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Abstract

A problem of decision making under uncertainty in which the choice must be
made between two sets of alternatives instead of two single ones is considered.
A number of choice rules are proposed and their main properties are investi-
gated, focusing particularly on the generalizations of stochastic dominance and
statistical preference. The particular cases where imprecision is present in the
utilities or in the beliefs associated to two alternatives are considered.
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1. Introduction

In decision making under uncertainty, it is not uncommon to encounter sit-
uations with vague or con�icting information about the probabilities or the
utilities associated to the di�erent alternatives. We may think for instance of
con�icts among the opinions of several experts, limits or errors in the observa-
tional process, or simply partial or total ignorance about the process underlying
the alternatives. In any such case, the elicitation of an unique probability/utility
model for each of the alternatives may be di�cult and its use, questionable.

One of the solutions that have been proposed for situations like this is to
consider a robust approach, by means of a set of probabilities and utilities.
The use of this approach to compare two alternatives is formally equivalent
to the comparison of two sets of alternatives, those associated to each possi-
ble probability-utility pair. Hence, it becomes useful to consider comparison
methods that allow us to deal with sets of alternatives instead of single ones.
However, the way to compare of sets of alternatives is no longer immediate: we
may compare all possibilities within each of the sets, or also select some par-
ticular elements of each set, to take into account phenomena of risk aversion,
for instance. This gives rise to a number of possibilities. Moreover, even in the
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simpler case where we choose one alternative from each set, we must still decide
which criterion we shall consider to determine the preferred one.

There is quite an extensive literature on how to deal with imprecise beliefs
and utilities when our choice is made by means of an expected utility model [?
? ? ? ]. However, the problem has almost remained unexplored for other choice
functions. In this paper we focus mostly on two di�erent optimality criteria that
serve as an alternative to the expected utility model: stochastic dominance and
statistical preference. The former is based on the comparison of the distribution
functions associated to the alternatives, and has been applied in economics [?
? ]; the latter can be seen as a robust alternative to expected utility which
is based on the median instead of the mean as a location parameter, and was
introduced in [? ], as an equivalent and graded version of the method presented
in [? ]; it is also a counterpart of the expected utility model when the rewards
of the di�erent alternatives are expressed in a qualitative scale [? ]. We shall
recall the basic aspects of these two criteria in Section ??.

In Section ??, we de�ne a number of choice models for sets of alternatives
starting from some binary relation, based on earlier work on this problem carried
out in [? ], and apply them to the particular cases where this relation is the one
associated to stochastic dominance or statistical preference. Then we consider
two particular cases: �rst, in Section ?? we deal with the case where we have
precise information about the beliefs but imprecise one about the utilities. We
model this situation by means of multi-valued mappings, or random sets [?
] which, under the epistemic interpretation considered in [? ], can be seen
as collections of random variables imprecisely speci�ed. We show that under
some conditions the comparison can be simpli�ed using the lower and upper
probabilities induced by the random set. Secondly, we consider in Section ??
the case where we have precise utilities but imprecise beliefs, and show that
there are two additional notions that may be more useful in such a scenario.

The di�erent conditions and their properties are illustrated by means of an
example in Section ??. We conclude the paper by giving a number of additional
remarks in Section ??.

2. Preliminary concepts

Let us review the basics about the two optimality criteria for decision making
under uncertainty we shall consider in this paper. To clarify our set up, we
consider a problem where we must choose between alternatives X,Y whose
utilities depend on the values ω of the states of nature. We assume that we
have probabilistic information about these states of nature, so that X,Y are
de�ned as variables from a probability space (Ω,A, P ) and taking values on
an utility space Ω′. For the most part, we shall assume that Ω′ is a bounded
subset of the reals; however, in the case of statistical preference we may have
qualitative utilities, and then Ω′ may correspond to an ordered qualitative scale.
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2.1. Stochastic dominance

The notion of stochastic dominance between random variables is based on
the comparison of their corresponding distribution functions. Assume that our
utility scale is Ω′ = [0, 1] (the results in this section generalize immediately
to the case where Ω′ is any bounded interval of real numbers). Distribution
functions are thus de�ned in the following way:

De�nition 1. A cumulative distribution function on [0, 1] is a function F :
[0, 1]→ [0, 1] satisfying the following properties:

• x ≤ y ⇒ F (x) ≤ F (y) ∀x, y [Monotonicity].

• F (1) = 1 [Normalization].

• F (x) = limε↓0 F (x+ ε) ∀x < 1 [Right-continuity].

Any F satisfying the properties of monotonicity and normalization is asso-
ciated to a �nite additive probability measure, and we shall call it a �nitely
additive distribution function.

One of the most popular methods for the comparison of cumulative distri-
bution functions is stochastic dominance [? ]:

De�nition 2. Given two cumulative distribution functions F and G, we say
that F stochastically dominates G, and denote it F �FSD G, if F (t) ≤ G(t) for
every t in [0,1], and given two random variables X,Y taking values on [0, 1],
we say that X stochastically dominates Y , and denote it X �FSD Y when its
associated distribution function FX stochastically dominates FY, where

FX(t) = P (X ≤ t) and FY(t) = P (Y ≤ t) ∀t ∈ [0, 1].

In the literature, this notion is sometimes called �rst degree stochastic dom-
inance, in order to distinguish it from a number of weaker conditions called
second, third,... degree stochastic dominance [? ]. This is the reason of the
notation �FSD. Occasionally the notation �st is also employed (see for instance
[? ]).

This de�nition induces a partial order in the space F of cumulative dis-
tribution functions, from which we can derive the notions of strict stochastic
dominance, indi�erence and incomparability:

• We say that F stochastically dominates G strictly, and denote it by
F �FSD G, if F �FSD G but G 6�FSD F . This holds if and only if
F ≤ G and there is some t ∈ [0, 1] such that F (t) < G(t).

• F and G are stochastically indi�erent, and denote it by F ≡FSD G, if
F �FSD G and G �FSD F , or equivalently, if F = G.

• F and G are stochastically incomparable, and denote it by F �FSD G, if
F 6�FSD G and G 6�FSD F .
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Thus, (F,�FSD,≡FSD,�FSD) constitutes a preference structure ([? ]).
Stochastic dominance is commonly used in economics and �nance [? ? ]

and can be given the following interpretation: F �FSD G means that the choice
of F over G is rational, in the sense that we prefer the alternative with greater
probability of providing a utility above a certain threshold t, and this for all
possible t. The notion has also been used in other frameworks such as reliability
theory, statistical physics, epidemiology, etc. We refer to [? ? ] for more
information, and to [? ? ] for recent works in the context of decision making.
It is characterized by the following property:

Theorem 1. [? ] Given two random variables X and Y it holds that: X �FSD

Y if and only if E(u(X)) ≥ E(u(Y )) for every non-decreasing u.

The result is based on the equivalence between X �FSD Y and the inequality
E(I[t,∞)(X)) ≥ E(I[t,∞)(Y )) ∀t ∈ R, so if we denote by U∗ the set of non-
decreasing and bounded maps from R to R, we may also characterize stochastic
dominance by:

X �FSD Y ⇔ E(u(X)) ≥ E(u(Y )) for every u ∈ U∗. (1)

2.2. Statistical preference

We next introduce the notion of statistical preference. One of its advantages
is that it is applicable to variables X,Y taking values on any ordered qualitative
scale Ω′, which need not be numerical. It is based on the notion of probabilistic
relation.

De�nition 3. [? ] Given a set of alternatives D, a probabilistic relation is a
map Q : D ×D → [0, 1] satisfying Q(a, b) +Q(b, a) = 1 for all a, b in D.

Consider two variables X,Y from a probability space (Ω,A, P ) to an ordered
utility space Ω′ and de�ne

Q(X,Y ) = P (X > Y ) +
1

2
P (X = Y ); (2)

then it is easy to see that Q is a probabilistic relation. The value Q(X,Y )
can be interpreted as a measure of the strength of our preference of X over Y .
Statistical preference can then be introduced as a decision criterion based on
this probabilistic relation:

De�nition 4. [? ? ] We say that the random variable X is:

• statistically preferred to Y , and denote it by X �SP Y , if Q(X,Y ) ≥ 1
2 ;

• strictly statistically preferred to Y (X �SP Y ) if Q(X,Y ) > 1
2 ;

• statistically indi�erent to Y (X ≡SP Y ) when Q(X,Y ) = 1
2 .

4



Note that, if D denote a set of random variables de�ned on the probability
space, (D,�SP,≡SP) constitutes a preference structure without incomparable
elements.

