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Spare parts are known to be associated with intermittent demand patterns and such patterns cause 

considerable problems with regards to forecasting and stock control due to their compound nature that 

renders the normality assumption invalid. Compound distributions have been used to model intermittent 

demand patterns; there is however a lack of theoretical analysis and little relevant empirical evidence in 

support of these distributions. In this paper, we conduct a detailed empirical investigation on the goodness 

of fit of various compound Poisson distributions and we develop a distribution-based demand classification 

scheme the validity of which is also assessed in empirical terms. Our empirical investigation provides 

evidence in support of certain demand distributions and the work described in this paper should facilitate 

the task of selecting such distributions in a real world spare parts inventory context. An extensive 

discussion on parameter estimation related difficulties in this area is also provided.

Keywords: Inventory; Demand distributions; Intermittent demand; Spare parts

1. Introduction 

Many industries rely on the effective management of spare parts, including aerospace and 

defence, transportation, telecommunications and information technology, utilities and durable 

goods suppliers. Spare parts are held by firms for internal use in the maintenance of tools and 

equipment. They are also held by suppliers at the retail or wholesale supply chain level for 

sale to customers. The costs associated with the inventory management of spare parts can be 

substantial. According to US Bancorp, spare parts relate to a $700 billion annual expenditure 

that constitutes about 8 percent of the U.S. gross domestic product (Jasper, 2006).Given the 

very high level of inventory investments, it is clear that there is significant opportunity for 

cost-savings through better management.  
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The demand of spare part items is typically intermittent with demand orders arriving 

sporadically; the demand can also be highly variable as well as intermittent, in which case it 

is referred to as lumpy (Boylan and Syntetos, 2008). Kalchschmidtet al. (2006) have also 

defined lumpy demand as: 

• variable, and therefore demand is characterized by fluctuations; 

• sporadic, because the demand series are characterized by many periods of very low or 

no demand; and 

• ‘nervous’, reflecting the low auto-correlation of the demand. 

The area of inventory management has received a lot of attention in the Operations Research 

(OR) literature. Conventional inventory control approaches rely on a number of assumptions 

that are usually valid when demand is fast-moving. Demand over lead time is assumed to be 

normally distributed and standard forecasting methods are used to estimate the parameters of 

the normal distribution (see, for example, Strijbosch and Moors, 1996; Porras and Dekker, 

2008). However, it has long been shown that such an assumption is invalid in a spare parts 

context where demand is usually intermittent (Mak and Hung, 1993; Botter and Fortuin, 

2000). Moreover, the intermittent nature of the demand makes it very difficult to forecast 

future requirements with much accuracy (Fortuin and Martin, 1999). This problem is 

exacerbated when the replenishment lead times are long. Blumenfeldet al. (1999) have 

demonstrated, amongst others, that the longer the lead times are, the higher the levels of 

inventory required in order to accommodate the demand uncertainty. Forecasting is an 

integral part of inventory management systems. However, the challenges in forecasting 

intermittent demand have implications beyond inventory control; demand forecasts are also 

used in product development, production and supply chain planning.  

Another important issue involved in inventory management is the categorisation of inventory 

items for the purpose of facilitating forecasting and stock control. When there is a large 

number of Stock Keeping Units (SKUs), it is not practical to evaluate them on an individual 

basis. In such cases, the SKUs will typically have to be categorised in order to facilitate 

decision-making and allow managers to focus their attention on the most important SKUs 

(however this is judged) (Teunter et al., 2010a). There have been a number of studies in the 

area of demand classification for inventory items with intermittent demand. A review of the 

studies in this area can be found in a number of papers including Bacchetti and Saccani 

(2012), Heinecke et al. (2012) and Van Kampen et al. (2012). 
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The main objective of this study is to advance the current state of knowledge in spare parts 

management by bringing together the issues of distributional assumptions and SKU 

classification. These issues will be linked together by using compound distributions to model 

demand during lead time. A number of authors (including Friend, 1960 and Kemp, 1967) 

have suggested that compound distributions (compound Poisson distributions in particular) 

may provide a good fit for the demand distributions of such SKUs. Compound distributions 

are appealing because their underlying structure is similar to the demand-generating process 

associated with intermittent demand.  

A top down approach will be used in order to identify compound distributions that may 

accommodate the distributional properties observed among SKUs with intermittent demand. 

Firstly, we will consider the shapes that frequency distributions of order sizes will usually 

take in an intermittent demand context. We will then propose a number of probability 

distributions that could be used to model such order sizes. Finally, we will introduce the 

assumption that demand orders arrive according to a Poisson process and, by bringing 

together the proposed order size distributions and the Poisson arrival process, we will obtain 

compound distributions that may be used to model intermittent demand. As part of this 

process, we also develop a demand classification scheme. The categorisation1 in this scheme 

will be motivated by a conceptual understanding of the distributional properties of the order 

sizes rather than a theoretically consistent match of every possible SKU in a particular 

category. This approach is different from the bottom up approaches that have previously been 

introduced in the area of intermittent demand management (for example by Syntetos et al., 

2012). In the latter approaches, goodness-of-fit tests were first carried out for individual 

SKUs and the results of these tests were used towards the development of a possible 

classification scheme.  

Our study also makes a number of further important contributions in the area including: (i) an 

empirical analysis in order to assess whether compound distributions provide a good fit for 

spare part SKUs; (ii) highlighting a number of challenges related to parameter estimation and 

goodness-of-fit testing in the area of intermittent demand management; (iii) the development 

of criteria that should be used when selecting distributions for modelling demand; (iv) 

deriving insights for practitioners and setting an agenda for further research. 

1 The words ‘classification’ and ‘categorisation’ are used interchangeably in this paper.
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The remainder of this paper is structured as follows. In the next section, we shall provide a 

brief overview of the literature on inventory management related issues for SKUs with 

intermittent demand. Compound distributions that may model the distributional properties 

associated with intermittent demand are considered in Section 3. In that section, we will also 

propose a demand classification scheme that categorises SKUs based on the distributional 

properties of the order sizes. The empirical goodness of fit of the compound Poisson 

distributions discussed in this paper is then assessed on an extensive dataset of spare parts in 

Section 4. We will also compare the relative levels of fit achieved by the compound Poisson 

distributions in the different categories of the proposed scheme; this exercise allows us to 

assess the empirical validity of the proposed scheme with respect to the selection of demand 

distributions. The practical and theoretical implications of our study are discussed in Section 

5. Finally, in Section 6, we will provide the conclusions of this study and also identify a 

number of areas of future research. 

