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Integrated inventory management and supplier base reduction in a supply chain with 

multiple uncertainties 

 

Dong-Ping SONG1, Jing-Xin DONG2 and Jingjing XU1 

 

Abstract: This paper considers a manufacturing supply chain with multiple suppliers in the 

presence of multiple uncertainties such as uncertain material supplies, stochastic production 

times, and random customer demands. The system is subject to supply and production capacity 

constraints. We formulate the integrated inventory management policy for raw material 

procurement and production control using the stochastic dynamic programming approach. We 

then investigate the supplier base reduction strategies and the supplier differentiation issue 

under the integrated inventory management policy. The qualitative relationships between the 

supplier base size, the supplier capabilities and the total expected cost are established. Insights 

into differentiating the procurement decisions to different suppliers are provided. The model 

further enables us to quantitatively achieve the trade-off between the supplier base reduction 

and the supplier capability improvement, and quantify the supplier differentiation in terms of 

procurement decisions. Numerical examples are given to illustrate the results. 

 

Keywords: supply chain; raw material procurement; production control; supplier base 

reduction, uncertainty; integration. 

 

1. Introduction 

Manufacturer-oriented supply chain systems are concerned with the effective management of 

the flow and storage of goods in the process from the procurement of raw materials from the 

suppliers to the delivery of finished goods to the customers. Here the flow refers to 

transportation and the storage refers to holding inventory. One of the key challenges in supply 

chain management is how to appropriately tackle and respond to a variety of uncertain factors 

such as supply uncertainty and disruption (Lu et al. 2011; Snyder et al. 2012), imperfect 

production or defective items (Sana 2010; Pal et al. 2013), unreliable machine (Song and Sun 

1998; Pal et al. 2013); stochastic processing time (Buzacott and Shanthikumar 1993; Song 

2013), and random demands (Masih-Tehrani et al. 2011).  

 

Traditionally, procurement policy about lot sizing decisions for raw materials was often 

separated from the production control systems so that the complexity and interplay of the 

functional areas like procurement, inventory, production and scheduling are decomposed and 

reduced. Such treatment is useful to simplify the management problem, and may be appropriate 

in situations with loose connections between functional areas. However, from a systemic 

viewpoint, it may lead to sub-optimal solutions and the system may perform far away from the 

optimum. In the last two decades, much attention has been paid to the coordination between 

procurement management and production management along the development of the supply 

chain management concept (e.g. Goyal and Deshmukh 1992; Arshinder et al. 2008). This paper 

will consider the optimal integrated procurement and production problem for a manufacturing 

supply chain with multiple suppliers in the presence of multiple uncertainties such as uncertain 

material supplies, stochastic production times, and random customer demands. In the following, 

we review and classify the relevant literature into two groups. The first group focuses on the 

sourcing (procurement) problems among multiple suppliers under supply uncertainty; and the 
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second group focuses on the integrated inventory management for production systems subject 

to two or multiple types of uncertainties. 

 

With respect to the first group, Snyder et al. (2012) described several forms of supply 

uncertainty including: disruptions, yield uncertainty, capacity uncertainty, lead-time 

uncertainty, and input cost uncertainty; however, the boundaries among these forms are often 

blurry. Sourcing from multiple suppliers is an important strategy to deal with the supply 

uncertainty. The general sourcing (ordering) problem is to determine from how many and which 

suppliers to source the commodity (or raw material) and in what quantities in order to minimize 

total expected cost. A significant number of studies have been conducted in this area in the last 

two decades (cf. the review papers: Minner 2003; Thomas and Tyworth 2006; Ho et al. 2010; 

Snyder et al. 2012; Qi 2013). More specifically, Lau and Zhao (1993) considered an inventory 

system with two suppliers subject to stochastic lead times and demands. They presented a 

procedure to determine the optimal order-splitting policy (i.e. the total order quantity, reorder 

point and proportion of split between two suppliers). Anupindi and Akella (1993) studied a dual 

sourcing problem with stochastic demand and supply uncertainty (e.g. random disruption and 

yield uncertainty). They proved that the optimal ordering policy has three action regions 

depending on the on-hand inventory level. Agrawal and Nahmias (1997) developed a 

mathematical model to optimize the number of suppliers with yield uncertainty. They assumed 

that the yield from an order is the placed order size multiplied by a normal random variable, 

which implies that larger orders have higher yield variance.  Such effect favours smaller orders 

from many suppliers. On the other hand, more suppliers incur additional fixed costs associated 

with each supplier such as qualifying new suppliers, supplier development, and more logistics 

problems. Their model is able to find the optimal number of suppliers that balances these two 

competing objectives. Berger et al. (2004) examined the single versus multiple sourcing 

problem from the risk management viewpoint and present a decision-tree based optimisation 

model to evaluate the performance of the two procurement approaches. Here the risks refer to 

catastrophic events that affect many/all suppliers, and unique events that affect only a single 

supplier. Berger and Zeng extended the above decision-tree approach to considering 

unpredictable operations interruptions caused by all suppliers failing to satisfy the buyer's 

demand so that the optimal size of the supply base can be determined. Ruiz-Torres and 

Mahmoodi (2007) also utilized the decision tree approach to determine the optimal number of 

suppliers taking into account various levels of supplier failure probability and possible 

procurement cost savings gained from using less reliable suppliers. Dada et al. (2007) 

formulated a newsvendor model for the procurement decisions from multiple unreliable 

suppliers in which demand is stochastic and supply uncertainty can reflect disruptions, yield 

uncertainty, and capacity uncertainty. They showed that if a given supplier is not used, then no 

more expensive suppliers than this supplier should be used. Federgruen and Yang (2008, 2009) 

examined the supplier selection and diversification issues in the similar inventory system to 

that of Dada et al. (2007), but with different cost structures. 

 

Burke et al. (2007) contrasted the preference of single versus multiple supplier sourcing 

strategies in a single period, single product sourcing decisions under demand uncertainty. They 

showed that single sourcing strategy is preferred only when supplier capacities are large relative 

to the product demand and when the manufacturer does not obtain diversification benefits. In 

other cases, the multiple sourcing strategy is preferred. Jokar and Sajadieh (2008) considered a 

multiple sourcing inventory system with stochastic lead-times and constant demand under the 

reorder point-order quantity inventory control policy on a continuous-review scheme. They 

presented a mathematical model that is able to determine the optimal number of identical 

suppliers and quantify the difference between multiple-sourcing and sole-sourcing strategies. 
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Sarkar and Mohapatra (2009) formulated a model with a decision tree-like structure to 

determine the optimal size of supply base by considering the risks of supply disruption caused 

by different types of events. Masih-Tehrani et al. (2011) showed that risk diversification is 

preferred in a multi-manufacturer-one-retailer system with stochastically dependent supply 

capacities, and indicated that if the retailer ignores the effect of dependent disruptions it would 

overestimate the fill rate and tend to order more than the optimum. Lu et al. (2011) considered 

the optimal sourcing policy in a supply chain with product substitution and dual sourcing under 

random supply failures. Mirahmadi et al. (2012) used a decision tree approach to determine the 

optimal number of suppliers taking into account the supply risk and the associated costs (e.g. 

cost of supplier development, missing discount in volume, loss due to supply postponement). 

Silbermayr and Minner (2012) presented a semi-Markov decision process for the optimal 

sourcing problem with multiple suppliers in which demands, lead times and supplier availability 

are all stochastic. They showed that the optimal sourcing strategy (depending on the on-hand 

inventory, the outstanding orders and the supplier availability statuses) is rather complex. Pal 

et al. (2012a) addressed a multi-echelon suppler chain with two suppliers in which the main 

supplier may face supply disruption and the secondary supplier is reliable but more expensive, 

and the manufacturer may produce defective items. Arts and Kiesmuller (2013) studied a serial 

two-echelon periodic-review inventory system with two supply modes, and showed that dual-

sourcing can lead to significant cost savings in cases with high demand uncertainty, high 

backlogging cost or long lead times. 

 

With regard to the second group that addresses production-inventory control in the presence of 

uncertainties, a rich literature existed. The earliest relevant research could date back to early 

1960s, e.g. Clark and Scarf (1960) studied the multi-stage or multi-echelon inventory systems 

with random demand and deterministic lead-time. When two or more types of uncertainties are 

modelled, the optimal production and inventory policies are often addressed within a single-

stage, two-stage, or three-stage context. In the following, we mainly select the relevant literature 

considering two or multiple uncertainties with an emphasis on stochastic lead times.  

 

Hadley and Whitin (1963) addressed a single-stage inventory management problem and 

identified the optimal inventory control policies for some special cases with restrictive 

assumptions, e.g. orders do not cross each other and they are independent. Zipkin (1986) 

characterized the distributions of inventory level and inventory position in continuous-time 

single-stage models with stochastic demand and lead times. Bassok and Akella (1991) 

investigated the optimal production level and order quantity with supply quality and demand 

uncertainty. Song and Zipkin (1996) studied a single-stage system with random demand and 

Markov modulated lead-times, and were able to characterise the optimal inventory control 

policy. Berman and Kim (2001) examined the optimal dynamic ordering problem in a two-

stage supply chain with Erlang distributed lead-times, exponential service times and Poisson 

customer arrivals. They showed the optimal ordering policy has a monotonic threshold 

structure. Berman and Kim (2004) extended the above model to including revenue generated 

upon the service considering both exponential and Erlang lead times. He et al. (2002) 

considered a two-echelon make-to-order system with Poisson demand, exponential processing 

times, and zero lead times for ordering raw materials, and explored the structure of the optimal 

replenishment policy. Yang (2004) studies a periodic-review production control problem where 

both the raw material supply and product demand are exogenous and random. He was able to 

establish the partial characterization of the optimal policies under both strict convex and linear 

raw material purchasing/selling costs. Simchi-Levi and Zhao (2005) investigated the safety 

stock positioning problem in multistage supply chains with tree network structure with 

stochastic demands and lead times, in which a continuous-time base-stock policy is used in each 
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stage to control its inventory. Mukhopadhyay and Ma (2009) considered the optimal 

procurement and production quantity for a remanufacturing company with uncertain market 

demand. Song (2009) investigated the optimal integrated ordering and production control in a 

supply chain with a single supplier and multiple uncertainties. Muharremoglu and Yang (2010) 

applied the base-stock policy to single and multistage inventory systems with stochastic lead 

times and provided a method to determine base-stock levels and to compute the costs of a given 

base-stock policy. Pal et al. (2012b) presented an analytical method to optimize the production 

rate and raw material order size in a three-layer supply chain subject to imperfect quality raw 

materials, unreliable machine and defective product reworking. Sana (2012) presented a 

collaborative inventory model for a three-layer supply chain subject to defective items in 

production and transportation, and determined the optimal production rate, order quantity, and 

number of shipments. Song (2013) examined the optimal and sub-optimal integrated ordering 

and production policies in several stochastic supply chain systems. 

