

C C≤ , 1 1 2 2k k k k
i i i iC T C T− ≤ − , and at least one of the 

inequalities holds strictly. 

If we extend the sub-route 0-i to node j, the labels are updated, so that 

1 1 1 1( , , ( , ))k k k k
j jj j

T C Front v vt  and 2 2 2 2( , , ( , ))k k k k
j jj j

T C Front v vt are obtained. The first 

sub-route is better than the second if 1 2k k
j j

T T≤ and 1 2k k
j j

C C≤ . We now show that 

why 1 1 2 2k k k k
i i i iC T C T− ≤ −  is appended compared to the domination definition in 

Desrosiers et al. (1995). 

 When we extend the sub-route 0-i to node j, 
1 1max{ , },k a k

j j i ijT t T T= + 2 2max{ , },k a k
j j i ijT t T T= + 1 1 2 2,k k k k

j i ij j i ijC C c C C c= + = + . 

According to the definition of k
jT  and k

jt , it is obvious that k k
j jT t= . If ijc  is 
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constant, the domination condition should be 1 2k k
i i

T T≤ , 1 2k k
i i

C C≤ , which is given 

by Desrosiers et al. (1995). However, ij j i ic t t Kα= − + in this sub-problem. Let jAT  

denote the arrival time of the vehicle to node j. Thus,  
( )i i i i

j i ij
C I u tAT t TI

R
− +

= + +                  (26) 

Then, 
( ) ,

,

ai i i i
ij i j j

ij
a a
j i i j j

C I u t TI K if AT t
c R

t t K if AT t

a

a

− + + + >= 
 − + ≤

              (27) 

(1). If 1 2k k a
j j jAT AT t≤ ≤ .   

According to (26) and (27), 1 1 1k k a k
j i j i iC C t T Ka= + − + , 2 2 2k k a k

j i j i iC C t T Ka= + − + . 

If 1 1 2 2k k k k
i i i iC T C T− ≤ − ， 1 2k k

j jC C≤  

(2). If 1 2k a k
j j jAT t AT≤ ≤  

1 1 1k k a k
j i j i iC C t t Ka= + − + , 

2
2 2 ( )k

k k i i i i
j i ij i

C I u tC C TI K
R

α− +
= + + +

 

Since
2

2 2 ( )k
k k i i i i

j i ij
C I u tAT t TI

R
− +

= + + , we obtain 
2

2 ( )k
a k i i i i
j i ij

C I u tt t TI
R

− +
≤ + + . 

Then, 
2

1 1 1 1 1 2 ( )k
k k k a k k k i i i i
j i i j i i i i ij i

C I u tC C T t K C T t TI K
R

aa − +
= − + + ≤ − + + + +   (28) 

If 1 1 2 2k k k k
i i i iC T C T− ≤ − ， 

2 2
1 1 1 2 2 2 2( ) ( )k k

k k k k k k ki i i i i i i i
j i i i ij i i i i ij i

C I u t C I u tC C T t TI K C T t TI K
R R

α α− + − +
= − + + + + ≤ − + + + +

As k
i

T also indicates the delivery start time of vehicle k for customer i,  

2 2
2 2 2 2 2( ) ( )k k

k k k k ki i i i i i i i
i i i ij i i ij i j

C I u t C I u tC T t TI K C TI K C
R R

α α− + − +
− + + + + = + + + =  

Thus, we obtain 1 2k k
j jC C≤ . 

(3).
 
If 1 2a k k

j j jt AT AT≤ ≤  
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1
1 1 ( )k

k k i i i i
j i ij i

C I u tC C TI K
R

α− +
= + + + ，

2
2 2 ( )k

k k i i i i
j i ij i

C I u tC C TI K
R

α− +
= + + +  

If 1 2k k
i i

T T≤ , and 1 2k k
i i

C C≤ ，we obtain 1 2k k
j jC C≤ .

 

Therefore, the condition of 1 2k k
i i

T T≤ , 1 2k k
i i

C C≤  and 

1 1 2 2k k k k
i i i iC T C T− ≤ − ensure that 1 2k k

j j
T T≤ and 1 2k k

j jC C≤ , which indicate that 

1 1 1 1( , , ( , ))k k k k
i ii i

T C Front v vt dominates 2 2 2 2( , , ( , ))k k k k
i ii i

T C Front v vt . 