Remark 1. One context where statistical preference appears naturally is that
of decision making with qualitative random variables. Dubois et al. show in [? ]
that given two variablesX,Y : Ω→ Ω′, where (Ω′,�Ω′) is an ordered qualitative
scale, then, given a number of rationality axioms over our decision rule, the
choice between X and Y must be made by means of the likely dominance rule,
which says that X is preferred to Y if and only if [X �Ω′ Y ] % [Y �Ω′ X],
where

[X �Ω′ Y ] = {ω ∈ Ω : X(ω) �Ω′ Y (ω)} and
[Y �Ω′ X] = {ω ∈ Ω : Y (ω) �Ω′ X(ω)}

and where % is a binary relation on subsets of Ω. One of the most interesting
cases is that where % is determined by a probability measure P , so A % B ⇔
P (A) ≥ P (B); we obtain that X is preferred to Y if and only if P (X ≥ Y ) ≥
P (Y ≥ X), or, equivalently, ifX �SP Y . Hence, we can see statistical preference
as a natural generalization of the expected utility model to the case of qualitative
utilities. �

Statistical preference is also applicable when we are dealing with quantitative
utilities and the utility scale Ω′ is a subset of the reals; in that case, statistical
preference is related to a location parameter: the median. This is detailed in [?
, Theorem 5].

More generally, the idea of statistical preference is to consider X preferred to
Y when it provides greater utility the majority of times. As such, it is close to the
rule of majority in voting systems; taking into account Condorcet's paradox (see
[? ]) it is not surprising then that the binary relation associated to statistical
preference is not transitive: it is possible to �nd random variables X, Y and Z
satisfying X >SP Y , Y >SP Z and Z >SP X. Let us recall one example, that
shall be used later on; another one can be found in [? , Example 3].

Example 1. [? ] Consider independent dice (here, we call dice a random
variable with a discrete uniform distribution over a six-value space) de�ned by:

X = {1, 3, 4, 15, 16, 17}.
Y = {2, 10, 11, 12, 13, 14}.
Z = {5, 6, 7, 8, 9, 18}.

It holds that Q(X,Y ) = 20
36 , Q(Y, Z) = 25

36 , but Q(Z,X) = 21
36 . �

The binary relation induced by statistical preference is re�exive, because we
see immediately from Eq. (??) that Q(X,X) = 1

2 , and therefore X ≡SP X for
every X. However, it is not antisymmetric, since X ≡SP Y ⇔ Q(X,Y ) = 1

2 ,
and this does not imply that X = Y : to see an example, consider Ω = {ω1, ω2},
with P ({ωi}) = 1

2 , and the variables X,Y given by

ω1 ω2

X 2 0
Y 1 1
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Then, Q(X,Y ) = 1
2 , and consequently X ≡SP Y even if the two random vari-

ables are di�erent.
With respect to the expected utility, statistical preference can be character-

ized in the following way [? ]. Given two real-valued random variables X,Y ,

X �SP Y ⇔ X − Y �SP 0⇔ E(u(X − Y )) ≥ 0, (3)

where the utility function u : R→ R is given by u = I(0,+∞) − I(−∞,0).

2.3. Imprecise probabilities

To conclude this part, we discuss brie�y imprecise probability models. This is
the generic term used to refer to all mathematical models that serve as an alter-
native and a generalization to probability models in cases of imprecise knowl-
edge. It includes possibility measures [? ], Choquet capacities [? ], belief
functions [? ] or coherent lower previsions [? ], among others.

In this paper, we shall use imprecise probability models because we shall deal
with a set X of alternatives, each with its corresponding probability distribution;
we obtain thus a set P of probability measures. This set can be summarized by
means of its lower and upper envelopes, which are given by:

P (A) := inf
P∈P

P (A), P (A) := sup
P∈P

P (A), (4)

and which are coherent lower and upper probabilities in the sense of Walley [?
]. If instead we consider the lower and upper expectation operators, given by
EP(f) := infP∈P EP (f), EP(f) := supP∈P EP (f), we obtain coherent lower
and upper previsions. Conversely, if we specify a coherent lower probability P ,
we shall denote by M(P ) := {P probability measure : P (A) ≥ P (A) ∀A} its
associated credal set.

In a similar way, if we consider a set F of distribution functions, its associated
lower and upper distribution functions are given by

F (x) := inf
F∈F

F (x), F (x) := sup
F∈F

F (x). (5)

Then F , F are �nitely additive distribution functions, and the set of distribution
functions bounded between them is called a p-box [? ], and denoted (F , F ). P-
boxes shall be useful when dealing with imprecise stochastic dominance.

3. Comparison of pairs of sets of random variables

In the following, we propose a number of comparison methods for pairs of
sets of variables which are based on performing pairwise comparisons of ele-
ments within these sets. We shall �rst give our de�nitions for the case where
the comparisons of the elements are made by means of a binary relation, and
later apply them to the particular cases where this binary relation consists of
stochastic dominance or statistical preference. Some of the ideas within this
section are similar to those put forward in [? ] when extending stochastic
dominance in order to deal with imprecise information.
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De�nition 5. Let � be a binary relation on the set of variables from a proba-
bility space (Ω,A, P ) to an ordered utility scale Ω′. Given two sets of random
variables X and Y, we say that:

1. X �1 Y if and only if for every X ∈ X , Y ∈ Y it holds that X � Y .
2. X �2 Y if and only if there is some X ∈ X such that X � Y for every
Y ∈ Y.

3. X �3 Y if and only if for every Y ∈ Y there is some X ∈ X such that
X � Y .

4. X �4 Y if and only if there are X ∈ X , Y ∈ Y such that X � Y .
5. X �5 Y if and only if there is some Y ∈ Y such that X � Y for every
X ∈ X .

6. X �6 Y if and only if for every X ∈ X there is Y ∈ Y such that X � Y .

The relationships between the de�nitions are summarized in the following
proposition. Its proof is immediate and therefore omitted.

Proposition 2. The following implications hold:

(a) �1⇒�2⇒�3⇒�4.

(b) �1⇒�5⇒�6⇒�4.

The previous implications can also be seen easily in the particular case where
X and Y are �nite sets, X = {X1, . . . , Xn} and Y = {Y1, . . . , Ym}. Denote by
M the n ×m matrix where Mi,j = 1 if Xi � Yj and 0 otherwise. The above
de�nitions are characterized in the following way:

• X �1 Y ⇔M = 1.

• X �2 Y ⇔ ∃i ∈ {1, . . . , n} s.t. Mi,· = 1.

• X �3 Y ⇔ @j ∈ {1, . . . ,m} s.t. M·,j = 0.

• X �4 Y ⇔M 6= 0.

• X �5 Y ⇔ ∃j ∈ {1, . . . ,m} s.t. M·,j = 1.

• X �6 Y ⇔ @i ∈ {1, . . . , n} s.t. Mi,· = 0.

Remark 2. The ideas in the above de�nition are somewhat similar to those
in the �eld of robust ordinal regression [? ? ? ]: in that case we consider
a set of additive value functions compatible with our partial preferences, and
the problem of considering a choice function that is robust with respect to
this information is considered. In particular, in [? ] the best and the worst
expected rewards for any alternative with respect to the set of value functions
are considered. This could be embedded into our formulation above, provided
that: (a) our binary relation is that associated to expected utility; (b) the set of
alternatives corresponds to the conjunction of an alternative with a set of value
functions. See also Section ?? later on. �
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Observe that for any binary relation �, its extensions �2 and �3 are quite
similar: both compare the best alternatives within each set X ,Y. The di�erence
between them lies on whether there is a maximal element within each of these
sets or not. A similar comment (this time in terms of the worst alternatives)
can be made for �5,�6. Taking this into account, we can easily give a necessary
and su�cient condition for the equivalences �2⇔�3 and �5⇔�6.

Proposition 3. Let � be a binary relation on the set of random variables that
is re�exive and transitive.

(a) Given a set X of random variables, X �3 Y ⇒ X �2 Y for any set of
variables Y if and only if X has a maximum element under �.

(b) Given a set Y of random variables, X �6 Y ⇒ X �5 Y for any set of
variables X if and only if Y has a minimum element under �.

Proof. (a) Assume that X has a maximum element X such that X � X ′

for every X ′ ∈ X . If X �3 Y, then for every Y ∈ Y there is some XY ∈ X
such that XY � Y . Since � is transitive and X � XY , we deduce that
X � Y for every Y ∈ Y, and as a consequence X �2 Y.
Conversely, if X does not have a maximum element, we can take Y = X
and we would have X ≡3 Y because � is re�exive; however, X and Y are
incomparable with respect to �2 because X does not have a maximum
element.