 

From the above literature review, it can be observed that the first group of studies mainly 

focused on the sourcing strategies from multiple suppliers with supply uncertainty and did not 

explicitly consider the production decisions and processing uncertainty; whereas the second 

group mainly focused on production and inventory management in supply chain systems with 

two or more types of uncertainties (e.g. demand and lead time) but with a single supplier. From 

the supply chain integration perspective, manufacturers intend to reduce supplier base to a 

manageable size so that a closer relationship with suppliers can be established (Goffin et al. 

1997). The manufacturer may gain benefits of cheaper unit costs and more reliable delivery 

performance from suppliers, whereas the suppliers can gain benefits of larger and more stable 

demands. On the other hand, from the supply uncertainty perspective, manufacturers intend to 

source from multiple suppliers to buffer against the supply uncertainty. It is clear that there is a 

trade-off between reducing the impact of uncertainties (by having a larger number of suppliers) 

and reducing the procurement costs associated with each supplier (by having a smaller size of 

supplier base and closer relationship). However, it is believed that the supplier base reduction 

strategy is related to the procurement policy, the production policy and other stochastic factors 

in the manufacturing supply chain. Therefore, there is a need to investigate the integrated 

material procurement and production control policy and supplier base reduction strategies in 

manufacturer-oriented supply chains with multiple types of uncertainties.  

 

This paper considers a manufacturing supply chain with multiple suppliers in the presence of 

multiple uncertainties with an emphasis on integrated inventory management, supplier base 

reduction and supplier differentiation. The objective function is the expected total cost 

consisting of raw material inventory cost, raw material ordering processing costs, finished 

goods inventory cost, and customer demand backlogging cost. The integrated inventory 

management problem concerns the joint decision-making including when and in what quantities 

to procure raw materials from which suppliers, and when to produce finished goods. The 

supplier base reduction strategy concerns the trade-off between reducing the number of 

suppliers and requiring the higher capabilities of suppliers (such as higher shipping capacity, 

shorter lead-time, more reliable delivery, and lower order processing cost). The supplier 

differentiation concerns the difference and relationship of the procurement decisions between 

different suppliers. Here the supplier differentiation is slightly different from the concept of 

order splitting in the literature, which refers to dividing a large order into smaller orders among 

multiple suppliers in order to reduce the effective replenishment lead-time (Thomas and 

Tyworth 2006).  Specific research objectives of this study include: 
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 formulate the integrated inventory management problem for raw material procurement and 

production control in a manufacturing supply chain with multiple suppliers and multiple 

types of uncertainties, and seek the optimal policy; 

 establish the qualitative relationship between the expected total cost and the supplier base 

size, and the supplier capabilities (such as the suppliers’ delivery capacity, the suppliers’ 

delivery reliability); and establish the qualitative relationship of the optimal procurement 

decisions between different suppliers;   

 evaluate the quantitative impacts of the supplier based reduction strategies, i.e. supplier 

base reduction combined with supplier capability improvement, on the system performance 

so that a trade-off can be achieved; and also quantify the supplier differentiation. 

 

The rest of this paper is organised as follows. In the next section, the system under consideration 

is described and formulated mathematically. The optimal integrated policy for raw material 

procurement and production control is presented using the stochastic dynamic programming 

approach. In Section 3, the qualitative relationships between the expected total cost and the 

supplier base size, and the supplier capabilities are established. In Section 4, several supplier 

base reduction strategies are presented and the trade-off effect is discussed. In Section 5, the 

supplier differentiation issue is addressed and insights are provided. In Section 6, we extend the 

model by relaxing a key assumption. In Section 7, a range of numerical scenarios are analysed 

to verify and illustrate the analytical results. The best trade-off between the supplier base 

reduction and the supplier capability improvement is achieved. The structural characteristics of 

the optimal procurement and production policies are explored and discussed. Finally, the main 

contributions and the managerial insights are concluded in Section 8. 

 

2. Optimal integrated procurement and production policy 

The supply chain under consideration consists of three levels of entities, i.e. suppliers, 

manufacturer and customers. It is assumed there is sufficient warehouse capacity to store raw 

material (RM) and finished goods (FG). There are N suppliers that are contracted with the 

manufacturer to supply the raw materials. The manufacturer may place different sizes of orders 

to different suppliers to buffer against the uncertainty in RM supply. The quantity of an order 

to supplier i, denoted as qi, is a decision variable that is constrained by the maximum order 

quantity Qi, which represents the delivery capacity of supplier i. The RM replenishment lead-

time from supplier i to the manufacturer is a random variable following an exponential 

distribution with the mean 1/i. The lead-time is assumed to be independent on actual order 

quantity, which may be justified by the fact that the dispatching equipment usually can deliver 

up to the quantity Qi in a single trip. It is assumed that one unit of RM is required to produce 

one unit of product. The manufacturer produces one product at a time and the processing time 

is exponentially distributed with the mean 1/u. Physically, u represents the production (or 

service) rate (Veatch and Wein 1994). It is a control variable that takes 0 or U, which represents 

an action “not produce” or “produce at a speed U”, respectively (the model can be extended 

easily to the case of allowing u taking more values between 0 and U, but the results remain the 

same). Customer demands arrive one at a time following a Poisson process with arriving rate. 

A demand is satisfied immediately if there are FGs stored in the warehouse; otherwise unmet 

demands are backlogged.  

 

It is assumed that the supply chain is integrated in the sense that the suppliers and the 

manufacturer have an agreement that the manufacturer can adjust the order quantity at any 

future decision point before it arrives (Song 2009). This may be regarded as a type of 

partnership between the suppliers and the manufacturer, in which the supply chain aims to meet 

the final customers as closely as possible and reduces the downstream inventory level. Note 
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that downstream inventory usually incurs higher inventory holding costs since more time and 

effort has been committed. However, two types of costs associated with RM procurement and 

delivery processes will be incurred to the manufacturer. The first is a fixed cost which is charged 

whenever there exists a non-zero outstanding order regardless of the order size. The second is 

a variable cost which is proportional to the order size of the outstanding order. The assumption 

that the outstanding order can be modified at any time before arrival together with the 

exponential lead-time assumption implies that there is no more than one outstanding order at 

any time for each supplier. The assumption of at most one outstanding order at any time was 

first introduced in Hadley and Whitin (1963), and often used in other literature, e.g. Berman 

and Kim (2001, 2004) and Kim (2005). The exponential order replenishment lead-time was 

also assumed in Berman and Kim (2004), Kim (2005), Silbermayr and Minner (2012). The 

exponential manufacturing time has been adopted in more literature, e.g. Veatch and Wein 

(1992, 1994); Ching et al. (1997); Song and Sun (1998); Feng and Yan (2000); He et al. (2002); 

Feng and Xiao (2002). The Poisson demand arrival is one of the most common assumptions in 

the related literature (e.g. Buzacott and Shanthikumar 1993). Note that the assumption of 

adjustable outstanding orders is rather restrictive from the practical perspective. We will relax 

this assumption in the late sections and investigate the impact of such assumption on the main 

results.  

 

The decisions of order quantities for RMs are constrained by the maximum order quantity Qi; 

while the production rate is constrained by the capacity U and the availability of raw materials. 

Let x1(t) denote the on-hand inventory level of RMs at time t and x2(t) denote the on-hand 

inventory level of FGs at time t. Here x2(t) could be negative, which represents the number of 

backlogged demands. The manufacturer needs to make two types of decisions: the production 

rate u{0, U} and the RM order quantities qi for i[1, N] subject to 0  qi  Qi. When qi = 0, it 

implies that supplier i is not selected to supply raw materials at the current decision-making 

epoch. Define the control decision vector u := (u, q1, q2, …, qN). From the assumption that the 

outstanding orders are adjustable before reaching the manufacturer, the outstanding orders can 

be treated as control variables. Therefore, the system state can be described by a vector x = (x1, 

x2), which represents the inventory levels of RMs and FGs. It should be pointed out that when 

the adjustable outstanding order assumption is relaxed, the system state must include the status 

of the outstanding orders to all suppliers (see Section 6). 

 

The system state space is denoted by X = {x = (x1, x2) | x1Z+ and x2Z}. The evolution of the 

system state is driven by three types of events: the arrival of raw materials from one of the 

suppliers, the completion of production of a finished product, and the arrival of a customer 

demand. In other words, the system state won’t change unless one of the above events occurs. 

It should be pointed out that due to the memoryless properties of the Poisson process and the 

exponential distribution, the remaining time for a shipment, a production and for a demand 

whose arrival / completion was interrupted by an event still follows the same exponential 

distribution.  

 

We focus on state-feedback policies, in which the decisions are triggered by the system state 

changes. Therefore, u(t) should be understood as u(x(t)), where x(t) represents the current 

system state at time t. Define an admissible control set  = {u=(u(x), q1(x), q2(x), …, qN(x)) | 

u(x){0, U} if x1>0, u=0 if x10; 0  qi(x)  Qi for i = 1,2,…, N}. To simplify the narrative, we 

often simplify u(x) and qi(x) as u and qi by omitting the system state in the rest of the paper. 