2. Research background 

In the context of intermittent demand, the demand arrival can be reasonably modelled as a 

Bernoulli process if time is treated as a discrete variable. The Bernoulli process models 

whether or not an order arrives during any given unit time period. Demand orders arriving 

during each unit period are ‘bucketed’ and the aggregate demand over that period is known as 

the demand size. If demand arrives according to a Bernoulli process, then the inter-demand 

intervals will follow a geometric distribution. Croston (1972), Janssen et al. (1998), Syntetos 

et al. (2005), and Teunter et al. (2010b), among others, have modelled the demand arrival

process as a Bernoulli one.

If time is treated as a continuous variable, then demand arrival can be modelled as a Poisson 

process. The Poisson process models the arrival of individual demand orders; the orders are 

therefore not ‘bucketed’. As a result, the Poisson process captures more information about the 

demand occurrence than the Bernoulli one. Shale et al. (2008) have found that order arrival 

can be well represented by a Poisson process. Other studies have modelled order arrival as a 

Poisson process include Axsater (2006), Shale et al. (2005) and Larsen et al. (2008). 

If orders arrive according to a Poisson process, then the intervals between order arrivals will 

have an exponential distribution. In this paper, we will assume that orders arrive according to 
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a Poisson process; furthermore, we will assume that the order sizes (also known as 

‘transaction sizes’) are distributed according to some arbitrary distribution. The distribution 

of demand during a fixed period of time will then have a compound Poisson distribution. Let 

us assume that demand has a compound Poisson distribution and let us denote sizes of the 

orders as X . In addition, let: 

λ  = the order arrival rate 

 Xμ E  = the mean of the order sizes 

 Xσ Var2   = the variance of the order sizes 

Y  = the demand during a unit period of time. 

Then the mean and variance of demand during a unit period of time are given respectively by 

(Satterthwaite, 1942): 

  λμYE           (1)

   22 σμλYVar          (2)

One of the appealing properties of compound Poisson distributions is that they are Lévy 

processes and, as such, they are infinitely divisible (Sato, 1999). Furthermore, a linear 

combination of a ¿nite number of independent Lévy processes is again a Lévy process. The 

practical implication of this property is that, if the demand over a unit period of time (denoted 

as Y ) is assumed to have a compound Poisson distribution, then the demand over a fixed 

period of length L  (where L  is a positive rational number) will also have a compound 

Poisson distribution.  

A number of authors (e.g. Friend, 1960; Croston, 1972) have advocated the use of compound 

distributions to model intermittent demand patterns. The appeal of compound distributions 

stems from the fact that they can independently model the constituent elements of demand 

(order sizes and intervals between order arrivals). Feeney and Sherbrooke (1966) derived a 

simple analytic solution of the order-up-to level (under a base-stock policy) when demand 

follows a compound Poisson distribution. Ward (1978) proposed a regression model for 

calculating the reorder points of lumpy items. Watson (1987) examined the interactions 

between forecasting and inventory control in such a context. In the last two studies, demand 
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was assumed to arrive according to a Poisson process and the order sizes were assumed to 

have a geometric distribution. Other researchers that have used a compound Poisson 

distribution to model intermittent demand include: Adelson (1966); Archibald and Silver 

(1978); Naddor (1978); Mitchell et al. (1983); Forsberg, (1995); Matheus and Gelders (2000); 

Hill and Johansen (2006); Zhao (2009); Babai et al. (2011). 

There have been only a few empirical studies that consider goodness-of-fit related issues in 

the area of intermittent demand management. As far as we are aware, the only studies in this 

area are by Kwan (1991), Eaves (2002) and Syntetos et al. (2012). The negative binomial 

distribution (i.e. the Poisson-Logarithmic series distribution) performed well in Kwan’s study 

but the sample used in that work was rather small (only 86 SKUs).  Eaves (op. cit.) carried 

out goodness-of-fit tests on a larger set of spare/service parts SKUs (6,795 series). The 

demand orders were bucketed in monthly periods in that study. The goodness-of-fit tests were 

carried out separately for demand sizes (the total monthly demand) and the inter-demand 

intervals (the intervals between months with positive demand, again, measured in months). It 

is important to note that one cannot assume that a compound distribution will provide high 

levels of fit simply because the constituent distributions provide high levels of frequency of 

fit for the corresponding order sizes and inter-demand intervals (Katti and Gurland, 1962). 

(This issue is further discussed at the end of sub-section 4.2.) The results presented by Eaves 

(2002) therefore do not contribute much to our study. In this paper, we will take a direct 

approach. Goodness-of-fit tests will be carried out in order to assess the compound Poisson 

distributions and not just their constituent parts (order sizes and inter-order intervals).  

Syntetos et al. (2012) have also assessed the goodness of fit of a number of distributions, 

including two of the distributions examined in this study (the Poisson-Geometric and 

Poisson-Logarithmic series distributions). The goodness-of-fit test used in that study was the 

Kolmogorov-Smirnov (K-S) test and the empirical database was made up of approximately 

13,000 SKUs. They found that the Poisson-Geometric distribution outperformed the Poisson-

Logarithmic series distributions. However, in the process of carrying out the tests, Syntetos et 

al. (op. cit.) derived the number of categories based on the hypothesised distribution and not 

the empirical one. As a result, the number of categories was too high and, consequently, the 

critical values were too low and the test was excessively ‘liberal’ (Syntetos et al., 2013). A 

goodness-of-fit test is referred to as liberal if the test incorrectly rejects the null hypothesis 
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(that the distribution in question provides good fit) more often than is suggested by the 

specified significance level.  

One topic that has not received sufficient attention in the area of intermittent demand is the 

classification of SKUs. An extensive review of the classification schemes that have been 

proposed in literature can be found in a recent paper by van Kampen et al. (2012). One of the 

main observations that came out of this review was that most of the classification schemes 

that have been proposed in literature are inspired by the specific context of the relevant 

studies. The characteristics used to classify the SKUs, the number of classes and the 

boundaries between the categories are often chosen in order to address the concerns 

associated with a particular application. It is therefore not always clear whether such schemes 

would have wider applicability. Moreover, in some of the proposed schemes, the boundaries 

between different classes may not even have any intrinsic meaning (D'Alessandro and 

Baveja, 2000). 