5.2.2 The dynamic programming algorithm 

Let 1 1 1 1( , , ( , ))k k k k
i ii i

EFF T C Front v vt  denotes the set of non-dominated labels of 

node i. The algorithm consists of the following steps.  

Step 1. Initialization 

))};0,0(,0,0{( 1
0

1
00 FrontCTQ === , { };iQ i N d=∅ ∀ ∈ ∪ ,iP i V=∅ ∀ ∈  

Step 2.selection of node i* 

From the set ( \ ), { }i i iU Q P i N o∈ ∀ ∈ ∪ , select the label 

* * * *( , , ( , ))k k k k
i ii i

T C Front v vt with minimum value of k
iT . If 

( \ ) , { }i i iU Q P i N o∈ =∅ ∀ ∈ ∪ , stop，go to step 4. Otherwise, go to next step.  

Step 3：treatment of label * * * *( , , ( , ))k k k k
i ii i

T C Front v vt  

For all )( *ij Γ∈ ， 

* * * * *( ( , , ( , )) )k k k k
j i i ji j i i

Q EFF f T C Front v vt Q= ∪ , * * * *{( , , ( , ))}k k k k
i ii i i i

P P T C Front v vt= ∪ .  

* * * * *( , , ( , ))k k k k
i ii j i i

f T C Front v vt  is the treatment of labels of the node j, which is the 

successor of node i*. If * * * * * *( ) /k k b
ji i i i i i j

T C I u T R TI t+ − + + ≤ ,  

 
* * *

* * * * * * * *

* *

*

( , , ( , ))

(max{ , ( ) / }, , ( , ))

k k k k
i ii j i i

a k k k
j i i i i i i j i i j

f T C Front v vt

t T C I u T R TI C c Front i k

=

+ − + + +  (29) 

The term * * * * * *( ) /k k
i i i i i i j

T C I u T R TI+ − + +  denotes the sum of delivery start time 

at node i, the delivery time of the vehicle at node i and the travel time between 
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node i and j. [ , ]a b
j jt t  is the time windows for delivery at node j. It is obvious 

that if * * * * * *( ) /k k b
ji i i i i i j

T C I u T R TI t+ − + + > , * * * * *( , , ( , ))k k k k
i ii j i i

f T C Front v vt  is 

empty.   

When the treatment is executed, return to step 2.  

Step 4: from all the labels of {d}, select the label 
*k

dT with the minimum value of k
dT . 

Then, find the shortest path from this label.  

 

5.3 Lower bound calculation 
The subgradiant method is used to find the appropriate multipliers for the 

Lagrangian relaxation technique. In the subgradient method, a sequence of 

Lagrangian multipliers is generated by the formula:  

1
1

1
*( 1),

n
s s
i i s ij

j
t K xα α

+
+

=

= + −∑                          (30) 

Where st  is a positive scalar step size defined as:  

1
2

1 1

*( )

( 1)

s
s n n

ij
i j

u Z LBt
K x

+

= =

−
=

−∑ ∑
                              (31) 

The initial multipliers can be iα =0. sµ is a scalar satisfying 0 2sµ< ≤ . Z is an upper 

bound on the optimal solution, which can be obtained by heuristics to the original 

problem. LB is the lower bound, which is obtained by the dynamic programming 

algorithm.  

The steps of the Lagrangian relaxation technique are:  

Step 1: initialization. Set fα =0, sµ =2, Maximum iteration kmax=1000, initial 

lower bound LB=0, initial upper bound UB=20000, ε =0.05, a parameter named 

Max_No_Improve is set to 4, which will be used in the following step. 

Step 2：calculate relaxed lower bound LR and upper bound Z, LB=Max(LR, LB) . 

if LB is not increased in Max_No_Improve iterations, take nµ to its half.  
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Step 3：calculate st and iα   

Step 4：if iteration number reaches its maximum or ε≤−
×

Z
LBZ )(100 , stop.  

Return LB. Otherwise, return to Step1.  