The integrated inventory management problem is to find the optimal joint policy u by 

minimizing the infinite horizon expected discounted cost.  
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where 0<<1 is a discount factor, x0 is the initial system state, and G(x(t), u(t)) represents the 

raw material holding costs, finished goods inventory costs, customer demand backlog costs, 

production costs, raw material fixed ordering costs, raw material variable ordering costs, which 

may be defined as 
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where I{.} is an indicator function, which takes 1 if the condition is true, takes 0 otherwise; f

ic

0 and v

ic 0 are cost coefficients representing fixed ordering costs and variable ordering costs 

respectively; cp represents the production cost coefficient. Here the ordering costs (fixed and 

variable) are charged as long as the orders have been placed but have not reached the 

manufacturer. This can be interpreted as the aggregated costs including order handling, 

shipping and in-transition inventory costs. In (2), g(x(t)) represents the raw material inventory 

holding costs, finished goods holding costs and demand backlogging cost, defined by 

 g(x(t)) = )()()( 222211 txctxctxc    (3) 

where c1 and c2
+ are holding cost for raw material and finished goods respectively; c2

– is the 

backlog cost; and x2
+(t) := max{0, x2(t)}, and  x2

–(t) := max{0, –x2(t)}. 

 

The problem in (1) is a continuous time Markov decision problem, which can be transformed 

into an equivalent discrete-time Markov chain problem by using the uniformisation technique 

(Puterman, 1994; Song 2013), e.g. let v =  + U + 1
Ni be the uniform transition rate. The 

details of the transforming process are given in the Appendix and the similar formulation 

process can be referred to Song (2013). From the stochastic dynamic programming theory, we 

have the following results. 

 

Proposition 1. The optimal integrated procurement and production policy (u*(x), q1
*(x), q2

*(x), 

…, qN
*(x))  is given by: 

qi
*(x) = argmin{ci

vqi + I{qi>0}ci
f + iJ(x1+qi, x2) | 0qiQi}, for i=1, 2, …, N. (4) 


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12121*
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Physically, the quantity ci
vqi + ci

f + i(J(x1+qi, x2) – J(x1, x2)) is the additional cost incurred 

when an order with non-zero size qi is placed to supplier i compared to no order is placed to 

supplier i. On the other hand, the quantity U(cp + J(x1–1, x2+1) – J(x1, x2)) is the additional cost 

incurred when the manufacturer is producing at the speed U compared to producing nothing. 

Therefore, the manufacturer should produce nothing if the additional cost is non-negative. 

 

The optimal policy given in Proposition 1 is implicit. To implement it in reality, we need to 

know the explicit optimal cost function J(x) or the additional cost incurred for the procurement 

decisions and the production decisions at any system state. From the Appendix, we have the 

following result. 

Proposition 2. Let J0(x) = 0 for any xX, Jk(x) = + for xX and k0,  and 

Jk+1(x)= (+v)-1 [g(x) + Jk(x1, x2-1) + Umin{cp + Jk(x1-1, x2+1), Jk(x)} 

 



N

i 1

min {ci
vqi + I{qi>0}ci

f + i Jk(x1+qi, x2) | 0qiQi}] (6) 

for k0 and xX, where Jk(x) is the k-stage cost function for state x, then  
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where J(x) is defined in (1). 

 

The convergence of the k-stage policy and cost function to the infinite-horizon optimal policy 

and cost again follows from the fact that a finite number of controls are taken at each state 

(Bertsekas, 1976, Chapter 6, Propositions 8~12). Based on Proposition 2, the value iteration 

algorithm below can be used to approximate the optimal cost function. 

 

The value iteration algorithm 

Specify the maximum iteration number K and the error allowance  which is a small positive 

number. Let k denote the iteration number,  

Step 0: Set k=0 and J0(x)  0 for any xX; and define Jk(x) := + for xX and k0; 

Step 1: Compute Jk+1(x) using equation (6); 

Step 2: Calculate  = max{|Jk+1(x) – Jk(x)| for xX }.  

Step 3: If < or k>K go to Step 4; otherwise replace k by k+1 and go to Step 1; 

Step 4: Output Jk+1(x) and the resulting policy (u(x), q1(x), q2(x), …, qN(x)) realizing the 

minimization of the right-hand-side of (6). Terminate the algorithm. 

 

3. Impact of supplier base reduction and supplier capability improvement 

We define the supplier capability as its ability to provide higher service level (e.g. higher 

delivery capacity, faster delivery, more reliable delivery) or lower ordering costs (e.g. cheaper 

fixed or variable order processing costs). This section investigates the impacts of the supplier 

base reduction and the supplier capability improvement on the total expected cost. 

 

Proposition 3. (i) J(x) is decreasing as i increases; (ii) J(x) is decreasing as U increases. 

Proof: For assertion (i), let J(x) denote the expected discounted cost with i, which is greater 

than i. Define the uniform transition rate v =  + U + 1
ni for both cases i and i. We want 

to prove J(x)  J(x) by the induction approach. For any x, it is obvious that J0(x)0  J0(x) 0. 

Suppose Jk(x)  Jk(x). We want to show Jk+1(x)  Jk+1(x). From Proposition 2, 

J k+1(x) = (+v)-1 [g(x) + Jk(x1, x2–1) + Umin{cp + Jk(x1–1, x2+1), Jk(x)}  

+ 1
n (i – i)Jk(x) 

+ 1
nmin{ci

vqi + I{qi >0} ci
f + i Jk(x1+qi, x2) | 0qiQi}] (8) 

and 

J k+1(x) = (+v)-1 [g(x) + Jk(x1, x2–1) + Umin{cp + Jk(x1–1, x2+1), Jk(x)}  

+ 1
nmin{ci

vqi + I{qi >0}ci
f + iJk(x1+qi, x2) | 0qiQi}] (9) 

 

Suppose that argmin{ci
vqi + I{qi >0} ci

f + i Jk(x1+qi, x2) | 0qiQi} = qi
* > 0; otherwise it is 

straightforward from the induction hypotheses. This implies that 

ci
v qi

* + (ci
f + i Jk(x1+ qi

*, x2)) < i Jk(x) 

Namely, 

(i – i)Jk(x) > (i – i)  (ci
v qi

* + (ci
f + i Jk(x1+ qi

*, x2))) / i; (10) 

It follows, 

min{ci
vqi + I{qi >0} ci

f + i Jk(x1+qi, x2) | 0qiQi} + (i – i)Jk(x) 

= (ci
v qi

* + (ci
f + i Jk(x1+ qi

*, x2))) + (i – i)Jk(x) 

> (ci
v qi

* + (ci
f + i Jk(x1+ qi

*, x2))) + (i – i)  (ci
v qi

* + (ci
f + i Jk(x1+ qi

*, x2))) / i; 

= i  (ci
v qi

* + (ci
f + i Jk(x1+ qi

*, x2))) / i; 

= i  (ci
v qi

* + ci
f) /i + i  Jk(x1+ qi

*, x2); 

> ci
v qi

* + ci
f + i  Jk(x1+ qi

*, x2); 
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> ci
v qi

* + ci
f + i  Jk(x1+ qi

*, x2); 

> min{ci
vqi + I{qi >0} ci

f + i Jk(x1+qi, x2) | 0qiQi} 

By the induction hypotheses, we have Jk+1(x)  Jk+1(x). By Proposition 2, we have J(x)  J(x). 

Hence, assertion (i) is true. Assertion (ii) can be proved similarly. This completes the proof. 

 

Note that the material lead-time from supplier i follows an exponential distribution with average 

1/i and variance 1/i
2. This implies that, as i increases, the average delivery time and its 

variability are reduced.  Therefore, Proposition 3(i) is in agreement with the intuition that 

shorter expected material lead time and more reliable delivery is beneficial to the manufacturer 

since the manufacturer could maintain lower level of raw material inventories to buffer against 

the uncertainty in material supply. Proposition 3(ii) can be similarly interpreted. 

 

Remark 1. (i) J(x) is decreasing as N increases; (ii) J(x) is decreasing as Qi increases.  

 

The assertions in Remark 1 are intuitively true from the relaxation argument that an optimal 

solution of a relaxed problem cannot be worse. Physically, assertion (i) indicates that the 

manufacturer can reduce the cost if the supplier base increases; while assertion (ii) implies that 

a supplier with higher delivery capacities is more beneficial to the manufacturer. 

 

4. Supplier base reduction strategies 

From the supply chain management perspective, the manufacturer may want to establish a 

closer relationship with suppliers through supplier management strategies, e.g. the supplier base 

reduction. Reducing supplier base implies that the selected suppliers will have more sales. In 

return, the manufacturer often requires or expects that those selected suppliers can provide 

higher service level or lower ordering costs.  

 

According to the supplier’s capability improvement, it gives rise to three types of supplier base 

reduction strategies: 

 the manufacturer reduces its supplier base size, whereas the selected suppliers provide 

higher delivery capacity. This strategy is called supplier base reduction with higher delivery 

capacity (SBR-HDC); 

 the manufacturer reduces its supplier base size, whereas the selected suppliers offer shorter 

and more reliable delivery service. This strategy is called supplier base reduction with 

shorter and more reliable delivery (SBR-SRD); 

 the manufacturer reduces its supplier base size, whereas the selected suppliers offer more 

efficient order processing service, which leads to lower fixed ordering costs. This strategy 

is called supplier base reduction with lower fixed ordering cost (SBR-LFC). 

 

Proposition 3(i) and Remark 1 indicate that the supplier base reduction and the supplier 

capability improvement have opposite impacts on the total cost; therefore, we have the 

following conjecture. 

Conjecture 1. Under one of the above supplier base reduction strategies, there is a trade-off 

between the supplier base reduction and the supplier capability improvement. Namely the 

system performance has a U-shape with respect to the degree of each supplier base reduction 

strategy. Here the degree of supplier base reduction strategy measures how far the supplier base 

has been reduced. 

 

In Conjecture 1, U-shape is used in a broad sense. It includes the cases of monotonic increasing 

or monotonic decreasing situations. If the system performance is monotonically increasing as 

the size of supplier base decreases, then the best supplier base reduction strategy is to use a 
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single supplier. On the other hand, if the system performance is monotonically decreasing as 

the size of supplier base decreases, then the best supplier base reduction strategy is to have the 

maximum number of available suppliers. However, in many cases a U-shape performance 

would be more likely to happen. Therefore, it is necessary to quantify the impacts of the supplier 

base reduction strategies and identify the trade-off point. This can be achieved by solving the 

model under different supplier base reduction strategies numerically using the value iteration 

method, which will be addressed in the numerical experiment section.  