(b) Similarly, if Y has a minimum element Y , it holds that Y ′ � Y for any
Y ′ ∈ Y. If X �6 Y, then for every X ∈ X there exists YX ∈ Y such that
X � YX , and since � is transitive and YX � Y we obtain that X � Y for
every X ∈ X , whence X �5 Y.
Conversely, if Y does not have a minimum element, we can take X = Y
and we would have X ≡6 Y because � is re�exive; however, X and Y
are incomparable with respect to �5 because Y does not have a minimum
element. �

Under some conditions, we can also give a simpler characterization of the
above conditions:

Proposition 4. Let � be a binary relation between random variables, and as-
sume that it satis�es the Pareto Dominance condition:

X(ω) ≥ Y (ω) ∀ω ⇒ X � Y. (6)

Consider two sets of random variables X ,Y. If the random variables minX ,
maxX belong to X and minY, maxY belong to Y:

(a) X �1 Y ⇔ minX � maxY.
(b) X �2 Y ⇔ X �3 Y ⇔ maxX � maxY.
(c) X �4 Y ⇔ maxX � minY.
(d) X �5 Y ⇔ X �6 Y ⇔ minX � minY.
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Proof. The result follows from De�nition ?? and Proposition ??, taking into
account that when both X ,Y include a maximum and a minimum random
variable, Eq. (??) implies that for every X ∈ X , Y ∈ Y,

minX � Y ⇒ X � Y ⇒ maxX � Y and

X � maxY ⇒ X � Y ⇒ X � minY. �

Next we investigate which of the properties of the binary relation � are
also satis�ed by its extensions �1, . . . ,�6. Obviously, when � is not re�exive
(resp., antisymmetric, transitive), neither are its extensions �i, i = 1, . . . , 6.
Conversely, we can establish the following:

Proposition 5. Let � be a binary relation on random variables, and let �i, i =
1, . . . , 6 denote its extensions to sets of random variables, given by De�nition ??.

(a) If � is re�exive, so are �3, �4 and �6.

(b) If � is antisymmetric, so is �1.

(c) If � is transitive, so are �i for i = 1, 2, 3, 5, 6.

Proof. First of all, if � is re�exive, X ≡ X for any random variable X, and
applying De�nition ?? we deduce that X �i X for any i = 3, 4, 6 and any set of
random variables X .

Secondly, assume that � is antisymmetric and that two sets of random vari-
ables X ,Y satisfy X �1 Y and Y �1 X . Then, X � Y and Y � X for every
X ∈ X and Y ∈ Y, and by the antisymmetry property of �, we deduce that
X = Y for every X ∈ X , Y ∈ Y. But this can only be if X = {Z} = Y for some
random variable Z. As a consequence, �1 is antisymmetric.

Finally, assume that � is transitive, and let us show that so are �i for
i = 1, 2, 3, 5, 6. Consider three sets of random variables X ,Y,Z:

1. If X �1 Y and Y �1 Z then X � Y and Y � Z for every X ∈ X , Y ∈
Y, Z ∈ Z. Applying the transitivity of �, we deduce that X � Z for every
X ∈ X , Z ∈ Z, and as a consequence X �1 Z.

2. If X �2 Y and Y �2 Z, there is X ∈ X such that X � Y for every Y ∈ Y
and there is Y ∗ ∈ Y such that Y ∗ � Z for every Z ∈ Z. In particular,
X � Y ∗ � Z for every Z ∈ Z, whence, by the transitivity of �, X �2 Z.

3. If X �3 Y and Y �3 Z, for every Y ∈ Y there is some XY ∈ X such
that XY � Y , and for every Z ∈ Z there is YZ ∈ Y such that YZ � Z.
As a consequence, for every Z ∈ Z it holds that XYZ

� Z, and therefore
X �3 Z.

The transitivity of �5,�6 is proved similarly to that of �2,�3, respectively. �

In addition, it is easy to check that re�exivity, antisymmetry and transitivity
do not hold for de�nitions di�erent than the ones of statements (a), (b) and (c),
respectively.

Another interesting property in a binary relation is that it is complete, in
the sense that given any two elements, either one is preferred to the other or
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they are indi�erent, but they are never incomparable. From Proposition ??,
it follows that the incomparable pairs with respect to an extension �i are also
incomparable with respect to the stronger extensions. The following result shows
that if � is a complete relation, then its weakest extensions (namely, �3,�4 and
�6) also induce complete binary relations:

Proposition 6. Let � be a binary relation on random variables, and let �i, i =
1, . . . , 6 be its extensions to sets of random variables given by De�nition ??. If
� is complete, then so are �3,�4 and �6.

Proof. Let X ,Y be two sets of random variables, and assume that X �3 Y.
Then there is some Y ∈ Y such that X � Y for all X ∈ X . But since � is a
complete relation, this means that Y � X for all X ∈ X . As a consequence,
Y �2 X , and applying Proposition ?? we deduce that Y �3 X . Hence, the
binary relation �3 is complete.

On the other hand, if X �4 Y, we deduce from Proposition ?? that also
X �3 Y, whence the above reasoning implies that Y �3 X and again from
Proposition ?? we deduce that Y �4 X .

The proof that �6 also induces a complete relation is analogous. �

Remark 3. Although in this paper we shall focus on the particular application
of De�nition ?? to the relation � associated to stochastic dominance or statis-
tical preference, there are other cases of interest. Perhaps the most important
one is that where the comparison between pairs of random variables is made by
means of their expected utility:

X � Y ⇔ E(X) ≥ E(Y );

it is not di�cult to see that De�nition ?? gives rise to some well-known gener-
alizations of expected utility that are formulated in terms of lower and upper
expectations. Consider two sets X ,Y and assume that the expectations of all
their elements exist. Then with respect to de�nition �1 it holds that:

X �1 Y ⇔ E(X ) = inf
X∈X

E(X) ≥ sup
Y ∈Y

E(Y ) = E(Y),

which relates this notion to the concept of interval dominance in [? ].
If we now consider de�nition �3, it holds that

X �3 Y ⇒ E(X ) = sup
X∈X

E(X) ≥ sup
Y ∈Y

E(Y ) = E(Y).

Thus, de�nition �3 is stronger than the maximax criterium [? ], which is based
on comparing the best possibilities in our sets of alternatives. Similarly, if we
consider de�nition �6 it holds that:

X �6 Y ⇒ E(X ) = inf
X∈X

E(X) ≥ inf
Y ∈Y

E(Y ) = E(Y).

Thus, de�nition �6 is stronger than the maximin criterium [? ], which compares
the worst possibilities within the sets of alternatives.
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Finally, de�nition �4 implies that

X �4 Y ⇒ E(X ) = sup
X∈X

E(X) ≥ inf
Y ∈Y

E(Y ) = E(Y),

so if X is �4-preferred to Y then it is also preferred with respect to the criterion
of E-admissibility from [? ]. See [? ? ] for related comments. �

3.1. Imprecise Stochastic Dominance

In this subsection, we explore in some detail the case where the binary
relation � is the one associated to the notion of stochastic dominance we have
introduced in De�nition ??, i.e., the relation � is de�ned by �FSD. We shall
assume that the utility space Ω′ is [0, 1], although the results can be immediately
extended to any bounded interval of real numbers.

From [? , Example 1], we can see that the converse implications in Propo-
sition ?? do not hold in general. With respect to the other results, since the
relation �FSD is re�exive and transitive, we can apply Proposition ?? and char-
acterize the equivalences between �FSD2 and �FSD3 , and also between �FSD5

and �FSD6
by means of the existence of a maximum and a minimum value in

the sets X ,Y we want to compare. Moreover, we can deduce from Proposi-
tion ?? that �FSDi

is re�exive for i = 3, 4, 6 and transitive for i = 1, 2, 3, 5, 6.
On the other hand, since two di�erent random variables may induce the same
distribution function, �FSD is not antisymmetric.

Since �FSD also complies with Pareto dominance (Eq. (??)), we deduce from
Proposition ?? that when the sets X ,Y to compare have both a maximum and a
minimum element, we can easily characterize the conditions �FSDi

, i = 1, . . . , 6
by comparing these maximum and minimum elements only.

Finally, note that �FSD is not a complete relation, because there are distri-
bution functions F,G such that F 6�FSD G and G 6�FSD F . As a consequence,
Proposition ?? is not applicable in this context.