In this paper, we propose a demand classification scheme that attempts to overcome these 

shortcomings. A deliberate approach was taken in the development of the scheme to ensure 

that the SKUs would be classified by general and not context-specific factors. As will be 

explained in more detail in the next section, the proposed scheme classifies SKUs solely 

based on the distributional patterns of demand. Contextual factors such as the product, 

customer or industry characteristics are not considered in the scheme. In addition, the 

boundaries between the different classes have some meaning in terms of the order size 

distributions. The only assumption that was made in the development of this scheme is that 

the demand follows a compound Poisson distribution. The validity of this assumption will be 

tested in section 4 by carrying out goodness-of-fit tests on empirical data.

3. Order size distributions and a demand classification 

scheme 

In this section, we shall consider a number of distributions that could be used to model the 

order sizes. The term “order size” refers in this paper to the number of units in a distinct 

customer order. The term should not be confused with “demand size”, which is the total 

numbers of units ordered during a given period of time. The distributions used to model order 

sizes should ideally provide good empirical fit but they should not be computationally 
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demanding for use in practical settings. For SKUs with intermittent demand, the order size 

frequency distributions observed in practice are usually either monotonically decreasing or 

more centred (i.e. “mounded”) but with a significant right skew. Boylan (1997) proposed 

three criteria for assessing the suitability of hypothesised demand distributions (regardless of 

the context of application): (a) A priori grounds for modelling demand, (b) The flexibility of 

the distribution to represent different types of demand, (c) Empirical evidence available in 

support of the distribution. The same criteria were adopted in this paper when selecting order 

sizes distributions. The three criteria are discussed in more detail below.  

The first criterion (a priori grounds for modelling demand) relates to the intuitive appeal that 

a distribution may (or may not) have for representing the data under consideration. The 

hypothesised distribution has to match the underlying structure of the order sizes, as 

understood by inventory managers. By their nature, order sizes are discrete and they have to 

be greater than zero. These properties would suggest that the hypothesised order size 

distributions should ideally be discrete distributions that are defined in the positive domain.  

Flexibility (the second criterion) refers to robustness in terms of the ability of the distribution 

to cope with diverse order size profiles. For practical purposes, it would be more convenient 

to have a manageably small number of distributions that are collectively robust enough to 

cover a great majority of possible empirical scenarios. The third criterion requires that there 

should be corroborative empirical evidence, where possible, in support of the selected 

distributions. Unfortunately, there have only been a few empirical studies on the goodness of 

fit of distributions for intermittent demand items (specifically, Kwan, 1991; Eaves, 2002; 

Syntetoset al., 2012). The findings of those studies will be used to inform our selection of the 

order size distributions.   

In this paper, we add a fourth criterion – the selected distribution should have a probability 

distribution function that is computationally easy to work with in practice. The moments and 

parameter estimates of the selected distributions should take functional forms that can be 

computed easily and quickly. The distributions should also have as few parameters as 

possible (ideally, one or two); otherwise it becomes harder for practitioners to get a good 

grasp of the relationship between the parameters and the probabilities or any statistics of 

interest.   
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The four order size distributions considered in this paper are the Geometric, Logarithmic 

series, Poisson and Pascal distributions. These distributions were selected for two reasons. 

Firstly, the four distributions satisfy, for the most part, the four criteria discussed above. All 

four distributions are discrete, and the Geometric and Logarithmic series distributions take 

only positive values. The distributions are also flexible in the sense that different levels of 

skewness may be obtained for all four of them by adjusting the parameters accordingly. As 

far as we are aware, as yet, there have been no goodness-of-fit studies carried out specifically 

for order sizes. However, the compound representations associated with the Geometric and 

Logarithmic series distributions have been found to provide good fit for demand during lead 

time (Syntetos et al., 2012). The probability functions of all four distributions can be easily 

computed in practice. All of the distributions have one parameter except of the Pascal 

distribution which has two parameters. 

Secondly, as it will be shown below, the four distributions are also associated with varied and 

distinct properties that naturally suggest a scheme for classifying SKUs. Table 1 shows the 

properties of the distributions with respect to modality and variability (as measured by the 

squared coefficient of variation). The mode (  Xm~ ) and the squared coefficient of variation 

(  XCV 2 ) are arguably two statistics that may collectively best describe the shape of an 

order size distribution. The mode will help us determine whether the order size distribution is 

monotonically decreasing or more ‘mounded’. The squared coefficient of variation will give 

us an idea about the relative spread of the distribution 

Table 1. Summary of the properties of the order size distributions 

Order size distribution Compound Poisson distribution

Name  Xm~  X
2

CV Name

Geometric   1~ Xm   10  X2
CV Poisson-Geometric distribution 

Log series   1~ Xm    X2
CV0 Poisson–Logarithmic series distribution 

Poisson   1~ Xm   10  X2
CV Poisson-Poisson distribution 

Pascal   1~ Xm    X2
CV0 Poisson-Pascal distribution
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For each of the four distributions, the corresponding compound Poisson distribution is given 

in the final column of Table 1. (The probability mass functions of these compound 

distributions are presented separately as part of the supplementary material in an electronic 

companion to this paper). Based on these differences, we developed a classification scheme 

(illustrated in Figure 1 below) according to which SKUs are categorised based on  Xm~  and 

 XCV 2 . The distributions were assigned to the various categories sequentially. The 

definitions of the categories are discussed immediately after Figure 1.  