 

It should be pointed out that in real cases extra costs may be incurred or intangible benefit may 

be generated in the processes of supply base reduction and supply capability improvement, 

which may affect the trade-off point in the supplier base reduction strategies. However, this is 

a complicated and case-dependent issue, which deserves further research.  

 

5.  Supplier differentiation 

Another important supplier management strategy is to differentiate suppliers when they have 

different supply capabilities. In other words, when suppliers have different delivery parameters 

(represented by Qi, ci
f, ci

v, and i in our model), the manufacturer should differentiate its 

procurement decisions in order to achieve the best performance. 

 

Proposition 4. Under the optimal integrated procurement and production policy (u*(x), q1
*(x), 

q2
*(x), …, qN

*(x)) given in Proposition 1, we have the following relationships of the 

procurement decisions between different suppliers: 

(i) if Ql < Qj and all other parameters are the same for suppliers l and j, then ql
*(x)  qj

*(x). 

(ii) if cl
f > cj

f and all other parameters are the same for suppliers l and j, then ql
*(x)  qj

*(x), and 

if ql
*(x)>0, then qj

*(x) = ql
*(x). 

(iii) if cl
v > cj

v and all other parameters are the same for suppliers l and j, then ql
*(x)  qj

*(x). 

(iv)  if l < j and all other parameters are the same for suppliers l and j, then ql
*(x)  qj

*(x). 

Proof: From Proposition 1, we know that the optimal order quantity is determined by 

qi
*(x) = argmin{ci

vqi + I{qi>0}ci
f + iJ(x1+qi, x2) | 0qiQi}, for i=1, 2, …, N. 

Assertion (i) is obvious from the above equation. To show the rest of assertions, we introduce 

the following two types of discrete functions to simplify the narrative, 

 fi(x, n) := ci
vn + I{n>0}ci

f; (11) 

 hi(x, n) := iJ(x1+n, x2); (12) 

It implies that 

 qi
*(x) = argmin{ fi(x, n) + hi(x, n) | 0nQi}. (13) 

For assertion (ii): because qi
*(x) are non-negative integers, we only need to show if ql

*(x)>0, 

then qj
*(x) = ql

*(x). Suppose ql
*(x) = m > 0. It follows, fl(x, m) + hl(x, m)  fl(x, n) + hl(x, n) for 

0nQi. That is, 

 cl
vm + cl

f + hl(x, m)  hl(x, 0) (14) 

 cl
vm + cl

f + hl(x, m)  cl
vn + cl

f + hl(x, n) for 0<nQl  (15) 

Note that cl
f > cj

f, cl
v = cj

v, Ql = Qj, and hl(x, n) = hj(x, n). The above two equations lead to, 

 fj(x, m) + hj(x, m)  fj(x, n) + hj(x, n) for 0nQj. (16) 

It follows, qj
*(x) = m = ql

*(x). Thus, assertion (ii) is true. 

For assertion (iii): we want to show that if ql
*(x)>0, then qj

*(x)  ql
*(x). Suppose ql

*(x) = m > 

0. We have the same equations (14) and (15). Note that cl
v > cj

v, cl
f = cj

f, Ql = Qj, and hl(x, n) = 

hj(x, n). It follows, 

 cj
vm + cj

f + hj(x, m)  hj(x, 0) (17) 

 cj
vm + cj

f + hj(x, m)  cj
vn + cj

f + hj(x, n) for 0<nm (18) 
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That yields, qj
*(x)  m = ql

*(x). Therefore, assertion (iii) is true. For assertion (iv), it can be 

similarly proved. This completes the proof. 

 

Physically, Proposition 4 states that larger orders should be placed to the suppliers with higher 

supply capabilities, which is in agreement in intuition. In particular, Proposition 4(ii) provides 

a further interesting insight that if two suppliers only differ in the fixed ordering cost, the 

optimal non-zero procurement decisions to the supplier with higher fixed ordering cost should 

be the same as that to the supplier with lower fixed ordering cost. The interpretation is that if 

the optimal decision at a system state x is to place a non-zero order to the supplier with higher 

fixed ordering cost (which implies that this procurement decision can offset the incurred fixed 

ordering costs to both suppliers), then the optimal order size to these two suppliers at the system 

state x will not be affected by the difference of their fixed ordering costs. The results in 

Proposition 4 are qualitative. However, our model is able to quantify the differences of the 

optimal procurement decisions for different suppliers, which will be illustrated in the numerical 

example section. 

 

6. Extension to the case with non-adjustable outstanding orders 

A key assumption in our model is that the outstanding orders are adjustable before they reach 

the manufacturer. This assumption is rather restrictive and only represents a very special type 

of supply chain relationship. We will relax this assumption and extend the model to the cases 

with non-adjustable outstanding orders in this section. However, we keep the assumption that 

at most one outstanding order is allowed for each supplier, which is common in the literature.  

 

Since the outstanding orders are not allowed to change once they are issued, the manufacturer’s 

new ordering decisions should depend on not only the inventory-on-hand of raw materials and 

finished goods, but also the inventory-in-transition, i.e. the outstanding orders (Silbermayr and 

Minner 2012). The system state space can now be described by X := {(x, y) | x = (x1, x2) s.t. 

x1Z+ and x2Z; y = (y1, y2, …, yN) s.t. 0  yi  Qi for i = 1, 2, …, N}. The manufacturer needs 

to make two types of decisions at any state (x, y): the production rate u{0, U}, and the raw 

material order quantities 0  qi  Qi  I{yi = 0} for i = 1,2,…, N. Clearly, if yi > 0 for i = 1,2,…, 

N, which represents the situation that there are non-zero outstanding orders to every supplier, 

then no new orders can be placed to any supplier. The admissible control set is defined as  = 

{u=(u(x, y), q1(x, y), q2(x, y), …, qN(x, y)) | u(x, y){0, U} if x1>0, u=0 if x10; 0  qi(x)  Qi 

I{yi = 0} for i = 1,2,…, N}. To simplify the narrative, we simplify u(x) and qi(x) as u and qi by 

omitting the system state and let q := (q1, q2, …, qN).   

 

The cost function J(x, y) can be defined similar to (1) by replacing G(x, u) with G(x, y, u), 

which represents the incurred unit-time cost at state (x, y) taking control action u,  

 G(x, y, u) = g(x) + cpu + 



N

i

ii

v

iii

f

i qycqyIc
1

))(}0{(  (19) 

Following the uniformization technique (define v =  + U + 1
Ni) and the stochastic dynamic 

programming theory, the Bellman optimality equation is given as follows 

J(x, y) = (+v)-1 ),1,1(),1,(),,([min 2121
}0{0},,0{

qyqyuyx 


xxuJxxJG
iii yIQqUu

  




 
N

i

NNiiiiiii qyqyqyqyxqyxJ
1

11111121 },...,,0,,...,,,(  

)],()( qyx  JuU  (20) 
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To simplify the narrative, let (x1+yi+qi, x2, y+q\yi+qi) := (x1+yi+qi, x2, y1+q1, …, yi-1+qi-1, 0, 

yi+1+qi+1, …, yN+qN,). The above equation can be simplified as, 

J(x, y) = (+v)-1 ),1,({min)([ 21
}0{0

qyx 


xxJg
iii yIQq

  

)},(),,1,1(min{ 21 qyxqy  JxxJcU p  

)}])\,,()(}0{(
1

21



N

i

iiiiiii

v

iii

f

i qyxqyxJqycqyIc qy  (21) 

 

From (21), the optimal integrated procurement and production policy (u*(x, y), q*(x, y)) for the 

case with non-adjustable outstanding orders can be given by: 

q*(x, y) = (q1
*(x, y), q2

*(x, y), …, qN
*(x, y)) = ),1,({minarg 21

}0{0

qy 


xxJ
iii yIQq

  

+ Umin{cp + J(x1-1, x2+1, y+q), J(x, y+q)} 

)})\,,()(}0{(
1

21



N

i

iiiiiii

v

iii

f

i qyxqyxJqycqyIc qy  (22) 

u*(x, y) = 


 

othewise

xxxJxxJcU p

0

0),,,(),1,1( 1

*

21

*

21 qyqy
 (23) 

 

Apart from the system state, another important difference between (22)~ (23) and (4)~(5) is 

that the procurement decisions are coupled and they are also coupled with the production 

decision in (22)~(23), whereas they are de-coupled in Proposition 1. Nevertheless, from (21), 

it is clear that the value function approximation procedure in Proposition 2 can be similarly 

applied to the case with non-adjustable outstanding orders.  

 

It is straightforward to extend the results in Remark 1 to the case with non-adjustable 

outstanding orders. However, it is challenging to establish the property in Proposition 3 

mathematically due to the coupled relationships of the procurement and production decisions. 

However, we will use numerical examples to illustrate that the results in Proposition 3 and 

Proposition 4 can carry over to the case with non-adjustable outstanding orders. In addition, a 

full factorial experiment will be conducted to investigate the impact of various factors 

(including the parameters representing three different types of uncertainties) and their 

interactions on the system performance. 