The relations �FSDi
, i = 1, . . . , 6, were already studied in [? ] as a gener-

alization of stochastic dominance towards sets of alternatives. Since stochastic
dominance compares the alternatives by means of their associated distribution
functions, this extension to an imprecise context may be made in terms of the
comparison of sets of distribution functions, which can be equivalently repre-
sented by means of their associated p-boxes. We have proved the following:

Proposition 7. [? , Proposition 3] Let FX and FY be two sets of cumulative
distribution functions, and denote by (FX, FX) and (FY, FY) the p-boxes they
induce by means of Eq. (??). Then the following statements hold:

1. FX �FSD1
FY ⇔ FX �FSD FY.

2. FX �FSD2 FY ⇒ FX �FSD FY.

3. FX �FSD3 FY ⇒ FX �FSD FY.

4. FX �FSD4
FY ⇒ FX �FSD FY.

5. FX �FSD5
FY ⇒ FX �FSD FY.

6. FX �FSD6 FY ⇒ FX �FSD FY.
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Moreover, when both the lower and the upper distribution functions belong to
the respective sets, the converse implications also hold.

Note that the second part of this result can be seen now as a consequence
of Propositions ?? and ??.

Next, we provide an alternative characterization of imprecise stochastic dom-
inance in terms of the equivalent formulation given in Theorem ??. Recall that
given two random variables X and Y , it holds that X �FSD Y if and only
if E(u(X)) ≥ E(u(Y )) for every non-decreasing function u. When we com-
pare sets of random variables, we must replace these expectations by lower and
upper expectations. For any given set of distribution functions F and any non-
decreasing function u : [0, 1] → R, let us denote EF (u) := infF∈F EPF

(u) and
EF (u) := supF∈F EPF

(u). It is easy to establish the following result:

Theorem 8. Let us consider two sets of cumulative distribution functions F1

and F2, and let U be the set of all non-decreasing functions u : [0, 1]→ R. The
following statements hold:

1. F1 �FSD1
F2 ⇔ EF1

(u) ≥ EF2
(u) for every u ∈ U .

2. F1 �FSD2
F2 ⇒ EF1

(u) ≥ EF2
(u) for every u ∈ U .

3. F1 �FSD3 F2 ⇒ EF1(u) ≥ EF2(u) for every u ∈ U .
4. F1 �FSD4

F2 ⇒ EF1
(u) ≥ EF2

(u) for every u ∈ U .
5. F1 �FSD5

F2 ⇒ EF1
(u) ≥ EF2

(u) for every u ∈ U .
6. F1 �FSD6

F2 ⇒ EF1
(u) ≥ EF2

(u) for every u ∈ U .

Taking into account Eq. (??), the above implications hold in particular when
we replace the set U by the subset U∗ of the non-decreasing and bounded maps
u : R → R. This will be useful when comparing random sets by means of
stochastic dominance in Section ??.

3.2. Imprecise Statistical Preference

We consider next the case where the basic binary relation to generalize is
that associated to statistical preference, as given in De�nition ??. Hence, we
shall assume in general that the utility space Ω′ is an ordered set, which need
not be numerical.

Let us denote by �SPi
, i = 1, . . . , 6 the conditions obtained by means of

De�nition ??. Note that �SP is re�exive and complete, but it is neither anti-
symmetric not transitive. Hence, Proposition ?? does not apply in this case;
indeed, we can use statistical preference to show that Proposition ?? cannot be
extended to non transitive relationships:

Example 2. Consider the random variables X,Y, Z from Example ?? such that
X �SP Y �SP Z �SP X, and let X = {X,Y }, Y = {X,Z}. Then since
X �SP X and Y �SP Z, we deduce that X �SP3

Y; since X �SP Y and
Z �SP X, we see that X �SP2

Y; however, X has a maximum element, because
X �SP Y . �

12



On the other hand, since statistical preference complies with Pareto dom-
inance we deduce from Proposition ?? that the di�erent conditions can be
reduced to the comparison of the maximum and minimum elements of X ,Y,
when these maximum and minimum elements exist. Finally, we deduce from
Propositions ?? and ?? that conditions �SP3

,�SP4
,�SP6

induce a re�exive and
complete relationship.

We can also use statistical preference to show that Proposition ?? cannot be
extended to the relations�1,�2 nor�5: take the sets X = Y = {X,Y, Z}, where
the variables X,Y, Z satisfy X �SP Y �SP Z �SP X as in Example ??; then the
set X has neither a maximum nor a minimum element, whence it is incomparable
with itself with respect to �SP2

and �SP5
. Applying Proposition ??, we deduce

that X ,Y are also incomparable with respect to �SP1 .
We showed in Theorem ?? that the generalizations of stochastic dominance

towards sets of variables are related to lower and upper expectations. Next, we
establish a similar result for the generalizations of statistical preference. The
result shall be established in terms of lower and upper medians, and for this we
shall require that our utility space Ω′ is numerical. Let us consider two sets of
alternatives X ,Y with values on Ω′, and let us introduce the following notation:

Me(X − Y) = {Me(X − Y ) : X ∈ X , Y ∈ Y}.
Me(X − Y) = inf Me(X − Y).
Me(X − Y) = sup Me(X − Y),

where the median of a random variable with respect to a probability measure
is given by MeP(X) := inf{t : P (X ≤ t) ≥ 0.5}.

Proposition 9. Let X ,Y be two sets of random variables de�ned on a proba-
bility space (Ω,A, P ) and taking values on R.

1. Me(X − Y) > 0⇒ X �SP1
Y ⇒ Me(X − Y) ≥ 0.

2. ∃X ∈ X s.t. Me({X} − Y) > 0 ⇒ X �SP2
Y ⇒ ∃X ∈ X s.t. Me({X} −

Y) ≥ 0.

3. Me(X − {Y }) > 0 ∀Y ∈ Y ⇒ X �SP3 Y ⇒ Me(X − {Y }) ≥ 0 ∀Y ∈ Y.
4. Me(X − Y) > 0⇒ X �SP4 Y ⇒ Me(X − Y) ≥ 0.

5. ∃Y ∈ Y s.t. Me(X − {Y }) > 0 ⇒ X �SP5
Y ⇒ ∃Y ∈ Y s.t. Me(X −

{Y }) ≥ 0.

6. Me({X} − Y) > 0 ∀X ∈ X ⇒ X �SP6
Y ⇒ Me({X} − Y) ≥ 0 ∀X ∈ X .

Proof. From [? , Theorem 5], given two random variables X,Y ,

Me(X − Y ) > 0⇒ X �SP Y ⇒Me(X − Y ) ≥ 0.

The result follows from this equation together with De�nition ?? and the above
de�nitions of lower and upper median. �

Taking into account the properties of the median, we conclude from this result
that statistical preference may be seen as a more robust alternative to stochastic
dominance or expected utility in the presence of outliers.
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3.2.1. Connection with aggregation operators

Since the binary relation associated to statistical preference is complete, we
deduce from Proposition ?? that so are the relations �SP3

,�SP4
,�SP6

. Com-
plete relations are interesting because they mean that we can always express
a preference between two sets of alternatives X ,Y. Another way of deriving a
complete relation when we make multiple comparisons is to establish a degree
of preference for every pairwise comparison, and to aggregate these degrees of
preference into a joint one. This is possible to do by means of an aggregation
operator.

Let X = {X1, . . . , Xn} and Y = {Y1, . . . , Ym} be two �nite sets of random
variables taking values on an ordered utility space Ω′, and let us compute the
statistical preference Q(Xi, Yj) for every pair of variables Xi ∈ X , Yj ∈ Y by
means of Eq. (??). The set of all these preferences is an instance of pro�le of
preferences [? ], and can be represented by means of the matrix

QX ,Y :=

 Q(X1, Y1) Q(X1, Y2) . . . Q(X1, Ym)
...

...
...

...
Q(Xn, Y1) Q(Xn, Y2) . . . Q(Xn, Ym)

 .

Note that the pro�le of preferences of Y over X , QY,X , corresponds to one minus
the transposed matrix of QX ,Y , i.e., 1 − QtX ,Y . We shall show that conditions
�SP1 , . . . ,�SP6 can be expressed by means of an aggregation operator over the
pro�le of preference:

De�nition 6. [? ? ] An aggregation function is a mapping F : ∪s∈N[0, 1]s →
[0, 1]. It is called an aggregation operator when it satis�es the following condi-
tions:

• xi ≤ yi ∀i = 1, . . . , s⇒ F (x1, . . . , xs) ≤ F (y1, . . . , ys).[Monotonicity]

• F (0, . . . , 0) = 0 and F (1, . . . , 1) = 1. [Boundary conditions]

The matrix QX ,Y representing the pro�le of preferences between X and
Y can be equivalently represented by means of a vector on [0, 1]nm using the
lexicographic order:

~zX ,Y = (Q(X1, Y1), Q(X1, Y2), . . . , Q(X1, Ym), Q(X2, Y1), . . . , Q(Xn, Ym)).