Figure 1. Demand classification based on the properties of the order sizes

Category B 

Order size mode:   1~ Xm

Order size variability:   1X2
CV

Proposed demand distribution:

Poisson-Logarithmic series

Category D

Order size mode:   2~ Xm

Order size variability:   1X2
CV

Proposed demand distribution: 

Poisson-Pascal

Category A 

Order size mode:   1~ Xm

Order size variability:   10  X2
CV

Proposed demand distribution:

Poisson-Geometric

Category C

Order size mode:   2~ Xm

Order size variability:   10  X2
CV

Proposed demand distribution: 

Poisson-Poisson

a) Category A – Contains all SKUs with   1~ Xm and   12 XCV . The demand for 

each of these SKUs may be assumed to follow a Poisson-Geometric distribution (also 

known as the Pólya-Aeppli or Stuttering Poisson distribution). All four distributions 

could be used to model the order sizes in this category. However, the Geometric 

distribution was preferred to all the alternatives because it fully meets the criteria set 

out above. Unlike the Poisson and Pascal distributions which can take a value of zero, 

the Geometric distribution only takes strictly positive values. Syntetos et al. (2012) 

also found that the Poisson-Geometric distribution provided higher levels of 

frequency of fit than the Poisson-Logarithmic series distribution.  

b) Category B – Contains all SKUs with   1~ Xm and   12 XCV . The demand for 

each of these SKUs may be assumed to follow a Poisson-Logarithmic series 

distribution (also known as the Negative Binomial distribution). While the Pascal 

distribution could also have been used to model the order sizes in this category, the 
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Logarithmic series distribution was preferred because it has only one parameter 

(unlike the Pascal distribution which has two) and there is empirical evidence in its 

support ( Kwan, 1991; Syntetos et al., 2012). 

c) Category C– Contains all SKUs with   2~ Xm and   12 XCV . The demand for each 

of these SKUs may be assumed to follow a Poisson-Poisson distribution (also known 

as the Neyman type A distribution). The Pascal distribution could also be used to 

model the order sizes in this category but the Poisson distribution was preferred 

instead because it has only one parameter.  

d) Category D– Contains the SKUs that have not been assigned to the three other 

categories. For each of the SKUs in this category, the demand will be assumed to 

follow a Poisson-Pascal distribution.  

Our selection of order size distribution is based, amongst other things, also on practical 

convenience. The four distributions considered are examined in most standard introductory 

textbooks on probability and statistics (e.g. Upton and Cook, 1996; Wackerly et al., 2002). As 

such, practitioners with little background in statistics can easily find out more about these 

distributions if they feel the need to do so. 

The Pascal distribution will be used to model the order sizes of the SKUs falling in category 

D because it could (at least in theory) be able to perform as well as any of the other three 

alternatives. The Pascal distribution provides a good approximation for each of the three 

other order size distributions. If the Pascal distribution is denoted by  pr,Ne , where r  is the 

number of successes and p  is the probability of success, then the Geometric, Logarithmic 

series and Poisson distributions are all limiting forms of the Pascal distribution given the right 

choice of the parameter r  (Katti and Gurland, 1961). However, the compound distribution 

associated with the Pascal distribution (i.e. the Poisson-Pascal distribution) is comparatively 

more demanding in terms of computational effort. The Pascal distribution will therefore only 

be used when the three other distributions are not appropriate (i.e. in Category D).    

It should be noted that the Pascal distribution cannot have, simultaneously, a mode greater 

than 1 and a squared coefficient of variation also greater than 1. There are however very few 

distributions that can meet those conditions (among them, the Lognormal, Inverse-Gaussian 

and the five-parameter Bi-Weibull continuous distributions as well as the Beta-Binomial and 

the Beta-Negative Binomial discrete distributions). These distributions however pose their 
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own challenges. The continuous distributions are obviously not well suited for modelling 

discrete order size distributions. As for the discrete distributions, both the Beta-Binomial and 

the Beta-Negative Binomial distributions have three parameters, one more parameter than the 

Pascal distribution which has two. As will be demonstrated in sub-section 4.2, parameter 

estimation become more challenging as the number of distributional parameters increases. 

These challenges are bound to outweigh any improvements in modelling accuracy that may 

be obtained by using them in a real world context. To summarise, the Pascal distribution fails 

to meet simultaneously the modality and variability requirements in category D. However, it 

represents a compromise that should in theory perform as well as the three other distributions 

considered without introducing other undesirable challenges associated with distributions that 

meet these requirements. 

Finally, it is worth pointing out that the proposed scheme was developed based on a fixed set 

of criteria relating to the distributional properties of order sizes. Unlike in other studies 

(Williams, 1984; Eaves, 2002; Syntetoset al., 2009), the scheme was not developed based on 

characteristics of a particular sample under concern. The scheme is therefore bound to be 

more widely applicable. There are also a priori theoretical grounds (stipulated by the criteria) 

justifying our selection of the proposed order size distributions. The boundaries between the 

different categories have a clear meaning that follows from the theoretical properties of the 

proposed order size distributions. 

4.Empirical analysis 

4.1 Empirical datasets

In this section, we shall carry out an empirical analysis to assess the validity of the theoretical 

propositions made in Section 3. Goodness-of-fit tests will be carried out to assess whether the 

compound Poisson distributions proposed in Section 3 provide a good fit for the demand 

distributions of empirical SKUs. We will also assess the effectiveness of the proposed 

demand classification scheme. The empirical datasets are made up of individual demand 

histories of nearly 15,000 spare part SKUs from two different industries. Table 2 below 

provides a summary description of the datasets. 
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Table 2. Summary description of the empirical datasets

Dataset Industry No. of SKUs Time buckets
History length 

(months)

1 Domestic Appliances 14,874 Order level 60

2 Commercial airlines 496 Order level 28

Detailed demand information, at order level, was available for both datasets. Additional 

statistics on the characteristics of the demand series in each of the datasets are presented in 

Table 3. This table provides information on the average order arrival rate (λ) which is 

expressed in terms of the number of orders per month. The average order arrival rate is 

calculated by dividing the total number of orders over the demand history by the length of the 

demand history (measured in months). The order sizes of the SKUs were also examined and 

the table provides information on the mode (  Xm~ ) and the squared coefficient of variation 

(CV
 2(X)) of the order sizes. The percentages indicated represent the proportions of SKUs (in 

the corresponding dataset) that fall within each category. For example, 62.13% of the SKUs 

in dataset 1 have a mode of order sizes equal to 1.  