The upper bound in Step 2 is generated by the tabu search algorithm. When 

applying the Lagrangian relaxation technique, we observe that the iteration is not 

always necessary to be 1000. In most of the cases, when nµ  is reduced to a certain 

value, LR cannot be increased. Thus, if LR stops increasing for some value of nµ  

and the subsequent value of / 2nµ , we terminate the algorithm to save computing 

time.  
  

6. Computational Results 

In this section, the performance of the tabu search algorithm is evaluated by 

computational experiments based on randomly generated instances. Campbell and 

Savelsbergh (2004a) work on an industrial gas delivery problem, which is similar to 

the problem studied in this paper. Therefore, we generate our data in the way that is 

similar to the procedure described in Campbell and Savelsbergh (2004a). However, 

the ranges of the randomly generated data are slightly adjusted according to the 

assumptions in this paper. Three sets of data are generated based on 5–9 gas stations 

(first set S1), 10–100 gas stations (second set S2) and 60–200 gas stations (third set 

S3), respectively. The storage capacity of the gas stations is generated in [288, 312] 

with an average of 300, which is a unitless measure without losing generality. The 

same applies to other similar parameters such as consumption and vehicle delivery 

rates. The average consumption rate of each gas station is 15 per hour. We allow the 

value to vary by 20% below or above the average value.  It is safe to assume that the 

consumption rate in the day time is higher than that during the night. Based on 

observation and communications with employees from the company, the consumption 

rate during the 8-hour delivery time (day time) period is set to 2 times over the 

consumption rate of the 16-hour low demand time period (non-delivery time period, 



 26 

i.e., night time). In our model, the decision only cares about the operations within an 

8-hour delivery time period. Thus, in order to simplify the model, the low demand 

time period can be condensed to 8 hours with identical consumption rate within the 

delivery time period. The initial inventory at each gas station is set to be the 

consumption quantity between 4 to 16 hours at the delivery time period consumption 

rate. Also, the minimum delivery quantity at each gas station should satisfy at least 

one day’s consumption. It is set to be 20 hours consumption quantity minus the initial 

inventory. The position of the depot and each gas station is represented by the X and Y 

coordinates, which are generated in [0, 70]. There are 2–20 vehicles in each problem, 

with the travel speed of 40 per hour. The delivery rate of each vehicle to each gas 

station is set to 900 per hour. For each problem configuration, 5 instances are 

generated and the average is presented as the reported results.   

The tabu search algorithm and the Lagrangian relaxation technique were coded 

in C++. The computational experiments are conducted on a personal computer with 

Intel Pentium dual-core 2.8 GHz CPU and 2 GB RAM. The test instances with 5–9 

gas stations are employed to validate that whether the tabu search can obtain the 

optimal solution for small sized problems, which are solved by CPLEX 12.0.  

The computational results are shown in Tables 1 to 3. Table 1 provides optimal 

solutions obtained by CPLEX and the results of the tabu search algorithm for the five 

instances generated for each combination of gas station number and vehicle number. 

It is shown that the tabu search algorithm can obtain the optimal solutions for all of 

the small sized instances. It is also observed from Table 1 that the tabu search 

algorithm spends shorter time for most of the problems. The gap of CPU time 

increases as the problem size increases. Note that CPLEX can only solve the problem 

with 9 gas stations and 2 vehicles. For larger sized problem, CPLEX cannot provide 

the optimal solution within 8 hours, which is a shift time period in reality. Thus, we 

can find that for small-scale test instances the tabu search algorithm dominates 

CPLEX.  

[Insert Table 1 here] 

In order to evaluate the performance of the presented tabu search algorithm for 
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solving larger sized problem, we compare the results with the lower bound obtained 

using the procedure described in Section 5. The results of the average travel time, 

lower bounds and computational time for five instances of each problem in the second 

set are reported in Table 2.  

[Insert Table 2 here] 

For small to medium sized problems in the second set, with the exception of 

problem configuration number 17 which is the largest instance in the test set and has a 

gap of 17.9%, the maximum of the average gap between the solution of the tabu 

search algorithm and the lower bound provided by the Lagrangian relaxation 

technique is less than 8.1%. It implies that the tabu search algorithm can obtain 

solutions which are quite close to the optimal ones. Also, the results indicate that the 

lower bound obtained by the Lagrangian relaxation technique is rather tight for most 

of the test instances in the set. It is worthwhile to mention that the computational time 

of the tabu search is very competitive compared to that of the Lagrangian relaxation 

technique.  