Taking this into account, given an aggregation function F : ∪s∈N[0, 1]s → [0, 1],
we shall denote by F (QX ,Y) the image it gives to the vector ~zX ,Y .

De�nition 7. Given two �nite sets of random variables X = {X1, . . . , Xn}
and Y = {Y1, . . . , Ym} and an aggregation function F , we say that X is F -
statistically preferred to Y, and denote it by X �SPF Y, if

F (QX ,Y) := F (~zX ,Y) ≥ 1

2
. (7)
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We refer to [? ] for a review of aggregation operators. Some important proper-
ties are the following:

De�nition 8. [? ] An aggregation function F : ∪s∈N[0, 1]s → [0, 1] is called:

• symmetric if it is invariant under permutations.

• monotone if F (r1, . . . , rs) ≥ F (r′1, . . . , r
′
s) whenever ri ≥ r′i for every i =

1, . . . , s.

• idempotent if F (r, . . . , r) = r.

We shall call an aggregation function F : ∪s∈N[0, 1]s → [0, 1] self-dual if
F (r1, . . . , rs) = 1 − F (1 − r1, . . . , 1 − rs) for every (r1, . . . , rs) ∈ [0, 1]s and for
every s ∈ N.

All these properties are interesting when aggregating the pro�le of prefer-
ences into a joint one: symmetry implies that all the elements in the pro�le
are given the same weight; idempotence means that if all the preference de-
grees equal r, the �nal preference degree should also equal r; monotonicity
assures that if we increase all the values in the pro�le of preferences, the �-
nal value should also increase; and self-duality preserves the idea behind the
notion of probabilistic relation in De�nition ??, since for a self-dual aggrega-
tion function F , F (QtX ,Y) + F (QY,X ) = 1. If in addition F is symmetric, we
obtain that F (QX ,Y) + F (QY,X ) = 1. This last property means that, when
F is a self-dual and symmetric aggregation function, Eq. (??) is equivalent to
F (QX ,Y) ≥ F (QY,X ).

The relations �SPi
, for i = 1, . . . , 6, can all expressed by means of an ag-

gregation function, as we summarize in the following proposition. Its proof is
immediate and therefore omitted.

Proposition 10. Let X = {X1, . . . , Xn},Y = {Y1, . . . , Ym} be two �nite sets of
random variables taking values on an ordered space Ω′. Then for any i = 1, . . . , 6
X �SPi

Y if and only if it is Fi-statistically preferred to Y, where the aggregation
functions Fi are given by:

F1(QX ,Y) := min
i,j

Q(Xi, Yj).

F2(QX ,Y) := max
i=1,...,n

min
j=1,...,m

Q(Xi, Yj).

F3(QX ,Y) := min
j=1,...,m

max
i=1,...,n

Q(Xi, Yj).

F4(QX ,Y) := max
i,j

Q(Xi, Yj).

F5(QX ,Y) := max
j=1,...,m

min
i=1,...,n

Q(Xi, Yj).

F6(QX ,Y) := min
i=1,...,n

max
j=1,...,m

Q(Xi, Yj).

It is not di�cult to see that all the aggregation functions Fi above are monotonic
and comply with the boundary conditions Fi(0, . . . , 0) = 0 and Fi(1, . . . , 1) = 1;
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they are thus instances of aggregation operators. They are moreover idempotent.
On the other hand, only F1 and F4 are symmetric, and none of them is self-dual.

We can also use these aggregation operators to deduce the relationships
between the di�erent conditions established in Proposition ?? in the case of
statistical preference: it su�ces to take into account that F1 ≤ F2 ≤ F3 ≤ F4

and F1 ≤ F5 ≤ F6 ≤ F4.
The above remarks suggest that other preference relationships may be de-

�ned by means of other aggregation operators F , and this would allow us to
take all the elements of the pro�le of preferences into account, instead of focus-
ing on the best or worst scenarios only. Next, we explore brie�y one of these
possibilities: the arithmetic mean Fmean, given by

Fmean : ∪s∈N[0, 1]s → [0, 1]

(r1, . . . , rs) ↪→ r1 + · · ·+ rs
s

.

This is a symmetric, monotone, idempotent and self-dual aggregation opera-
tor. For clarity, when X is Fmean-statistically preferred to Y we shall denote
it X �SPmean Y. The connection between �SPmean and �SPi , i = 1, . . . , 6 is a
consequence of the following result:

Proposition 11. Given two �nite sets of random variables X = {X1, . . . , Xn}
and Y = {Y1, . . . , Ym} and a monotone and idempotent aggregation function F ,

X �SP1 Y ⇒ X �SPF Y ⇒ X �SP4 Y.

Proof. On the one hand, assume that X �SP1 Y. Then, Q(X,Y ) ≥ 1
2 for

every X ∈ X and Y ∈ Y. Since F is monotone and idempotent, F (QX ,Y) ≥
F
(

1
2 , . . . ,

1
2

)
= 1

2 , and consequently X �SPF Y.
On the other hand, assume ex-absurdo that F (QX ,Y) ≥ 1

2 and that X 6�SP4

Y, so that Q(X,Y ) < 1
2 for every X ∈ X and Y ∈ Y. Then F (QX ,Y) ≤

maxi,j Q(Xi, Yj) <
1
2 , a contradiction. Hence, X �SP4

Y. �

In particular, we see that �SPmean
is an intermediate notion between �SP1

and
�SP4

. To see that it is not related to �SPi
for i = 2, 3, 5, 6, consider the following

example:

Example 3. Consider Ω = {ω1, ω2} (P ({ωi}) = 1/2), and the sets of random
variables X = {X1, X2, X3} and Y = {Y } de�ned by:

ω1 ω2

X1 0 2
X2 0 0
X3 2 2
Y 1 1

Then,

QX ,Y :=

 1
2
0
1

 and QY,X :=
(

1
2 1 0

)
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whence by Proposition ?? X �SPi Y, for i = 2, 3, and Y �SPi X , for i = 5, 6.
On the other hand,

Q(X1, Y ) +Q(X2, Y ) +Q(X3, Y )

3
=

1

2
,

and consequently X ≡SPmean
Y. Hence, X �SPmean

Y ; X �SPi
Y for i = 5, 6,

and Y �SPmean
X ; Y �SPi

X for i = 2, 3. By comparing Z1 = {X2, Y } and
Z2 = {X3, Y } with X , we can see that the converse implications do not hold:
Z1 ≡SP5,6 X �SPmean Z1 and Z2 �SPmean X ≡SP2,3 Z2.�

4. Comparison of random sets

In the next two sections, we shall show how the above results can be applied
in two di�erent scenarios of imprecision within a decision problem: the case
where we have imprecise information about the utilities of the di�erent alterna-
tives, and that where we have imprecise beliefs about the states of nature.

Let us start with the �rst case. Consider a decision problem where we must
choose between two alternatives X and Y whose respective utilities depend on
the values ω of the states of nature. Assume that we have precise information
about the probabilities of these states of nature, so that X and Y can be seen as
random variables de�ned on a probability space (Ω,A, P ). If we have imprecise
knowledge about the utilities X(ω) associated to the di�erent states of nature,
one possible model would be to associate to any ω ∈ Ω a set Γ(ω) which is
sure to include the `true' utility X(ω). By doing this, we obtain a multi-valued
mapping Γ : Ω → P(Ω′), and all we know about X is that it is one of the
measurable selections of Ω, i.e., that it belongs to the set

S(Γ) = {U : Ω→ Ω′ r.v. : U(ω) ∈ Γ(ω) for every ω ∈ Ω}. (8)

This interpretation of multi-valued mappings, as a model for the imprecise
knowledge of a random variable is not new, and can be traced back to Kruse and
Meyer [? ]. This epistemic interpretation contrasts with the ontic interpreta-
tion which is sometimes given to random sets as naturally imprecise quantities
[? ].

In this paper, we shall consider only multi-valued mappings satisfying a
certain measurability condition:

De�nition 9. Let (Ω,A, P ) be a probability space, (Ω′,A′) a measurable space
and Γ : Ω → P(Ω′) a multi-valued mapping. It is called a random set when
Γ∗(A) := {ω ∈ Ω : Γ(ω) ∩A 6= ∅} ∈ A ∀A ∈ A′.