Table 3. Summary statistics of the empirical datasets

λ 0.0 <λ 0.25 0.25<λ 0.50 0.50<λ 1.00 1.00<λ 5.00 λ 5.00

Dataset 1 60.21% 12.09% 9.39% 11.95% 6.35%

Dataset 2 35.28% 34.88% 18.35% 11.29% 0.20%

 Xm~ 1 2-10 11-50 51-100 100+

Dataset 1 62.13% 34.64% 2.80% 0.28% 0.15%

Dataset 2 29.03% 60.48% 3.83% 6.65% 0.00%

CV
2
(X) 0.0 < CV

2 ≤ 0.5 0.5 < CV
2 ≤ 1.0 1.0 < CV

2 ≤ 5.0 5.0 < CV
2 ≤ 10.0 10.0 < CV

2

Dataset 1 62.84% 13.57% 19.04% 2.78% 1.77%

Dataset 2 31.25% 33.27% 34.27% 1.21% 0.00%

Key:  Xm~ – The mode of order sizes; CV
 2(X) – The squared coefficient of variation of order sizes 

The statistics provide some idea about diversity with respect to the distributional properties of 

the SKUs in the datasets. Most of the SKUs have very low order arrival rates (in both dataset 

1 and 2, more than 70% of the SKUs have an average order arrival rate less than or equal to 

0.50 orders per month). There is however less diversity in terms of the mode and the 

variability of the order sizes. Specifically, in the case of dataset 1, only 0.15% of the SKUs 



14

have order sizes with a mode greater than 100 and only 1.77% of the SKUs have order sizes 

with a squared coefficient of variation greater than 10.0. Such values may be attributed to the 

particular industries examined in our study; replication of our findings in more demand 

datasets is an avenue for further research and this issue is further discussed in the last section 

of the paper.  

4.2 Goodness-of-fit

The goodness-of-fit test used in this paper is the Kolmogorov-Smirnov test (or K-S test, in 

short). Other goodness-of-fit tests were also considered. Pearson’s 2  test is a well-known 

goodness-of-fit test that places observations in categories and compares the observed and 

expected frequencies in each of the categories. This test is easy to use but is associated with 

some requirements/‘rules’ (given in Cochran, 1952; Birnbaum, 1962; Roscoe and Byars, 

1971; Kendallet al., 1987; Cramer, 1999) that specify the minimum and average expected 

frequencies for the categories. The data in our study mostly failed to meet these requirements. 

The intermittent nature of our data meant that the demand was zero in most periods and there 

were very few demand observations.  In most of the cases, we could not create more than two 

viable categories and, as a result, we could not carry out a valid 2  test. 

The Cramer von Mises and Anderson-Darling goodness-of-fit tests could potentially have 

also been used. However, whereas the K-S is distribution-free (i.e. the critical values are 

independent of the hypothesised distribution), the critical values of the Cramer von Mises and 

Anderson-Darling tests will depend on the hypothesised distribution. As a result, different 

tables of the critical values must be calculated for each of the proposed distributions. The 

computational effort involved in deriving the critical values (by using, for example, Monte 

Carlo methods) would be prohibitive.  

The goodness-of-fit test used in this study is the K-S test with the significance level set at 5%. 

The distribution of the demand per month has been considered rather than the distribution of 

the lead-time demand; this is due to the lack of information on the actual lead times for the 

datasets. As was pointed out in section 2, compound Poisson distributions are Lévy 

processes; if demand arrivals follow a compound Poisson process, then the demand over any 

fixed period of time (in our case, a month) will also have a compound Poisson distribution. 

Monthly demand will be considered in the goodness-of-fit tests because the demand for the 
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SKUs in our sample is highly intermittent. According to the statistics in Table 3, at least 80% 

of the SKUs in each dataset have an order arrival rate (λ) of one order or less per month. With 

demand being so highly intermittent, daily or weekly demand figures are likely to be very 

small and this may present problems later on when the parameters are being estimated. 

Finally, unlike earlier studies such as Eaves (2002), the goodness-of-fit tests will be carried 

out on demand and not its constituent parts (order sizes and inter-demand intervals). This 

direct approach is taken up in this study because it may be incorrect to infer that a compound 

distribution provides high levels of fit simply because the constituent distributions do so. This 

discussion will be taken up further at the end of this sub-section after the parameter 

estimators of the compound Poisson distributions have been introduced.  

In the K-S tests, the empirical distribution function (EDF) for each SKU was taken as the 

cumulative frequency distribution of the demand for the SKU under concern and the fitted 

distribution was the cumulative distribution function (CDF) of the hypothesised compound 

Poisson distribution. The parameters of the hypothesised distribution were estimated from the 

observed demand data using the following two methods: 

a) The method of moments, using the first two moments (or MM, in short); 

b) The method of mean and zero frequency (or M&Z, in short). With this method, the 

estimates are derived by equating: (i) the sample mean and the population mean; (ii) 

the observed and expected probabilities of zero observations. This method has been 

used in a number of studies including Katti and Gurland (1962), Bowman and 

Shenton (1967) and Shenton and Bowman (1977). 

In the case of the Poisson-Pascal distribution, an additional moment is required under either 

method in order to obtain the estimate of the third parameter. The formulae for the parameter 

estimators under each of these methods are given in the electronic companion.  

In this paper, a parameter estimator is referred to as domain compliant if the values of the 

estimator will always fall within the domain of the relevant parameter. Taking the well-

known normal distribution  2σμ,N  with  μ  and 20 σ  as an example, the sample 

mean is a domain compliant estimator of the parameter μ  since this statistic will always fall 

within the domain of the parameter. The sample variance is also a domain compliant 

estimator of the parameter 
2σ . For the purposes of this study, the value of the parameter 
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estimate has to fall within the domain of the relevant parameter otherwise it is not possible to 

obtain a valid fitted CDF.  

In the case of the compound Poisson distributions, the parameter estimation methods 

discussed above are not necessarily associated with domain compliant estimators. The MM 

estimators will provide meaningful estimates so long as the empirical data satisfies the 

theoretical relationship between the relevant moments. For the four compound Poisson 

distributions discussed in this paper, the variance is always greater than or equal to the mean 

(Keilson and Kubat, 1984; Johnson et al., 2005). The MM estimates will therefore fall outside 

the domain if the sample variance (denoted as 2
ys ) is less than the sample mean (denoted as 

y ). This can be easily seen in the formulae given in the electronic companion. Most of the 

MM estimators fall outside the relevant domain whenever ys2
y  . The method of mean and 

zero frequency also fails when there are no periods with zero demand (i.e. when the observed 

zero frequency, 0f , is equal to 0).  