As discussed earlier, an adapted US algorithm is applied in each iteration of the 

tabu search algorithm. To evaluate the effectiveness of the adapted US algorithm, the 

tabu search algorithm is compared to its duplication where the adapted US algorithm 

is removed (i.e., by removing Steps 9 and 14 from Algorithm 1). It should be 

mentioned that if the adapted US algorithm is totally removed from the tabu search 

algorithm, it is hard to find a feasible solution. Therefore, the adapted US algorithm is 

still applied to the selected best neighbor (i.e., applied to the solution in Step 18 in 

Algorithm 1) in each iteration of the tabu search. Meanwhile, we apply the standard 

US algorithm, i.e., without the adaptation, to the tabu search to see whether the 

adapted US algorithm contribute to the solutions. The computational results are 

shown in Table 3, where the three approaches are marked as “without”, “with 

standard” and “with adapted” which are linked with the US algorithm. The columns 

of “Gap (%)” below “without” and “with standard” measure the relative difference of 

the particular approach to the tabu search with the adapted US algorithm. 

[Insert Table 3 here] 
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The results indicate that the tabu search with the adapted US algorithm obtain 

much better results compared to the tabu search without the adapted US algorithm. 

The average gap is about 12.1%. Although the computational time of the former 

algorithm is longer than the latter, the time is still acceptable in practice. The results 

indicate that the adapted US algorithm enhance the performance of the tabu search 

algorithm considerably.  

Since standard the US algorithm is quite time consuming, it is also only applied 

for the selected neighbor in each iteration of the tabu search algorithm. It is shown 

that the tabu search with standard US algorithm spent less time for smaller problem. 

However, the CPU time increases quickly when the problem size increases. It is also 

shown that the tabu search with adapted US algorithm performs better than tabu 

search with the standard US algorithm. For all of the 15 problems, tabu search with 

adapted US algorithm is slightly inferior to tabu search with standard US algorithm 

for 7 problems. However, for the remaining 8 problems, tabu search with adapted US 

algorithm clearly outperforms. The last row in Table 3 summarizes the performance of 

the three approaches across all the test instances in the third test set, which clearly 

shows that the tabu search with adapted US algorithm outperforms the one without by 

12.1%, and slightly outperforms the one with standard US algorithm with a 

performance gap of 1.0%. 

The results in Table 3 indicate that it is preferable to apply the adapted US 

algorithm or the standard US algorithm for each generated neighbor. However, as the 

standard US algorithm is quite time consuming, it can only be applied to one selected 

neighbor in each iteration. The adapted US algorithm can be applied to each generated 

neighbor to enhance the performance of the tabu search algorithm while maintain the 

time-effectiveness of the approach.  

 

7. Conclusion 

In this paper, we investigate a new variant of the inventory-routing problem in the 

gasoline distribution industry.  We consider a couple of special constraints in this 

industry, which motivate us to concentrate on the vehicle travel time minimization as 
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the objective. For this NP-hard problem, we have proposed a tabu search algorithm 

and developed an adapted US algorithm as part of the solution which improves the 

solution quality of the tabu search. For evaluating the performance of the proposed 

approach, we employ the Lagrangian relaxation technique to obtain the lower bound 

of the problem which decomposes the relaxed problem by exploiting its properties. 

Computational results show that the solution of the tabu search algorithm is quite 

close to the lower bounds for small to medium sized problems. It indicates that the 

tabu search algorithm can provide near optimal solution for these problems and the 

Lagrangian relaxation technique provides tight lower bounds. Computational results 

also demonstrate that the adapted US algorithm can improve the performance of the 

tabu search considerably. 

Although the lower bound provided by the Lagrangian relaxation technique is 

tight, the computational time is relatively long. Thus, it is an interesting direction to 

reduce the computational complexity of the lower bound while not sacrificing the 

quality. From a practical perspective, a natural next step to tackle the problem is to 

consider the vehicle capacity constraint while routing the fleet of distribution vehicles. 