Our comparison of two alternatives with imprecise utilities results thus in the
comparison of two random sets Γ1,Γ2, that we shall compare by means of their
respective sets of measurable selections S(Γ1), S(Γ2) determined by Eq. (??).
For simplicity, we shall use the notation Γ1 � Γ2 instead of S(Γ1) � S(Γ2) when
no confusion is possible.

Let us begin by studying the comparison of random sets by means of stochas-
tic dominance.
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Proposition 12. Let (Ω,A, P ) be a probability space, (Ω′,P(Ω′)) a measurable
space, with Ω′ a �nite subset of R, and Γ1,Γ2 be two random sets. The following
equivalences hold:

(a) Γ1 �FSD1 Γ2 ⇔ min Γ1 �FSD max Γ2.

(b) Γ1 �FSD2 Γ2 ⇔ Γ1 �FSD3 Γ2 ⇔ max Γ1 �FSD max Γ2.

(c) Γ1 �FSD4
Γ2 ⇔ max Γ1 �FSD min Γ2.

(d) Γ1 �FSD5
Γ2 ⇔ Γ1 �FSD6

Γ2 ⇔ min Γ1 �FSD min Γ2.

Proof. The result follows from Proposition ??, taking into account that given
a random set Γ taking values on a �nite space, the lower distribution function
associated to its set S(Γ) of measurable selections is induced by max Γ and its
upper distribution function is induced by min Γ. �

Moreover, we can characterize the conditions�FSDi
, i = 1, . . . , 6 even for random

sets that take values on in�nite spaces. To see how this comes out, we must
recall �rst the notion of upper and lower probabilities induced by a random set:

De�nition 10. [? ] Let (Ω,A, P ) be a probability space, (Ω′,A) a measurable
space and Γ : Ω→ P(Ω′) a random set. Then its upper and lower probabilities
are the functions P ∗, P∗ : A → [0, 1] given by P ∗(A) = P ({ω : Γ(ω) ∩ A 6= ∅})
and P∗(A) = P ({ω : ∅ 6= Γ(ω) ⊆ A}) for every A ∈ A.

The upper and lower probabilities of a random set are in particular coherent
lower and upper probabilities as introduced in Section ??, and constitute upper
and lower bounds of the probabilities induced by the measurable selections:

P∗(A) ≤ PX(A) ≤ P ∗(A) for every X ∈ S(Γ); (9)

therefore, their associated cumulative distributions provide lower and upper
bounds of the lower and upper distribution functions associated to S(Γ). The
inequalities in Eq. (??) may be strict [? , Example 1]; however, under fairly
general conditions

P ∗(A) = maxP(Γ)(A) and P∗(A) = minP(Γ)(A) for every A ∈ A′, (10)

where P(Γ)(A) := {PX(A) : X ∈ S(Γ)}. In particular, if Γ takes values on the
measurable space ([0, 1], β[0,1]), where β[0,1] denotes the Borel σ-�eld, Eq. (??)
holds under any of the following conditions [? ]:

• If the class {Γ(ω) : ω ∈ Ω} is countable;

• if Γ(ω) is closed for every ω ∈ Ω;

• if Γ(ω) is open for every ω ∈ Ω.

Theorem 13. [? , Theorem 14] Let (Ω,A, P ) be a probability space. Consider
the measurable space ([0, 1], β[0,1]) and let Γ : Ω→ P([0, 1]) be a random set. If
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P ∗(A) = maxP(Γ)(A) for all A ∈ A′, then for any bounded random variable
f : [0, 1]→ R:

(C)

∫
fdP ∗ = sup

X∈S(Γ)

∫
fdPX, (C)

∫
fdP∗ = inf

X∈S(Γ)

∫
fdPX,

and consequently:

(C)

∫
fdP ∗ = sup(A)

∫
(f ◦ Γ)dP, (C)

∫
fdP∗ = inf(A)

∫
(f ◦ Γ)dP,

where (C)
∫
fdP ∗ denotes the Choquet integral of f with respect to P ∗, and

(A)
∫

(f ◦ Γ)dP denotes the Aumann integral of f ◦ Γ with respect to P .

These results allow us to characterize the imprecise stochastic dominance be-
tween random sets by means of the comparison of Choquet or Aumann integrals.
Recall that we have denoted by U∗ the set of non-decreasing and bounded ran-
dom variables u : [0, 1]→ R.

Proposition 14. Let (Ω,A, P ) be a probability space. Consider the measurable
space ([0, 1], β[0,1]) and let Γ1,Γ2 : Ω→ P([0, 1]) be two random sets. If P ∗1 (A) =
maxP(Γ1)(A) and P ∗2 (A) = maxP(Γ2)(A) for all A ∈ β[0,1], the following
equivalences hold:

1. Γ1 �FSD1
Γ2 ⇔ (C)

∫
udP1∗ ≥ (C)

∫
udP ∗2 for every u ∈ U∗.

2. Γ1 �FSD2 Γ2 ⇒ (C)

∫
udP ∗1 ≥ (C)

∫
udP ∗2 for every u ∈ U∗.

3. Γ1 �FSD3
Γ2 ⇒ (C)

∫
udP ∗1 ≥ (C)

∫
udP ∗2 for every u ∈ U∗.

4. Γ1 �FSD4
Γ2 ⇒ (C)

∫
udP ∗1 ≥ (C)

∫
udP2∗ for every u ∈ U∗.

5. Γ1 �FSD5 Γ2 ⇒ (C)

∫
udP1∗ ≥ (C)

∫
udP2∗ for every u ∈ U∗.

6. Γ1 �FSD6
Γ2 ⇒ (C)

∫
udP1∗ ≥ (C)

∫
udP2∗ for every u ∈ U∗.

Proof. Consider u ∈ U∗. We deduce from Theorem ?? that, under the hy-
potheses of the proposition,

(C)

∫
udP ∗i = sup

X∈S(Γi)

∫
udPX = ES(Γi)(u) and

(C)

∫
udPi∗ = inf

X∈S(Γi)

∫
udPX = ES(Γi)(u)

for i = 1, 2. The result follows then applying Theorem ??. �

Let us discuss next the comparison of random sets by means of statisti-
cal preference. When the utility space Ω′ is �nite, we obtain a result akin to
Proposition ??:
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Proposition 15. Let (Ω,A, P ) be a probability space, (Ω′,P(Ω′)) a measurable
space, with Ω′ �nite, and Γ1,Γ2 be two random sets. The following equivalences
hold:

(a) Γ1 �SP1 Γ2 ⇔ min Γ1 �SP max Γ2.

(b) Γ1 �SP2 Γ2 ⇔ Γ1 �SP3 Γ2 ⇔ max Γ1 �SP max Γ2.

(c) Γ1 �SP4
Γ2 ⇔ max Γ1 �SP min Γ2.

(d) Γ1 �SP5
Γ2 ⇔ Γ1 �SP6

Γ2 ⇔ min Γ1 �SP min Γ2.

Proof. The result follows from Proposition ??, taking into account that sta-
tistical preference satis�es the monotonicity condition of Eq. (??) and that if Γ
is a random set taking values on a �nite space, then the mappings min Γ,max Γ
belong to S(Γ). �

In particular, we deduce that we can focus on the minimum and maximum mea-
surable selections in order to characterize these extensions of statistical prefer-
ence:

Corollary 16. Let (Ω,A, P ) be a probability space, Ω′ a �nite space and let
Γ1,Γ2 : Ω→ P(Ω′) be two random sets. Then for every i = 1, . . . , 6:

Γ1 �SPi
Γ2 ⇔ {min Γ1,max Γ1} �SPi

{min Γ2,max Γ2}. (11)

These two results are interesting because random sets taking values on �nite
spaces are quite common in practice; they have been studied in detail in [? ?
], and one of their most interesting properties is that they constitute equivalent
models to belief and plausibility functions [? ].