Parameter estimators that are not domain compliant present a practical challenge in goodness-

of-fit tests; if any of the derived estimates falls outside the relevant domain, what conclusion 

do we draw with regards to the goodness-of-fit? For example, if the observed sample 

variance is less than the sample mean, then this might be a genuine reflection of the fact that 

the underlying demand distribution is under-dispersed. Alternatively, the underlying demand 

distribution might actually be over-dispersed, but the observed sample variance might be less 

than the sample mean simply as a result of sampling error. Without knowing the underlying 

distribution, it is not possible to know what the right conclusion should be. 

Domain incompliance is a challenge not only in K-S goodness-of-fit tests, but also for every 

procedure that relies on parameter estimation, including parametric inventory management. 

Stock control parameters such as the reorder point and the order-up-to level are derived based 

on the distribution of demand during lead-time. If the parameter estimators that are used are 

domain incompliant, then the parameter estimates obtained may fall outside the relevant 

domain; such estimates are meaningless and they would not provide us with a valid 

distribution for the lead time demand.  

The problem of domain incompliance is exacerbated in the case of intermittent demand. 

Intermittent demand is often characterised by having only a small number of demand 
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observations; as the number of demand observations decreases, the standard error of the 

parameter estimates (and thus, the probability that the estimate will fall outside the domain) 

will usually increase. It is worth pointing out that domain incompliance will usually not be a 

problem for fast-moving items; the demand for such items is typically assumed to be 

normally distributed and as discussed above the parameter estimators for this distribution are 

domain compliant. 

In this study, we have made some restrictions in order to ensure that the parameter estimates 

do not fall outside the domain. In the case of MM estimates,  

a) whenever the sample variance ( 2
ys ) is less than or equal to the sample mean ( y ), the 

sample variance is increased and made equal to y1.05 . This is similar to the approach 

adopted by Kwan (2002). 

b) Furthermore, in the case of the Poisson-Pascal distribution, the sample variance has to 

fall within the following interval: 
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(where y , 
2
ys and 3m  are the sample mean, sample variance and the sample central third 

moment respectively). The derivation of this restriction is given in the electronic companion. 

If the sample variance falls outside this range, then the sample variance is increased (or, as 

the case may be, decreased) accordingly to move it just inside the interval. 

 As for the M&Z estimates,  

a) the observed zero frequency, 0f , was bound within the range 11  Nf0 , where 

N  is the length of the demand series. Note that Nf0  represents the trivial case of a 

demand series that does not have any periods with positive demand; 00f leads to 

computational problems (specifically, taking logarithms of zero). 

b) Furthermore, in the case of the Poisson-Pascal distribution, whenever the estimated 

parameter p  is less than 0, we have assumed that  Nflnysy 0
22 1.05  . The 

derivation of this restriction is also given in the electronic companion. 

The additional restrictions arise in the case of the Poisson-Pascal distribution (for both 

estimators) necessarily as a consequence of the fact that the distribution has one more 

parameter. With these restrictions in place, the parameter estimates will always fall within the 
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relevant domain and the probability distributions obtained from these estimates will be valid. 

The fitted CDF obtained under these restrictions is simply our best effort to obtain a valid 

hypothesised distribution that provides a close fit to the empirical data. The CDF fitted in this 

manner will still fail to provide significant fit if there is little agreement between the 

empirical data and the hypothesised compound Poisson distribution.  

The empirical data used in our study is highly varied as indicated in Table 3 and it is not clear 

which of the two parameter estimation methods would perform best for our data. Goodness-

of-fit tests have therefore been carried out using both methods. The results presented in Table 

4 indicate, per dataset and under each parameter estimation method, the percentage of SKUs 

for which a distribution was found to provide a significant fit. The levels of frequency of fit 

achieved by the four compound Poisson distributions are quite high (for all four distributions 

and under each parameter estimation method, the level of frequency of fit was at least 70%). 

The proposed compound Poisson distributions therefore provided significant fit for most of 

the empirical demand data used in our study.  

Table 4. Goodness-of-fit results for the compound Poisson distributions - % fit 

Po-Geo Po-Log Po-Po Po-Pa

MM M&Z MM M&Z MM M&Z MM M&Z

Dataset 1 93.85% 94.47% 92.88% 93.77% 89.12% 91.02% 93.37% 87.11%

Dataset 2 84.07% 86.69% 82.66% 81.05% 72.18% 77.42% 85.08% 68.75%

Key: MM – Method of moments; M&Z – Method of mean and zero frequency 

With respect to the parameter estimation methods, a comparison of the levels of frequency of 

fit achieved reveals that, overall, there is little to choose between the MM and M&Z 

estimators. MM estimators performed better than M&Z estimators in some cases but they 

performed worse in others. The choice of parameter estimation method may therefore make a 

difference.  

Finally, it is noteworthy that the MM estimators of the parameters of the compound Poisson 

distributions may not be the same as the MM estimator of the parameters of the constituent 

distributions that make up the compound Poisson distributions. Let us consider, for example, 

the Poisson-Geometric distribution. Suppose the demand series were n  periods long and that  

there were m  order arrivals during this period. Let us also denote the orders by  m1 xx ,..., .  



19

The MM estimators for the parameters of the geometric distribution )(θGeo and the Poisson 

distribution )(λPo  are xθ 1ˆ  and mnλ ˆ  respectively. These estimators are different from 

the corresponding estimators given for the compound Poisson distribution in equation A.2 in 

the electronic companion. The two sets of estimators may therefore give different parameter 

estimates. Thus, it would not be correct to infer the goodness-of-fit of a compound-Poisson 

distribution simply from the goodness-of-fit results of the distributions of the constituent 

elements of the demand. 

4.3Validity of the proposed demand classification scheme

In this sub-section, we will assess the empirical validity of the proposed demand 

classification scheme. The SKUs in datasets 1 and 2 were first categorised according to the 

mode and variability of the order sizes as proposed by the relevant scheme. Goodness-of-fit 

tests were then carried out for each of the four compound Poisson distributions and the K-S 

statistics were calculated accordingly. Finally, sign tests were carried out - for each pair of 

distributions and in each category - to test the hypothesis that there is no difference in the 

goodness of fit achieved by the two distributions. The sign tests were carried out on the 

difference between the K-S statistics achieved by each pair of distributions calculated as 

follows: 

K-S statistic achieved by the distribution given in the corresponding row minus (-) the K-S 

statistic achieved by the distribution given in the corresponding column. 