How to balance the maximum travel time and the overall distribution system cost 

would also be interesting and the trade-off between time and cost needs to be 

examined as future work as well.  
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Table 1. Computational results of CPLEX and tabu search algorithm 

Prob n K 
CPLEX Tabu Search 

0max kk
t  CPU (s) 0max kk

t  CPU (s) Optimal? 

S1.1 5 2 190.6 3.1 190.6 3.7 Yes 

S1.2 6 2 239.9 3.4 239.9 4.0 Yes 

S1.3 7 2 252.4 6.9 252.4 4.7 Yes 

S1.4 8 2 249.6 47.5 249.6 5.5 Yes 

S1.5 9 2 265.5 640.5 265.5 8.8 Yes 
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Table 2. Computational results of Lagrangian relaxation technique and tabu 

search algorithm 

Prob n K 
Lagrangian Relaxation Tabu Search 

Gap (%) 
LB CPU (s) 0max kk

t  CPU (s) 

S2.1 10 2 194.5  4.5  207.5  10.4  6.2 

S2.2 11 2 204.1  3.7  218.3  11.3  6.5 

S2.3 12 2 212.0  5.8  230.7  11.0  8.1 

S2.4 13 2 227.5  5.1  245.5  12.9  7.3 

S2.5 14 2 246.7  5.5  264.3  11.6  6.6 

S2.6 20 2 301.8 9.3 311.8 14.1 3.3 

S2.7 25 2 374.3 12.7 390.9 14.2 4.4 

S2.8 30 3 390.1 22.4 412.4 15.1 5.7 

S2.9 35 3 390.8 38.1 410.6 20.6 5.1 

S2.10 40 3 346.9 41.5 366.2 32.3 5.6 

S2.11 45 3 378.9 120.9 398.5 36.1 5.2 

S2.12 50 4 323.5 66.3 347.3 44.0 7.3 

S2.13 60 4 389.5 127.3 412.4 80.2 5.9 

S2.14 70 5 346.8 129.3 373.8 107.3 7.8 

S2.15 80 5 395.0 331.8 421.9 124.3 6.8 

S2.16 90 6 363.5 799.3 389.8 145.9 7.2 

S2.17 100 7 325.6 886.8 384.0 171.3 17.9 
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Table 3. Computational results of the tabu search algorithm without, with the 

standard, and with the adapted US algorithm 

Prob n K 
without with standard with adapted  

0max kk
t  CPU (s) Gap (%) 0max kk

t  CPU (s) Gap (%) 0max kk
t  CPU (s) 

S3.1 60 4 455.4 59.1 10.4 410.8 129.3 –0.4 412.4 80.2 

S3.2 70 5 394.6 78.8 5.6 369.1 127.5 –1.3 373.8 107.3 

S3.3 80 6 461.8 94.7 9.5 433.5 114.3 2.7 421.9 124.3 

S3.4 90 7 432.0 109.6 10.8 389.0 126.7 –0.2 389.8 145.9 

S3.5 100 8 423.5 126.0 10.3 383.6 161.6 –0.1 384.0 171.3 

S3.6 110 8 486.5 128.5 18.6 422.2 172.9 2.9 410.2 196.1 

S3.7 120 9 429.3 151.5 9.1 395.9 200.0 0.6 393.6 210.6 

S3.8 130 10 436.1 103.3 14.0 387.1 230.0 1.2 382.5 244.5 

S3.9 140 11 460.4 119.9 18.3 405.8 228.0 4.3 389.2 267.8 

S3.10 150 12 430.3 129.2 12.6 381.8 274.3 –0.1 382.1 292.1 

S3.11 160 13 429.2 125.7 15.3 383.5 279.7 3.0 372.4 327.3 

S3.12 170 14 400.0 143.3 12.9 358.1 321.1 1.1 354.2 339.3 

S3.13 180 15 406.7 161.3 11.8 361.7 417.7 –0.6 363.8 352.4 

S3.14 190 16 393.9 189.2 12.1 356.9 367.0 1.5 351.5 392.7 

S3.15 200 17 403.8 174.5 9.9 366.5 516.4 –0.2 367.3 427.9 

Total   6443.5  12.1 5805.5  1.0 5748.7  

 