 

7. Numerical examples 

This section consists of four sub-sections. In sub-section 7.1, we numerically illustrate the 

analytical results about the impacts of the supplier base size and the supplier capabilities on the 

system performance. In sub-section 7.2, the trade-off relationships under the supplier base 

reduction strategies (in Conjecture 1) are verified using a range of scenarios. The best trade-off 

point under each supplier base reduction strategy is identified. In sub-section 7.3, we illustrate 

the results about supplier differentiation in Proposition 4, and examine the control structure of 

the optimal integrated procurement and production policies. In sub-section 7.4, the case of non-

adjustable outstanding orders is discussed. We focus on the impacts of the supplier capabilities 

on the system performance, the supplier differentiation, and the control structure of the optimal 

policies, in comparison with the case of adjustable outstanding orders. To simplify the 

computation effort, the system state space is limited into a finite area with x1[0, 20] and x2[-

50, 20], which is large enough for the scenarios in our experiments because of the small scale 

of the parameter setting. The value iteration algorithm in Section 2 will be terminated when the 

cost difference is less than 10-3. 
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7.1 Impacts of supplier base size and supplier capabilities on system performance 

The common system parameters are set as follows:  = 0.1; ci
v = 0.5; c1 = 1.0; c2

+ = 2.0; c2
– = 

8.0; cp = 1.0; U = 1.0;  = 0.8. Here the inventory holding cost for the finished goods (c2
+) is 

twice of that for the raw materials (c1), and the penalty for backlog (c2
–) is much higher than 

the inventory costs. The other cost parameters such as ordering variable costs and production 

costs are at the comparable levels to the raw material inventory cost. The production utilisation 

on average is at 80% if the aggregated supply rate is greater than the demand rate 0.8. Although 

the above parameter setting is for illustrative purpose, it is generally reasonable in terms of the 

overall operations. Assume that all suppliers have the same capability. We vary one parameter 

at a time to examine its impact on the cost function. The rationale for selecting the range of the 

parameters in the following cases is to ensure that the maximum supply capacity exceeds the 

customer demand rate on average. 

 Case 1: The number of suppliers (N) varies from 3 to 4, 5, 6, 7, 8, and 9 (eight scenarios); 

while Qi = 5, i = 0.1, ci
f = 0.5. 

 Case 2: The suppliers’ delivery capacity (Qi) varies from 3 to 4, 5, 6, 7, 8, and 9 (eight 

scenarios); while N = 5, i = 0.1, ci
f = 0.5. 

 Case 3: The suppliers’ delivery rate (i) varies from 0.04 to 0.06, 0.08, 0.10, 0.12, 0.14, and 

0.16 (eight scenarios); while N= 5, Qi =5, ci
f = 0.5. 

 Case 4: The suppliers’ fixed ordering cost (ci
f) varies from 0.3 to 0.4, 0.5, 0.6, 0.7, 0.8, and 

0.9 (eight scenarios); while N = 5, Qi = 5, i = 0.1. 

 

The results of the above cases are shown in Figure 1, in which the vertical-axis represents the 

cost, and the horizontal-axis represents eight scenarios in each case. In cases 1, 2 and 3, the cost 

functions are decreasing as the number of suppliers increases (Case 1), or the suppliers’ delivery 

capacity increases (Case 2), or the suppliers’ delivery rate increases (Case 3). On the other hand, 

the cost functions are increasing as the suppliers’ fixed ordering cost increases. This quantifies 

the analytical results in Proposition 3 and Remark 1, e.g. Figure 1 shows the relative impacts 

of these parameters on the system performance within the given ranges of the parameters.  

 

If we regard the scenario with N = 5, Qi = 5, i = 0.1, ci
f = 0.5 as the reference point, the 

parameter in each case is increasing by 20% for the varying scenarios. This reveals that with 

the same percentage of parameter changes, their impacts on the cost are quite different, e.g. i 

has the most significant impact on the cost, followed by N, ci
f, and Qi. The implication is that 

raw material delivery time and its reliability appear to be more important compared to the other 

three aspects. Moreover, it can be observed that the cost is more sensitive when i or N is 

smaller. This may be explained by the fact that when i or N is smaller, the system has lower 

capability to meet customer demands and may incur heavy backlog penalty costs.  

 
Figure 1. Impact of supplier capabilities on the system performance 
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Diamond line – Case 1; square line – Case 2; triangle line – Case 3; cross line – Case 4 

 

7.2 Evaluate the supplier base reduction strategies 

In this sub-section, three supplier base reduction strategies are evaluated and their trade-off 

points will be identified. The common parameters are set as follows:  = 0.1; ci
v = 0.5; c1 = 1.0; 

c2
+ = 2.0; c2

– = 8.0; cp = 1.0. Other system parameters take different values to represent different 

scenarios. The scenarios are designed generally to ensure that the suppliers are able to supply 

adequate raw materials and the manufacturer is able to meet customer demands in long term 

and operates with a reasonable production utilisation. Assume that all suppliers have the same 

capability. 

 

For the SBR-HDC strategy, we examine different combinations of N and Qi as shown in Table 

1, which represents eight levels of the strategy. From level A1 to A8, the number of suppliers 

is decreasing from 9 to 2, while the suppliers’ delivery capacity Qi is increasing from 1 to 8. At 

each level, a number of scenarios are created to evaluate the performance of the given strategy, 

in which i takes three levels at (0.08, 0.10, 0.12), U takes three levels at (1.0, 1.2, 1.4),  takes 

three levels at (0.7, 0.8, 0.9), and ci
f takes three levels at (0.4, 0.5, 0.6). Therefore, in total there 

are 81 different scenarios for each level of the strategy. The last column in Table 1 gives the 

average costs over 81 scenarios at state (0, 0). It can be seen from Table 1, the average total 

cost has a U-shape for the different levels of SBR-HDC strategy, and the best trade-off point is 

at (N, Qi) = (7, 3) with the total expected cost 207.97. 

Table 1. Performance of SBR-HDC strategy 

Level (N, Qi) Scenarios of 

(i, U, , ci
f) 

J(0, 0) 

A1 (9, 1) 81 259.48 

A2 (8, 2) 81 211.88 

A3 (7, 3) 81 207.97 

A4 (6, 4) 81 212.83 

A5 (5, 5) 81 222.63 

A6 (4, 6) 81 238.09 

A7 (3, 7) 81 262.81 

A8 (2, 8) 81 306.04 

 

For the SBR-SRD strategy, we examine eight different combinations of N and i as shown in 

Table 2. From level B1 to B8, the number of suppliers is decreasing from 9 to 2, while the 

suppliers’ delivery rate (or speed) i is increasing from 0.03 to 0.17. At each level, total 81 

different scenarios are created to evaluate the performance of the given strategy, in which Qi 

takes three levels at (4, 5, 6), U takes three levels at (1.0, 1.2, 1.4),  takes three levels at (0.7, 

0.8, 0.9), and ci
f takes three levels at (0.4, 0.5, 0.6). The last column in Table 2 gives the average 

costs over 81 scenarios at state (0, 0). Table 2 shows that the average total cost is of a U-shape 

with respect to the level of SBR-SRD strategy, and the best trade-off point is at (N, i) = (4, 

0.13) with the total expected cost 203.53. 

Table 2. Performance of SBR-SRD strategy 

Level (N, i) Scenarios of 

(Qi, U, , ci
f) 

J(0, 0) 

B1 (9, 0.03) 81 391.60 

B2 (8, 0.05) 81 292.43 

B3 (7, 0.07) 81 246.05 

B4 (6, 0.09) 81 221.34 
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B5 (5, 0.11) 81 208.24 

B6 (4, 0.13) 81 203.53 

B7 (3, 0.15) 81 207.99 

B8 (2, 0.17) 81 229.17 

 

For the SBR-LFC strategy, we examine eight different combinations of N and ci
f as shown in 

Table 3. From level C1 to C8, the number of suppliers is decreasing from 9 to 2, while the 

suppliers’ fixed ordering cost ci
f is decreasing from 0.9 to 0.2. At each level, total 81 different 

scenarios are created to evaluate the performance of the given strategy, in which Qi takes three 

levels at (4, 5, 6), i takes three levels at (0.08, 0.10, 0.12), U takes three levels at (1.0, 1.2, 1.4), 

and  takes three levels at (0.7, 0.8, 0.9). The forth column in Table 3 gives the average costs 

over 81 scenarios at state (0, 0). Table 3 shows that the average total cost appears monotonic 

increasing as the level of SBR-LFC increases, and the best trade-off point is at (N, ci
f) = (9, 0.9) 

with the total expected cost 202.71. The reason that we did not see the U-shape of the cost 

function is the setting of the cases, e.g. the cases have not covered the sufficiently large range, 

or the fixed ordering cost is not decreasing quickly enough to cancel out the effect of the 

supplier base reduction. For example, if we re-design level C1 to C8 to be those in the fifth 

column in Table 3, we would have the average costs over 81 scenarios at state (0, 0) in the sixth 

column. Clearly, we can now see the U-shape of the average cost with the best trade-off at (N, 

ci
f) = (6, 1.8).  

Table 3. Performance of SBR-LFC strategy 

Level (N, ci
f) Scenarios of 

(Qi, i, U, ) 

J(0, 0) (N, ci
f) J(0, 0) 

C1 (9, 0.9) 81 202.71 (9, 3.0) 248.24 

C2 (8, 0.8) 81 204.77 (8, 2.6) 243.96 

C3 (7, 0.7) 81 208.28 (7, 2.2) 241.10 

C4 (6, 0.6) 81 214.01 (6, 1.8) 240.32 

C5 (5, 0.5) 81 223.26 (5, 1.4) 242.93 

C6 (4, 0.4) 81 238.53 (4, 1.0) 251.51 

C7 (3, 0.3) 81 265.43 (3, 0.6) 271.62 

C8 (2, 0.2) 81 317.32 (2, 0.2) 317.32 

 

To have a more intuitive view of the performances at different levels of the supplier base 

reduction strategies, the average costs are shown in Figure 2, in which the data in the last column 

of Table 3 are used for SBR-LFC. From Tables 1~3 and Figure 2, it verifies the results in 

Conjecture 1, i.e. under each of three supplier base reduction strategies, there exists indeed a 

trade-off between the supplier base reduction and the supplier capability improvement. It should 

be pointed out that we have varied two parameters on discrete basis to represent different levels 

of supplier base reduction strategies, this may not cover all real settings and effects. In addition, 

in practice there may be extra costs associated with supplier capability improvement or 

maintaining the supplier base, which may impact on the best trade-off point under the supplier 

base reduction strategies.   
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Figure 2. Performance of three types of supplier base reduction strategies at eight levels 

 

7.3 Supplier differentiation 

This sub-section aims to illustrate the results about supplier differentiation in Proposition 4, and 

examine the control structure of the optimal integrated procurement and production policies. 