Suppose that there was no difference in the goodness of fit achieved by two distributions. In 

such cases, negative differences would be as likely as positive differences. Thus, if the null 

hypothesis that there is no difference is correct, then one would expect that roughly half of 

the differences would be negative differences. Let us denote the number of negative 

differences, when expressed as a proportion of total number of differences, by the term d̂ . 

The null hypothesis will thus be that 0.5ˆ d and the alternative hypothesis is that 0.5ˆ d .  

Hypothesis testing was done based on confidence intervals, where the confidence intervals 

for d̂ were constructed under the assumption that d̂  is normally distributed. Such an 

assumption is justified given the high number of SKUs in each category (Berry, 1941; 
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Esseen, 1956). The pair-wise comparisons between the distributions are performed 

simultaneously; a multiple-comparison correction is therefore required in order ensure that 

the overall confidence level (in this case, 95%) is maintained. If a multiple-comparison 

correction was not used, then the Type I error (i.e. the probability of incorrectly rejecting the 

null hypothesis) could be significantly higher than 0.05. The multiple-comparison correction 

used in this study was the Bonferroni correction (Benjamini and Hochberg, 1995).  

Finally, to allow for easier interpretation, the confidence intervals are expressed in terms of 

the variable 0.5ˆˆ -dδ  . This essentially corresponds to a translation of the confidence 

intervals so that, under this translation, the intervals are centred around the value 0δ ˆ
. 

Separate analysis was carried for the two data sets and the two parameter estimation methods 

and the results are given in Tables 5-8. For each of the datasets, the number of SKUs that fell 

in a given category is given by N. The top table in each category provides the results 

expressed in terms of confidence intervals. The results can be interpreted as follows:  

a) If the lower limit of the confidence interval is positive, then we conclude that the 

distribution given in the row label outperformed the distribution given in the column 

label in the given category. 

b) Alternatively, if the upper limit of the confidence interval is negative, we conclude 

that the distribution given in the column label outperformed the distribution given in 

the row label in the given category. 

c) A conclusion that there is no difference between the two distributions is obtained if 0 

falls within the confidence interval. 

Corresponding to each of these ‘confidence intervals’ tables is an associated ‘Conclusions’ 

table. This latter table presents the conclusions drawn from the confidence intervals. The 

conclusions are expressed in terms of inequality signs with X>Y indicating that distribution X

outperformed distribution Y and X<Y indicating the opposite. The results that are relevant for 

the purposes of assessing the validity of the scheme have been underlined. Results 

highlighted in bold indicate those instances in which the findings do not agree with the 

suggestions in the classification scheme.  

The results given in Tables 5-8 largely agree with the suggestions in the proposed scheme. 

The Poisson-Geometric and Poisson-Logarithmic series distributions consistently performed 
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as well as, or better than, all the alternatives in their assigned categories (i.e. categories A and 

B respectively). The results for the two other distributions were however ambiguous. In the 

case of dataset 1, the Poisson-Poisson distribution performed well in its assigned category, 

matching or outperforming the alternative distributions in category C. There were however 

instances in the case of dataset 2 where one of the alternative distributions performed better 

than the Poisson-Poisson distribution in category C (in particular, the Poisson-Pascal 

distribution in Table 7 and the Poisson-Geometric distribution in Table 8). The results for the 

Poisson-Pascal distribution in Category D are also mixed. The performance of this 

distribution however seems to depend on the parameter estimation method being used. Under 

the method of moments (Tables 5 and 7), the Poisson-Pascal distribution generally performed 

equally or better than the alternative distributions in Category D. The only exception was in 

the case of dataset 1 (Table 5) where the Poisson-Geometric distribution was found to 

perform better than the Poisson-Pascal distribution in Category D. The Poisson-Pascal 

distribution, however, consistently underperformed all the alternative distributions when the 

parameters were estimated using the method of mean and zero frequency.  

The difference in the performance of the Poison-Pascal distribution under the two estimation 

methods is not surprising. Katti and Gurland (1962) compared the efficiency of the estimators 

under the two methods and they found that, for intermittent demand patterns, the method of 

moments estimators were more efficient than the method of mean and zero frequency 

estimators. For any pair of estimators, the more efficient estimator has a smaller variance and, 

in that sense, more accurate, than the less efficient estimator. The greater efficiency of the 

method of moments may explain its superior performance.  

The results above suggest that, in the case of categories A and B, the proposed classification 

is effective in assigning the compound Poisson distribution that provides the best fit. 

However, the performance of the scheme in categories C and D is mixed and the scheme 

needs to be tested on more datasets in order to obtain more empirical evidence. In the case of 

the Poisson-Pascal distribution, the results above suggest that the parameters should be 

estimated using the method of moments and not the method of mean and zero frequency. 
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Table 5. Comparison of goodness-of-fit in the four categories – Dataset 1 (Method of moments) 

Category B (N = 2,781) Category D (N = 733)

Confidence intervals Confidence intervals

PoLog PoPo PoPa PoLog PoPo PoPa

PoGeo -0.12, -0.07 0.41, 0.46 -0.05, -0.01 PoGeo 0.06, 0.15 0.42, 0.50 0.03, 0.11

PoLog 0.29, 0.34 0.19, 0.23 PoLog 0.15, 0.24 -0.02, 0.07

PoPo -0.50, -0.45 PoPo -0.54, -0.45

Conclusions Conclusions

PoLog PoPo PoPa PoLog PoPo PoPa

PoGeo PoGeo<PoLog PoGeo>PoPo PoGeo<PoPa PoGeo PoGeo>PoLog PoGeo>PoPo PoGeo>PoPa

PoLog PoLog>PoPo PoLog>PoPa PoLog PoLog>PoPo No Difference

PoPo PoPo<PoPa PoPo PoPo<PoPa

Category A (N = 6,461) Category C (N = 4,899)

Confidence intervals Confidence intervals

PoLog PoPo PoPa PoLog PoPo PoPa

PoGeo 0.14, 0.17 -0.01, 0.02 -0.03, 0.00 PoGeo 0.47, 0.50 -0.35, -0.31 -0.41, -0.38

PoLog -0.08, -0.05 -0.08, -0.05 PoLog -0.47, -0.44 -0.49, -0.46

PoPo -0.03, 0.00 PoPo 0.13, 0.16

Conclusions Conclusions

PoLog PoPo PoPa PoLog PoPo PoPa

PoGeo PoGeo>PoLog No Difference No Difference PoGeo PoGeo>PoLog PoGeo<PoPo PoGeo<PoPa