Note that the equivalence in Eq. (??) does not hold for the relation �SPmean

de�ned in Section ??:

Example 4. Consider the probability space (Ω,A, P ) where Ω = {ω1, ω2}, A =
P(Ω) and P is the probability distribution given by P ({ω1}) = P ({ω2}) = 0.5,
and let Γ1 be the random set given by Γ1(ω1) = {0, 1},Γ1(ω2) = {0, 2, 3, 4}, and
let Γ2 be single-valued random set given by Γ2(ω1) = {1} = Γ2(ω2). Then min Γ1

is the constant random variable on 0, while max Γ1 is given by max Γ1(ω1) =
1,max Γ1(ω2) = 4. Hence, if we compare {min Γ1,max Γ1} with Γ2 by means of
�SPmean

we obtain

Q(min Γ1,Γ2) +Q(max Γ1,Γ2)

2
=

0 + 0.75

2
= 0.375

and thus Γ2 �SPmean {min Γ1,max Γ1}. On the other hand, the set of se-
lections of Γ1 is given by (where a selection X is identi�ed with the vector
(X(ω1), X(ω2))): S(Γ1) = {(0, 0), (0, 2), (0, 3), (0, 4), (1, 0), (1, 2), (1, 3), (1, 4)},
from which we deduce that Γ1 �SPmean

Γ2. �
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5. Comparison of alternatives with imprecise probabilities

We next consider the case where we want to choose between two alternatives
X,Y : Ω→ Ω′, and there is some uncertainty about the probability distribution
P of the di�erent states of nature ω ∈ Ω, that we model by means of a set
P of probability distributions on Ω. Then we may associate to X a set X of
random variables, which correspond to the transformations of X under any of
the probability distributions in P; and similarly for Y . We end up thus with two
sets X ,Y of random variables, and we should establish methods to determine
which of these two sets is preferable1.

In this situation, we may compare the sets X ,Y by means of the general-
izations of statistical preference or stochastic dominance we have discussed in
Section ??; however, we argue that other notions may make more sense in this
context. This is because conditions �1, . . . ,�6 are based on considering a par-
ticular pair (X1, Y1) in X × Y and on comparing X1 with Y1 by means of the
binary relation �. However, any X1 in X corresponds to a particular choice
of a probability measure P ∈ P, and similarly for any Y1 ∈ Y; and if we use
an epistemic interpretation of our uncertainty under which only one P ∈ P is
the `true' model, it makes no sense to compare X1 and Y1 based on a di�erent
distribution. This is particularly clear in case we want to apply statistical pref-
erence, which is based on comparing P (X > Y ) with P (Y > X), where P is
the initial probability measure.

To make this clearer, in this section we may denote our sets of alternatives
X := {(X,P ) : P ∈ P} and Y := {(Y, P ) : P ∈ P}, meaning that our utilities
are precise (and are determined by the variables X and Y , respectively), while
our beliefs are imprecise and are modeled by the set P. To avoid confusions, we
will now write X �P Y to express that X is preferred to Y when we consider the
probability measure P in the initial probability space. Then we can establish
the following de�nitions2:

De�nition 11. Let � be a binary relation on random variables. We say that:

• X is strongly P preferred to Y, and denote it X �Ps Y, when X �P Y
for every P ∈ P;

1One particular case where this situation may arise is in the context of missing data [? ].
We may divide the variables determining the states of nature in two groups: one for which
we have precise information, that we model by means of a probability measure P ′ over the
di�erent states, and another one about which are completely ignorant, knowing only the values
they take, and nothing more. Then we may get to the classical scenario by �xing the value
of the variables in this second group: for each of these values the alternatives may be seen
as random variables, using the probability measure P ′ to determine the probabilities of the
di�erent rewards. Hence, by doing this we would transform the two alternatives X and Y into
two sets of alternatives X ,Y, considering all the possible values of the variables in the second
group.

2A similar idea can be found in [? ] in the context of robust ordinal regression; in that
case, the set of additive value functions compatible with the available information is obtained
and two binary relations between pairs of alternatives are de�ned, depending on whether an
alternative is preferred to another one with respect to all or some of the value functions.
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• X is weakly P preferred, and denote it X �Pw Y, to Y when X �P Y for
some P ∈ P.

Obviously, the strong preference implies the weak one. To see that they are not
equivalent, consider the following simple example:

Example 5. Let � be the binary relation associated to statistical preference
and consider the variables X,Y in Example ??. If we consider the uniform
distribution P1 in all the die outcomes, we obtain Q(X,Y ) = 20

36 , so that X �P1

SP

Y ; if we take instead the uniform distribution P2 on the �rst three outcomes,
then Q(X,Y ) = 2

9 , and as a consequence Y �
P2

SP X. Hence, X is weakly {P1, P2}
statistically preferred to Y , but not strongly so. �

With respect to the notions established in Section ??, it is not di�cult to es-
tablish the following result. Its proof is immediate, and therefore omitted.

Proposition 17. Let X ,Y be the sets of alternatives considered above, and let
� be a binary relation. Then X �1 Y ⇒ X �Ps Y ⇒ X �Pw Y ⇒ X �4 Y.

Let us show that the converse implications do not hold:

Example 6. Consider Ω = {ω1, ω2, ω3}, P := {P : P (ω1) > P (ω2), P (ω2) ∈
[0, 0.2]} and the alternatives X,Y given by

ω1 ω2 ω3

X 1 0 1
Y 0 1 1

Then if we consider the sets of alternatives X = {(X,P ) : P ∈ P} and Y =
{(Y, P ) : P ∈ P} and we compare them by means of stochastic dominance, it is
clear that X �Ps Y; however, it does not hold that X �FSD1

Y: if we consider
P1 := (0.3, 0.2, 0.5) and P2 := (0.1, 0, 0.9), it holds that (Y, P2) �FSD (X,P1).

Moreover, in this example we also have that X is strictly weakly P-preferred
to Y while X ≡FSD4 Y. �

Remark 4. If the binary relation � we start with is complete, so is the weak
P-preference. In that case, we obtain that X �Pw Y implies that X �Ps Y,
because if X �Pw Y we must have that (X,P ) � (Y, P ) for every P ∈ P.

Moreover, when X ≡Pw Y, we may have strict preference, indi�erence or
incomparability with respect to strong P-preference. �

In what follows, we study in some detail the notions of weak and strong prefer-
ence for particular choices of the binary relation �. If � corresponds to expected
utility, strong preference of X over Y means that X is preferred to Y with re-
spect to all the probability measures P in P, and is thus related to the idea of
maximality [? ]; on the other hand, weak preference means that X is preferred
to Y (i.e., it is the optimal alternative) with respect to some of the elements of
P; this idea is close to the criterion of E-admissibility [? ]. See also Remark ??
and [? , Section 3.2].

When � is the binary relation associated to stochastic dominance, we obtain
the following:
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Proposition 18. Consider a set P of probability measures on Ω, and let X,Y
be two real-valued random variables on Ω. Let us de�ne FX := {FPX : P ∈ P}
and FY := {FPY : P ∈ P}, and (FX, FX), (FY, FY) their associated p-boxes.

1. FX ≤ FY ⇒ X is strongly P-preferred to Y with respect to stochastic
dominance.

2. X is weakly P-preferred to Y with respect to stochastic dominance⇒ FX ≤
FY.

Proof. The result follows from Propositions ?? and ??. �

Finally, when � corresponds to statistical preference, we can apply Remark ??,
because � is a complete relation. In addition, we can establish the following
result:

Proposition 19. Consider a set P of probability measures, and let P , P denote
its lower and upper envelopes, given by Eq. (??). Let X,Y be two real-valued
random variables on Ω, and let u = I(0,+∞) − I(−∞,0).

1. X is strongly P statistically preferred to Y ⇔ P (u(X − Y )) ≥ 0.
2. X is weakly P statistically preferred to Y ⇒ P (u(X − Y )) ≥ 0. The

converse holds if P =M(P ).

Proof. The result follows simply by considering that if X,Y are random vari-
ables on a probability space (Ω,A, P ), then, by Eq. (??) X �PSP Y if and only
if P (u(X − Y )) ≥ 0, where we also use P to denote the expectation operator
associated to the probability measure P .

To see that the converse of the second statement holds when P = M(P ),
note that the upper envelope P of P is a coherent lower prevision. From [?
, Section 3.3.3], given the bounded random variable u(X − Y ) there is some
P ∈M(P ) such that P (u(X − Y )) = P (u(X − Y )). �

6. Imprecise preferences applied to decision making

In this section, we shall illustrate the previous results by means of an ap-
plication to decision making. We shall consider two di�erent scenarios: on the
one hand, we shall compare two alternatives in a context of imprecise informa-
tion about their utilities or probabilities, by means of the results in Sections ??
and ??; on the other hand, we shall consider the comparison of two sets of al-
ternatives, by means of the techniques established in Section ??. Our running
example throughout this section is based on [? , Section 4].

6.1. A decision problem with uncertain beliefs

Let us consider a decision problem where we must choose between n alter-
natives a1, . . . , an, whose rewards depend on the values of the states of nature,
θ1, . . . , θm, which hold with certain probabilities P (θ1), . . . , P (θm).