The common system parameters are set as follows:  = 0.1; c1 = 1.0; c2
+ = 2.0; c2

– = 8.0; cp = 

1.0; U = 1.0;  = 0.8. To simplify the discussion, we consider the cases with two suppliers, i.e. 

N = 2, but they have different supply capabilities. We vary one parameter at a time to examine 

four cases below. 

 Case D1: Supplier 1 has a delivery capacity Q1 = 5, and supplier 2 has Q2 = 6; other 

parameters are the same for both suppliers, i.e. ci
f = 0.5, ci

v = 0.2, i = 0.1, for i=1, 2. 

 Case D2: Supplier 1 has ordering fixed cost c1
f = 0.5, and supplier 2 has c2

f = 1.0; other 

parameters are the same for both suppliers, i.e. Qi = 5, ci
v = 0.2, i = 0.1, for i=1, 2. 

 Case D3: Supplier 1 has ordering variable cost c1
v = 0.2, and supplier 2 has c2

v = 0.4; other 

parameters are the same for both suppliers, i.e. Qi = 5, ci
f = 0.5, i = 0.1, for i=1, 2. 

 Case D4: Supplier 1 has delivery rate 1 = 0.1, and supplier 2 has 2 = 0.2; other parameters 

are the same for both suppliers, i.e. Qi = 5, ci
f = 0.5, ci

v = 0.2, for i=1, 2. 

 

The optimal procurement and production decisions in the above four cases are partially shown 

in the (x1, x2) plane in figures 3~6, respectively, in which the numbers indicate the optimal order 

sizes (for the procurement decisions) or whether the manufacturer should produce products (1 

represents producing with rate U, and 0 represents producing nothing), and their positions 

correspond to the system state x=(x1, x2). For example, at the state x=(3, 0) in Figure 3, the 

optimal procurement decisions to both suppliers are the same with an order size 5, whereas the 

optimal production decision is producing with the rate U. The results in figures 3~6 illustrate 

the qualitative results in Proposition 4. Namely, the order sizes to the suppliers with higher 

supply capability are not less than that to the supplies with lower supply capability. Figure 4 

confirms the results in Proposition 4(ii), i.e. non-zero procurement decisions to the suppliers 

with higher fixed ordering cost are indeed the same as that to the suppliers with lower fixed 

ordering cost. More importantly, through numerical examples we are able to quantify the 

differences between the procurement decisions to different suppliers given the different supplier 

capabilities.  

 

In addition, the results in figure 3~6 also illustrate the structural characteristics of the optimal 

procurement and production decisions. For example, the optimal procurement decisions to each 

supplier are characterised by two switching regions (one with no order and the other with non-
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zero orders), and the order size shows the monotonic property with respect to the raw material 

and finished goods inventory levels. The optimal production decisions can also be characterised 

by two switching regions (one with producing nothing and the other with producing the rate U). 

The boundary curves between two switching regions are monotonically increasing or 

decreasing. More specifically, the procurement decisions may be approximated by a set of (s, 

S)-type policies constrained by the delivery capacity, e.g. in figure 3 (a) and (b), the optimal 

procurement decisions are determined by the (s, S) policy with s=5 and S=8 constrained by the 

delivery capacity Q1=5 and Q2=6 when x2 = 0 (i.e. the order size is given by max{S – x1, Qi} 

for x1  s); and with s=4 and S=8 constrained by the delivery capacity Q1=5 and Q2=6 when 

x2=1. As for the production decisions, it appears to be fairly robust to system parameters (e.g. 

exactly the same in figures 3~5, and slightly different from figure 6). The implication is that 

based on the characteristics of the optimal policy, we are able to construct near-to-optimal but 

much simpler parameterised policies to determine the procurement and production decisions 

(Song 2013). 
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Figure 3. The optimal procurement and production decisions in case D1 
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Figure 4. The optimal procurement and production decisions in case D2 
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Figure 5. The optimal procurement and production decisions in case D3 
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Figure 6. The optimal procurement and production decisions in case D4 

 

7.4 The case with non-adjustable outstanding orders 

This sub-section considers the cases with non-adjustable outstanding orders. It consists of three 

parts. The first part examines the impact of supplier capabilities on the system performance, in 

which the results are compared to the cases with adjustable outstanding orders; the second part 

examines the supplier differentiation and the decision structure of the optimal policies; and the 

third part presents a full factorial experiment to evaluate the impact of various factors and their 

interactions on the system performance. We limit our experiments within the situations of two 

suppliers to avoid the high dimension of the state space and the computational difficulty.  

 

7.4.1 Impact of supplier capabilities on the system performance 

The common system parameters are set as follows:  = 0.1; c1 = 1.0; c2
+ = 2.0; c2

– = 8.0; cp = 

1.0; U = 1.0;  = 0.8. Assume two suppliers have the same supply capabilities. We vary one 

parameter at a time to examine three cases: (i) the suppliers’ delivery capacity (Qi) varies from 

3 to 4, 5, 6, 7, 8, and 9; while N = 5, i = 0.1, ci
f = 0.5. (ii) the suppliers’ delivery rate (i) varies 

from 0.04 to 0.06, 0.08, 0.10, 0.12, 0.14, and 0.16; while N= 5, Qi =5, ci
f = 0.5. (iii) the fixed 

ordering cost (ci
f) varies from 0.3 to 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9; while N = 5, Qi = 5, i = 0.1. 

The results of three cases are given in Tables 4~6 respectively, in which the second column is 

the optimal cost under the adjustable outstanding order assumption, the forth column is the 

optimal cost under the non-adjustable outstanding order assumption, the third and fifth columns 

are the percentage of cost changes from the reference case (the row corresponding to 0.00%) 

under two assumptions respectively. 
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Table 4. Impact of suppliers’ delivery capacity on the system cost 

Qi 

Cost with 

adjustable % of change 

Cost with non-

adjustable % of change 

3 359.18 14.01 359.29 12.88 

4 329.61 4.63 330.25 4.07 

5 315.03 0.00 316.85 0.00 

6 307.62 -2.35 311.16 -1.73 

7 303.73 -3.59 309.23 -2.31 

8 301.85 -4.18 309.23 -2.31 

9 301.01 -4.45 309.23 -2.31 

 

Table 5. Impact of suppliers’ delivery rate on the system cost 

i 

Cost with 

adjustable % of change 

Cost with non-

adjustable % of change 

0.04 474.29 50.55 474.42 49.73 

0.06 406.67 29.09 407.12 28.49 

0.08 354.43 12.51 355.48 12.19 

0.1 315.03 0.00 316.85 0.00 

0.12 285.26 -9.45 287.97 -9.11 

0.14 262.43 -16.70 265.98 -16.05 

0.16 244.55 -22.37 248.85 -21.46 

 

Table 6. Impact of fixed ordering cost on the system cost 

ci
f 

Cost with 

adjustable % of change 

Cost with non-

adjustable % of change 

0.3 311.66 -1.07 313.61 -1.02 

0.4 313.36 -0.53 315.23 -0.51 

0.5 315.03 0.00 316.85 0.00 

0.6 316.68 0.52 318.47 0.51 

0.7 318.32 1.04 320.09 1.02 

0.8 319.95 1.56 321.70 1.53 

0.9 321.56 2.07 323.30 2.04 

 

From Tables 4~6, it can be seen that the monotonic properties of the cost function with respect 

to the key system parameters such as supplier delivery capacity, delivery rate, and fixed 

ordering cost are preserved for the cases with non-adjustable outstanding orders. More 

interestingly, the percentages of the cost changes after varying the system parameters compared 

to that of the reference point are very close in two cases (under adjustable and non-adjustable 

assumptions). Comparing the optimal costs under two assumptions, it shows that the cost under 

the adjustable outstanding order assumption is slightly lower than that under the non-adjustable 

outstanding order assumption. This is in agreement with the intuition since the adjustable 

outstanding order assumption provides more flexible options for the manufacturer to manage 

the raw material procurement.   

 

7.4.2 Supplier differentiation 

Consider the same cases with two suppliers having different supply capabilities in Section 7.3. 

Note that the procurement and production decisions are now depending on not only the 
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inventory levels of raw materials and finished goods, but also the sizes of the outstanding orders 

to both suppliers. As examples, the optimal procurement and production decisions for cases D1 

and D4 are partially shown in figures 7 and 8 respectively. For example, figure 7(a) describes 

the optimal procurement decisions to supplier 1 in the (x1, x2) plane when there is no outstanding 

order to both suppliers; figure 7(b) and 7(c) describes the optimal procurement decisions to 

supplier 1 when there is an outstanding order to supplier 2 with the order size being 1 and 2 

respectively; figure 7(d)~(f) describes the optimal procurement decisions to supplier 2 when 

the outstanding order to supplier 1 being 0, 1 and 2. Figure 7(g) describes the optimal production 

decisions at any state of the outstanding orders. It should be pointed out that when there are 

non-zero outstanding orders to both suppliers, the procurement decisions to both suppliers are 

forced to be zero due to the assumption that only one outstanding order is allowed to each 

supplier at any time and they are not adjustable once issued. 



 

 

21 

 0  0  0  0  0  0  0  0  0

 0  0  0  0  0  0  0  0  0

 5  0  0  0  0  0  0  0  0

 5  5  0  0  0  0  0  0  0

 5  5  5  0  0  0  0  0  0

 5  5  5  5  0  0  0  0  0

 5  5  5  5  5  0  0  0  0

:5: 5  5  5  5  0  0  0  0

 5  5  5  5  5  5  0  0  0

 5  5  5  5  5  5  5  0  0

 0  0  0  0  0  0  0  0  0

 5  0  0  0  0  0  0  0  0

 5  5  0  0  0  0  0  0  0

 5  5  5  0  0  0  0  0  0

 5  5  5  0  0  0  0  0  0

 5  5  5  5  0  0  0  0  0

 5  5  5  5  5  0  0  0  0

:5: 5  5  5  5  5  0  0  0

 5  5  5  5  5  5  5  0  0

 5  5  5  5  5  5  5  0  0

x
1

(a) procurement to

supplier 1 at y = (0,0)

x
1

(b) procurement to

supplier 1 at y = (0,1)

x
2

x
2

 0  0  0  0  0  0  0  0  0

 0  0  0  0  0  0  0  0  0

 0  0  0  0  0  0  0  0  0

 6  0  0  0  0  0  0  0  0

 6  6  0  0  0  0  0  0  0

 6  6  0  0  0  0  0  0  0

 6  6  6  0  0  0  0  0  0

:6: 6  6  6  0  0  0  0  0

 6  6  6  6  6  0  0  0  0

 6  6  6  6  6  0  0  0  0

 0  0  0  0  0  0  0  0  0

 0  0  0  0  0  0  0  0  0

 6  0  0  0  0  0  0  0  0

 6  6  0  0  0  0  0  0  0

 6  6  6  0  0  0  0  0  0

 6  6  6  6  0  0  0  0  0

 6  6  6  6  6  0  0  0  0

:6: 6  6  6  6  6  0  0  0

 6  6  6  6  6  6  0  0  0

 6  6  6  6  6  6  6  0  0

x
1

(d) procurement  to

supplier 2 at y = (0,0)

x
1

(e) procurement  to

supplier 2 at y = (1,0)

x
2

x
2

(g) production decisions at

y = (y
1
,  y

2
)

0  0  0  0  0  0  0  0  0  0

0  0  0  0  0  0  0  0  0  0

0  0  0  0  0  0  0  0  0  0

0  0  0  0  0  0  0  0  0  0

0  0  0  1  1  1  1  1  1  1

0  1  1  1  1  1  1  1  1  1

0  1  1  1  1  1  1  1  1  1

0: 1  1  1  1  1  1  1  1  1

0  1  1  1  1  1  1  1  1  1

0  1  1  1  1  1  1  1  1  1

x
1

x
2

 0  0  0  0  0  0  0  0  0

 0  0  0  0  0  0  0  0  0

 5  0  0  0  0  0  0  0  0

 5  5  0  0  0  0  0  0  0

 5  5  5  0  0  0  0  0  0

 5  5  5  5  0  0  0  0  0

 5  5  5  5  5  0  0  0  0

:5: 5  5  5  5  0  0  0  0

 5  5  5  5  5  5  0  0  0

 5  5  5  5  5  5  5  0  0

x
1

(c) procurement to

supplier 1 at y = (0,2)

x
2

 0  0  0  0  0  0  0  0  0

 0  0  0  0  0  0  0  0  0

 6  0  0  0  0  0  0  0  0

 6  6  0  0  0  0  0  0  0

 6  6  6  0  0  0  0  0  0

 6  6  6  0  0  0  0  0  0

 6  6  6  6  0  0  0  0  0

:6: 6  6  6  6  0  0  0  0

 6  6  6  6  6  6  0  0  0

 6  6  6  6  6  6  0  0  0

x
1

(f) procurement  to

supplier 2 at y = (2,0)

x
2

 
Figure 7. The optimal procurement and production decisions in case D1 with non-adjustable 

outstanding orders 

 

 



 

 

22 

 0  0  0  0  0  0  0  0  0

 0  0  0  0  0  0  0  0  0

 0  0  0  0  0  0  0  0  0

 0  0  0  0  0  0  0  0  0

 0  0  0  0  0  0  0  0  0

 4  0  0  0  0  0  0  0  0

 5  4  0  0  0  0  0  0  0

:5: 5  4  0  0  0  0  0  0

 5  5  5  0  0  0  0  0  0

 5  5  5  5  0  0  0  0  0

 0  0  0  0  0  0  0  0  0

 0  0  0  0  0  0  0  0  0

 0  0  0  0  0  0  0  0  0

 5  0  0  0  0  0  0  0  0

 5  5  0  0  0  0  0  0  0

 5  5  5  0  0  0  0  0  0

 5  5  5  0  0  0  0  0  0

:5: 5  5  5  0  0  0  0  0

 5  5  5  5  5  0  0  0  0

 5  5  5  5  5  0  0  0  0

x
1

(a) procurement to

supplier 1 at y = (0,0)

x
1

(b) procurement to

supplier 1 at y = (0,1)

x
2

x
2

 0  0  0  0  0  0  0  0  0

 0  0  0  0  0  0  0  0  0

 4  0  0  0  0  0  0  0  0

 5  4  0  0  0  0  0  0  0

 5  5  4  0  0  0  0  0  0

 5  5  5  0  0  0  0  0  0

 5  5  5  5  0  0  0  0  0

:5: 5  5  5  5  0  0  0  0

 5  5  5  5  5  0  0  0  0

 5  5  5  5  5  5  0  0  0

 0  0  0  0  0  0  0  0  0

 0  0  0  0  0  0  0  0  0

 5  0  0  0  0  0  0  0  0

 5  0  0  0  0  0  0  0  0

 5  5  0  0  0  0  0  0  0

 5  5  5  0  0  0  0  0  0

 5  5  5  5  0  0  0  0  0

:5: 5  5  5  5  0  0  0  0

 5  5  5  5  5  0  0  0  0

 5  5  5  5  5  5  0  0  0

x
1

(d) procurement  to

supplier 2 at y = (0,0)

x
1

(e) procurement  to

supplier 2 at y = (1,0)

x
2

x
2

(g) production decisions at

y = (y
1
,  y

2
) except (0,1)

and (1,1)

0  0  0  0  0  0  0  0  0  0

0  0  0  0  0  0  0  0  0  0

0  0  0  0  0  0  0  0  0  0

0  0  0  0  0  0  0  0  0  0

0  0  1  1  1  1  1  1  1  1

0  1  1  1  1  1  1  1  1  1

0  1  1  1  1  1  1  1  1  1

0: 1  1  1  1  1  1  1  1  1

0  1  1  1  1  1  1  1  1  1

0  1  1  1  1  1  1  1  1  1

x
1

x
2

 0  0  0  0  0  0  0  0  0

 0  0  0  0  0  0  0  0  0

 0  0  0  0  0  0  0  0  0

 0  0  0  0  0  0  0  0  0

 5  0  0  0  0  0  0  0  0

 5  5  0  0  0  0  0  0  0

 5  5  5  0  0  0  0  0  0

:5: 5  5  5  0  0  0  0  0

 5  5  5  5  0  0  0  0  0

 5  5  5  5  5  0  0  0  0

x
1

(c) procurement to

supplier 1 at y = (0,2)

x
2

 0  0  0  0  0  0  0  0  0

 0  0  0  0  0  0  0  0  0

 0  0  0  0  0  0  0  0  0

 5  0  0  0  0  0  0  0  0

 5  5  0  0  0  0  0  0  0

 5  5  5  0  0  0  0  0  0

 5  5  5  5  0  0  0  0  0

:5: 5  5  5  0  0  0  0  0

 5  5  5  5  5  0  0  0  0

 5  5  5  5  5  5  0  0  0

x
1

(f) procurement  to

supplier 2 at y = (2,0)

x
2

(h) production decisions at

y = (0, 1) or (1, 1)

0  0  0  0  0  0  0  0  0  0

0  0  0  0  0  0  0  0  0  0

0  0  0  0  0  0  0  0  0  0

0  0  0  0  0  0  0  0  0  0

0  0  0  1  1  1  1  1  1  1

0  1  1  1  1  1  1  1  1  1

0  1  1  1  1  1  1  1  1  1

0: 1  1  1  1  1  1  1  1  1

0  1  1  1  1  1  1  1  1  1

0  1  1  1  1  1  1  1  1  1

x
1

x
2

 
Figure 8. The optimal procurement and production decisions in case D4 with non-adjustable 

outstanding orders 

 

The results in figures 7~8 reveal that the qualitative results in Proposition 4 are generally 

preserved for the cases with non-adjustable outstanding orders. Namely, the order sizes to the 

suppliers with higher supply capability are not less than that to the supplies with lower supply 

capability. However, it is noted that in the case D1 when the echelon inventory level (i.e. x1 + 

x2) or the raw material inventory level exceeds a certain level, the optimal policy may place an 

order to supplier 1 (with lower delivery capacity) but place no order to supplier 2 (with higher 

delivery capacity). This may be interpreted as follows. When there are adequate echelon 
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inventories or raw material inventories in the system, it is reasonable to place a relatively 

smaller order to the lower capacity supplier and reserve the opportunity and flexibility of 

placing a larger order to the higher capacity supplier to buffer against future uncertainty.  

 

In addition, a few interesting points can be observed from figures 7~8. Firstly, the structural 

properties of the optimal procurement and production policies such as switching control regions 

and monotonicity of the boundary curves are very similar to the case with adjustable 

outstanding orders; however, the non-zero order size appears to be a constant that is equal or 

close to the maximum delivery capacity in figures 7~8. This implies that it is more appropriate 

to approximate the optimal procurement policy using a series of (r, Q) policies rather than the 

(s, S) policies. For example, in figure 7 (a), the optimal procurement decisions can be 

determined by the (r, Q) policy with r=4 and Q=5 when x2 = 0 or 1 (i.e. a fixed order size Q is 

placed when x1  r); and in figure 7 (d), the optimal procurement decisions can be determined 

by the (r, Q) policy with r=3 and Q=6 when x2=0, and with r=2 and Q=6 when x2 = 1. Secondly, 

comparing the procurement decisions at y = (0, 0) with that at y = (0, 1) or (1, 0), the order sizes 

at y = (0, 0) are generally not greater than that at y = (1, 0) or (0, 1). This can be explained by 

the fact that at the state y = (0, 0), the manufacturer can place two new orders simultaneously 

whereas at the state y = (1, 0) or (0, 1) it can only place one new order. The order sizes at y = 

(0, 1) are not smaller than that at y = (0, 2), which is intuitively true considering the size of the 

existing outstanding order. Thirdly, the production decisions are rather insensitive to the system 

parameters and to the statuses of the outstanding orders. This observation is useful when 

designing sub-optimal and easy-to-implement production policies.  