Let us start by assuming that there is uncertainty about these probabilities,
that we model by means of a set of probability measures P. Then, we shall
compare any two alternatives by means of the concepts of weak and strong
P-preference we have considered in Section ??.
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Example 7. A company must choose where to invest its money. The alterna-
tives are: a1-a computer company; a2-a car company; a3-a fast food company.
The rewards associated to the investment depend on an attribute c1: �economic
evolution�, which may take the values θ1-�very good�, θ2-�good�, θ3-�normal� or
θ4-�bad�. The probabilities of each of these states are expressed by means of
an interval. The rewards associated to any combination (alternative, state) are
expressed in a linguistic scale, with values S = {s0, s1, s2, s3, s4, s5, s6} (very
poor, poor, slightly poor, normal, slightly good, good, very good). The available
information is summarized in the following table:

θ1 θ2 θ3 θ4

[0.1, 0.4] [0.2, 0.7] [0.3, 0.4] [0.1, 0.5]
a1 s4 s3 s3 s2

a2 s5 s4 s4 s2

a3 s2 s3 s5 s4

Hence, the set P of probability measures for our beliefs is given by

P = {(p1, p2, p3, p4) : p1 + p2 + p3 + p4 = 1,

p1 ∈ [0.1, 0.4], p2 ∈ [0.2, 0.7], p3 ∈ [0.3, 0.4], p4 ∈ [0.1, 0.5]}.

Since the rewards are expressed in a qualitative scale, we are going to compare
the di�erent alternatives by means of statistical preference. We obtain that:

Q(a1, a2) = 1
2p4 ∈ [0.05, 0.25]. Q(a1, a3) = p1 + 1

2p2 ∈ [0.2, 0.5].
Q(a2, a3) = p1 + p2 ∈ [0.3, 0.6].

We deduce that, using statistical preference as our basic binary relation:

• a2 �Ps a1 and a2 �Pw a1.

• a3 �Ps a1 and a3 ≡Pw a1.

• a2 ≡Pw a3 and they are incomparable with respect to strong P-preference.

Consequently, with respect to the strong preference, both the car company and
the fast food companies are preferred to the computer company, and they are
incomparable to each other. With respect to the weak preference, the car com-
pany is also preferred to the computer company, while the fast food company is
indi�erent to the car and the computer companies. �

6.2. A decision problem with uncertain rewards

Let us assume next that we have precise information about the probabilities
of the di�erent states of nature but that we have imprecise information about
the utilities associated to the di�erent rewards. Let us model this case by means
of a random set, as we discussed in Section ??.
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Example ?? (Cont). Assume that the probability of the di�erent states of na-
ture is given by:

P (θ1) = 0.2 P (θ2) = 0.25 P (θ3) = 0.3 P (θ4) = 0.25,

but that we cannot determine precisely the consequences associated to each com-
bination (alternative, state). We model the available information by means of a
set of possible consequences, that we summarize in the following table:

θ1 θ2 θ3 θ4

0.2 0.25 0.3 0.25
a1 {s4, s5} {s3} {s2, s3} {s2}
a2 {s5} {s3, s4} {s3, s5} {s2, s4}
a3 {s2} {s3} {s3, s5} {s3, s4}

Since again we have qualitative rewards, we shall use statistical preference to
compare the di�erent alternatives. Taking into account that the utility space is
�nite, we deduce from Proposition ?? that the comparison of the random sets
associated to each of the alternatives reduces to the comparison of the greatest
and smallest measurable selections. Moreover, since the utility space is �nite,
�SP2⇔�SP3 and �SP5⇔�SP6 .

Let us compare alternatives a1, a2:

Q(min a1,max a2) = 0. Q(min a1,min a2) = 0.25.
Q(max a1,max a2) = 0.1. Q(max a1,min a2) = 0.5.

Using Proposition ??, we conclude that a2 �SPi
a1 for i = 1, 2, 3, 5, 6 and

a1 ≡SP4
a2.

With respect to alternatives a1 and a3, we obtain that:

Q(min a1,max a3) = 0.325. Q(min a1,min a3) = 0.325.
Q(max a1,max a3) = 0.325. Q(max a1,min a3) = 0.475.

Using Proposition ??, we conclude that a3 �SPi a1 for i = 4 and as a conse-
quence also for i = 1, 2, 3, 5, 6.

Finally, if we compare alternatives a2 and a3, we obtain that:

Q(min a2,max a3) = 0.325. Q(min a2,min a3) = 0.475.
Q(max a2,max a3) = 0.725. Q(max a2,min a3) = 1.

Using Proposition ??, we conclude that a2 �SPi
a3 for i = 2, 3, a3 �SPi

a2 for
i = 5, 6, a2 ≡SP4

a3 and they are incomparable with respect to �SP1
.

The above relationships are summarized in the following table:
SP1 SP2 SP3 SP4 SP5 SP6

(a1, a2) ≺SP1 ≺SP2 ≺SP3 ≡SP4 ≺SP5 ≺SP6

(a1, a3) ≺SP1 ≺SP2 ≺SP3 ≺SP4 ≺SP5 ≺SP6

(a2, a3) �SP1
�SP2

�SP3
≡SP4

≺SP5
≺SP6

Hence, both the car and the fast food companies are preferred to the computer
one. On the other hand, the preference between the car and fast food companies
would depend on our attitude towards risk, which would determine if we focus
on the best or the worst-case scenarios. �

25



6.3. A decision problem between sets of alternatives

Assume now that we have precise beliefs and utilities but the choice must be
made between sets of alternatives instead of pairs. In that case, we shall apply
the conditions and results from Section ??.

Example ?? (Cont). Assume now that we may invest our money in another
company a4 in the telecommunications area, and that the choice must be made
between two portfolios: one �that we shall denote X�made by alternatives a1, a2,
and another �denoted by Y�made by a3, a4. Assume that the rewards associated
to each alternative are given by the following table:

θ1 θ2 θ3 θ4

0.2 0.25 0.3 0.25
a1 75 60 55 50
a2 80 65 55 40
a3 60 55 50 55
a4 80 55 40 65

where the utilities are now expressed in a [0, 100] scale.
If we compare these alternatives by means of stochastic dominance, we obtain

that a1 �FSD a3, a2 �FSD a4 and any other pair (ai, aj) with i ∈ {1, 2}, j ∈
{3, 4} are incomparable with respect to stochastic dominance. Hence, X �FSDi

Y
for i = 3, 4, 6 and they are incomparable with respect to �FSDi

for i = 1, 2, 5.
Note that this example is an instance where �FSD2

is not equivalent to �FSD3

and �FSD5
is not equivalent to �FSD6

, because there is neither a maximum nor
a minimum in the sets of distribution functions associated to X ,Y.

On the other hand, if we compare the sets X ,Y by means of statistical pref-
erence, we obtain the following pro�le of preferences:

QX ,Y :=

(
0.75 0.55
0.75 0.65

)
.

From this we deduce that X �SP1
Y, and as a consequence X �SPi

Y for
i = 2, . . . , 6 and also X �SPmean

Y. Hence, from the point of view of statistical
preference the �rst portfolio should be preferred to the second. �

7. Conclusions

In this paper, we have presented a number of choice models for decision
making under uncertainty when there is imprecision about the probabilities of
the states of nature and the utilities of the di�erent alternatives. By considering
all the probability measures and utility functions compatible with the available
information, any alternative becomes a set of alternatives, and therefore the
choice functions between pairs of alternatives must be extended in order to be
able to choose between sets of alternatives.

We have proposed a number of choice models that accommodate di�erent
attitudes towards risk, by focusing on particular alternatives within each of the
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sets. These extensions can be applied to any choice function between pairs
of alternatives. We have focused in particular on two such choice functions:
stochastic dominance and statistical preference. The �rst one has been applied
extensively on economics, while the second one is interesting when the utilities
are expressed in a qualitative scale. Both of them serve as an alternative to
the expected utility model, for which we have commented brie�y on some of
its possible generalizations to an imprecise context; they may also be regarded
as more robust: in the case of stochastic dominance, it is invariant under in-
creasing transformations of the utility function; on the other hand, statistical
preference is related to the median, and is less a�ected by extreme rewards of
the alternatives.

We think that with these relationships we are now able to e�ectively choose
between two alternatives in any of the possible scenarios of imprecision: in either
the probabilities of the states of nature or the utilities of the di�erent alterna-
tives; for qualitative or quantitative utility scales; and for di�erent attitudes
towards risk, more or less conservative.

From our results, there are a number of open problems which may be of
interest: the comparison of more than two sets of alternatives, by means of
transitive choice functions; the study of the stochastic dominance of the n-th
order; the modeling of imprecise beliefs and utilities by means of random sets
with an imprecise probability model on the initial space; and a deeper study of
the connection with the work on robust ordinal regression.
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