 

7.4.3 Impact of various factors and their interactions on the system performance 

This section employs a full factorial experiment design to investigate the impact of various 

factors and their interactions on the system performance. This technique allows the effects of a 

factor to be estimated at several levels of the other factors, which can yield conclusions that are 

valid over a wide range of parameter settings (Montgomery 1991). We assume two suppliers 

have the same supply capability and focus on the five main factors (Qi, i, U, , ci
f). Each factor 

takes three levels, e.g. the suppliers’ delivery capacity Qi being (5, 6, 7), the raw material 

delivery rate i being (0.10, 0.12, 0.14), the maximum production rate U being (1.0, 1.2, 1.4), 

the demand arrival rate  being (0.60, 0.72, 0.84), and the fixed cost coefficient ci
f being (0.5, 

0.6, 0.7). Other system parameters are set the same as those in Section 7.1. The above ranges 

of the five factors are generated by increasing the value of each factor by 20% from its lowest 

level, which ensures that the systems have reasonable utilisations and stable in long term (i.e. 

maximum supply capacity exceeds the demand rate). Note that i, U, and  represent the degree 

of three different types of uncertainties, the full factorial analysis can shed light on their relative 

importance and interactive impact on the system performance. 

 

In total there are 35 = 243 different scenarios in the full factorial experiment. We perform the 

analysis of variance (ANOVA) to investigate the effects of these factors and their interactions 

on the cost. For each factor, the degrees of freedom (DF), sums of squares (SS), mean square 

(MS), F value (F) and probability (P) are given in Table 7. 

 

Table 7. Analysis of variance for the cost under multiple factors  

(Note: * represents the interaction of two factors 

Source DF SS MS F P 

Qi 2 764 382 636.85 0.000 

I 2 77360 38680 64486.92 0.000 
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U 2 67277 33639 56082.32 0.000 

 2 426858 213429 355828.33 0.000 

ci
f 2 288 144 240.41 0.000 

Qi*I 4 212 53 88.20 0.000 

Qi*U 4 40 10 16.70 0.000 

Qi* 4 408 102 170.12 0.000 

Qi*ci
f 4 1 0 0.23 0.921 

i *U 4 35 9 14.75 0.000 

i * 4 2409 602 1004.02 0.000 

i *ci
f 4 1 0 0.45 0.769 

U* 4 5735 1434 2390.33 0.000 

U*ci
f 4 0 0 0.00 1.000 

*ci
f 4 1 0 0.26 0.906 

Error 192 115 1   

Total 242 581504    

 

For a given confidence interval 0.05, which is defined as the acceptance probability that an 

important factor is incorrectly rejected, all factors or interactions with a value of P<0.05 are 

statistically significant. It can be seen from Table 7 that all factors have values P<0.05 and are 

therefore statistically significant within the ranges considered. From the F value in Table 7, it 

shows that the forth factor (demand arrival rate) has the largest effect on the cost; the second 

factor (suppliers’ delivery rate) and the third (manufacturer’s production rate) have the second 

largest effect on the cost. This indicates that three factors representing three types of 

uncertainties have much more significant impact on the cost than the other two factors (i.e. the 

suppliers’ delivery capacity and the suppliers’ fixed ordering cost). The interactions with the 

factor ci
f (i.e. the fixed ordering cost) are statistically insignificant within the ranges under 

consideration, whereas all other interactions have significant effect since their P values are less 

than 0.05. 

 

8. Conclusions 

This paper considers the optimal integrated inventory management for raw material 

procurement and production control in a manufacturing supply chain with multiple suppliers in 

the presence of multiple types of uncertainties such as uncertain material supplies, stochastic 

production times, and random customer demands. We focus on the supplier management issues 

such as supplier base reduction and supplier differentiation. Our main contributions include: (i) 

a mathematical model and a solution method are presented for the optimal procurement and 

production problem with multiple suppliers and multiple uncertainties; (ii) Under the 

assumption that the supply chain is integrated in the sense that the suppliers and the 

manufacturer have an agreement that the manufacturer can adjust the order quantity at any 

future decision point before it arrives, we are able to analytically establish the qualitative 

relationships between the supplier base size and the system performance, between the suppliers’ 

capabilities (such as delivery capacity, delivery lead-time and reliability, and ordering cost) and 

the system performance, and between the supplier base reduction strategies and the system 

performance. We also establish the qualitative relationship between the procurement decisions 

to different suppliers so that we can differentiate suppliers. The model further enables us to 

quantify the above relationships and achieve the trade-off between the supplier base reduction 

and the supplier capability improvement. Numerical examples are provided to verify and 

illustrate the results; (iii) we extend the model by relaxing the assumption of adjustable 

outstanding orders. Numerical examples are provided to illustrate that the main results can carry 

over to the cases with non-adjustable outstanding orders. 
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The managerial insights of this study include: (i) increasing supplier base size, increasing 

suppliers’ capacity, shortening material delivery time and improving material delivery 

reliability would benefit the manufacturer in the stochastic supply chain under consideration; 

(ii) the suppliers’ delivery lead-time and its reliability has the most significant impact on the 

system performance compared with supplier base size, suppliers’ delivery capacity and 

suppliers’ fixed ordering cost in the range of the experimented scenarios; (iii) there exists a 

trade-off between the supplier base reduction and the supplier capability improvement, i.e. a U-

shape relationship between the system performance and the level of the supplier base reduction 

strategies; (iv) the optimal non-zero procurement decisions to the suppliers with higher fixed 

ordering cost are actually the same as that to the suppliers with lower fixed ordering cost; (v) 

the model is able to evaluate and identify the best balance point so that the manufacturer can 

achieve the trade-off in managing inventory, production and supplier base by taking into 

account the interactions of multiple stochastic factors in the supply chain system. The optimal 

procurement and production decisions have good structural properties such as switching regions 

and monotonic boundary curves. It appears that the optimal production decisions and the 

optimal ordering decisions are only loosely related in the range of the experimented scenarios; 

(vi) under the assumption of adjustable outstanding orders, the optimal procurement policy can 

be closely approximated by a set of (s, S)-type policies constrained by the delivery capacities; 

whereas under the assumption of non-adjustable outstanding orders, it appears to be more 

appropriate to approximate the optimal procurement policy using a set of (r, Q)-type policies; 

(vii) In the situation with non-adjustable outstanding orders, the full factorial experiment via 

ANOVA reveals that three factors representing three types of uncertainties have much more 

significant impact on the cost (with the demand arrival rate has the largest effect) than other 

two factors (i.e. the suppliers’ delivery capacity and the suppliers’ fixed ordering cost) within 

the ranges under consideration. The interactions with the factor ‘the fixed ordering cost’ are 

statistically insignificant, whereas all other interactions have significant effect. 

 

Some of the above results complement the findings in the literature with respect to the 

preference of single sourcing versus multiple sourcing strategies (Burke et al. 2007). For 

example, we showed that single scouring strategy is unlikely optimal in our stochastic supply 

chain unless the single supplier’s capability is sufficiently better than multiple suppliers. Our 

results on the supplier differentiation in Proposition 4 confirm and complement the findings in 

Dada et al. (2007), e.g. if a given supplier is not used, then no more expensive suppliers than 

this supplier should be used. It should be pointed out that our findings are based on the adoption 

of the optimal integrated inventory management policy. If a non-optimal policy is applied, the 

results could be different. Because this paper focuses on supplier base size and supplier 

capabilities, we did not present numerical examples with regard to the impact of different 

combinations of three types of uncertainties (i, U, and ) on supply chain performance. 

Nevertheless, in a single supplier situation, it is shown that different combinations of i, U, and 

 do not impact on the qualitative control structure of the optimal integrated policy (Song 2009). 

Further research could be done in the following directions: (i) extending the model to more 

general situations by relaxing some assumptions, e.g. allowing multiple orders to each supplier; 

(ii) taking into account the associated costs in supplier capability improvement and maintaining 

supplier base size; (iii) considering other types of uncertainties in the supply chain such as 

defective raw materials and imperfect production. 
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Appendix 

The problem in (1) is a continuous time Markov decision problem. Using the uniformisation 

technique (Puterman, 1994; Song and Sun, 1998), the continuous-time Markov chain problem 

can be transformed into an equivalent discrete-time problem. Let v =  + U + 1
Ni be the 

uniform transition rate. Under an admission control policy u, the one-step transition 

probability Prob(y | x, u) is given as follows (cf. Silbermayr and Minner 2012; Song 2013): 

Prob((x1–1, x2+1) | x, u) = u / v,   

Prob((x1+k, x2) | x, u) = iiI{qi=k} / v, for k=1, 2, ..., maxi{qi},  

Prob((x1, x2–1) | x, u) =  / v,   

Prob(x | x, u) = (U + 1
Ni – u – 1

Ni I{qi>0}) / v. 

 

Let 0 = t0 < t1 < … < tk < … be the potential state transition epochs, and xk = x(tk) be the 

destination state of the kth transition. If uk = u(tk) denotes the control decisions at time tk, i.e. 

the control decision of the kth transition, it follows that x(t) = xk and u(t) = uk, if t[tk, tk+1). To 

compute the cost function for a given initial condition x(0)=x0 and control policy u(t), we have 
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Therefore, the problem is transformed into a discrete-time Markov chain problem with non-

negative unbounded cost per step and an infinite countable state space. Following the stochastic 

dynamic programming theory, the Bellman optimality equation is  
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where J(x) is defined in (1) for xX. To simplify the narrative, we define J(x) := + for xX. 

The derivation of (A2) can be compared to the arguments in Puterman (1994) and Song (2013). 

The above equation can be simplified as 

J(x)= (+v)-1 [g(x) + J(x1, x2-1) + Umin{cp + J(x1-1, x2+1), J(x)} 

 



N

i 1

min {ci
vqi + I{qi>0}ci

f + iJ(x1+qi, x2) | 0qiQi}] (A3) 

The existence of a control policy to achieve the minimum in (1) follows from the fact that the 

one-step cost function is non-negative and only finitely many controls are considered at each 

state (Bertsekas, 1976). Equation (A3) implies that the optimal policy can be described in terms 

of the optimal cost function. 

 