PoLog PoLog<PoPo PoLog<PoPa PoLog PoLog<PoPo PoLog<PoPa

PoPo PoPo<PoPa PoPo PoPo>PoPa

KEY: The comparative results that relate to the distribution that is theoretically expected to perform best 

in each quadrant are underlined.
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Table 6. Comparison of goodness-of-fit in the four categories – Dataset 1 (Method of mean and zero frequency) 

Category B (N = 2,781) Category D (N = 733)

Confidence intervals Confidence intervals

PoLog PoPo PoPa PoLog PoPo PoPa

PoGeo -0.14, -0.10 0.42, 0.47 0.45, 0.49 PoGeo 0.05, 0.13 0.44, 0.53 0.43, 0.52

PoLog 0.31, 0.35 0.32, 0.37 PoLog 0.32, 0.41 0.28, 0.37

PoPo 0.31, 0.36 PoPo 0.05, 0.13

Conclusions Conclusions

PoLog PoPo PoPa PoLog PoPo PoPa

PoGeo PoGeo<PoLog PoGeo>PoPo PoGeo>PoPa PoGeo PoGeo>PoLog PoGeo>PoPo PoGeo>PoPa

PoLog PoLog>PoPo PoLog>PoPa PoLog PoLog>PoPo PoLog>PoPa

PoPo PoPo>PoPa PoPo PoPo>PoPa

Category A (N = 6,461) Category C (N = 4,899)

Confidence intervals Confidence intervals

PoLog PoPo PoPa PoLog PoPo PoPa

PoGeo 0.09, 0.12 0.05, 0.08 0.35, 0.38 PoGeo 0.46, 0.50 -0.23, -0.20 0.31, 0.34

PoLog -0.02, 0.01 0.19, 0.22 PoLog -0.40, -0.37 -0.35, -0.32

PoPo 0.25, 0.28 PoPo 0.37, 0.41

Conclusions Conclusions

PoLog PoPo PoPa PoLog PoPo PoPa

PoGeo PoGeo>PoLog PoGeo>PoPo PoGeo>PoPa PoGeo PoGeo>PoLog PoGeo<PoPo PoGeo<PoPa

PoLog No Difference PoLog>PoPa PoLog PoLog<PoPo PoLog<PoPa

PoPo PoPo>PoPa PoPo PoPo>PoPa

KEY: The comparative results that relate to the distribution that is theoretically expected to perform best 

in each quadrant are underlined.
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Table 7. Comparison of goodness-of-fit in the four categories – Dataset 2 (Method of moments) 

Category B (N = 53) Category D (N = 123)

Confidence intervals Confidence intervals

PoLog PoPo PoPa PoLog PoPo PoPa

PoGeo -0.27, 0.06 0.34, 0.66 -0.04, 0.29 PoGeo -0.11, 0.10 0.34, 0.56 -0.11, 0.10

PoLog 0.28, 0.61 0.09, 0.42 PoLog 0.23, 0.45 -0.04, 0.18

PoPo -0.66, -0.34 PoPo -0.59, -0.38

Conclusions Conclusions

PoLog PoPo PoPa PoLog PoPo PoPa

PoGeo No Difference PoGeo>PoPo No Difference PoGeo No Difference PoGeo>PoPo No Difference

PoLog PoLog>PoPo PoLog>PoPa PoLog PoLog>PoPo No Difference

PoPo PoPo<PoPa PoPo PoPo<PoPa

Category A (N = 91) Category C (N = 229)

Confidence intervals Confidence intervals

PoLog PoPo PoPa PoLog PoPo PoPa

PoGeo 0.11, 0.36 0.03, 0.28 -0.10, 0.15 PoGeo 0.33, 0.49 0.00, 0.16 -0.31, -0.15

PoLog -0.05, 0.20 -0.10, 0.15 PoLog -0.30, -0.15 -0.46, -0.30

PoPo -0.24, 0.01 PoPo -0.29, -0.13

Conclusions Conclusions

PoLog PoPo PoPa PoLog PoPo PoPa

PoGeo PoGeo>PoLog PoGeo>PoPo No Difference PoGeo PoGeo>PoLog No Difference PoGeo<PoPa

PoLog No Difference No Difference PoLog PoLog<PoPo PoLog<PoPa

PoPo No Difference PoPo PoPo<PoPa

KEY: The comparative results that relate to the distribution that is theoretically expected to perform best 

in each quadrant are underlined.
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Table 8. Comparison of goodness-of-fit in the four categories – Dataset 2 (Method of mean and zero frequency) 

Category B (N = 53) Category D (N = 123)

Confidence intervals Confidence intervals

PoLog PoPo PoPa PoLog PoPo PoPa

PoGeo -0.17, 0.15 0.28, 0.61 0.34, 0.66 PoGeo -0.04, 0.18 0.31, 0.53 0.38, 0.59

PoLog 0.11, 0.44 0.28, 0.61 PoLog 0.13, 0.35 0.23, 0.45

PoPo 0.26, 0.59 PoPo 0.21, 0.43

Conclusions Conclusions

PoLog PoPo PoPa PoLog PoPo PoPa

PoGeo No Difference PoGeo>PoPo PoGeo>PoPa PoGeo No Difference PoGeo>PoPo PoGeo>PoPa

PoLog PoLog>PoPo PoLog>PoPa PoLog PoLog>PoPo PoLog>PoPa

PoPo PoPo>PoPa PoPo PoPo>PoPa

Category A (N = 91) Category C (N = 229)

Confidence intervals Confidence intervals

PoLog PoPo PoPa PoLog PoPo PoPa

PoGeo 0.01, 0.25 0.08, 0.33 0.31, 0.56 PoGeo 0.35, 0.51 0.05, 0.21 0.32, 0.48

PoLog -0.07, 0.19 0.14, 0.39 PoLog -0.28, -0.12 -0.17, -0.01

PoPo 0.33, 0.58 PoPo 0.21, 0.37

Conclusions Conclusions

PoLog PoPo PoPa PoLog PoPo PoPa

PoGeo PoGeo>PoLog PoGeo>PoPo PoGeo>PoPa PoGeo PoGeo>PoLog PoGeo>PoPo PoGeo<PoPa

PoLog No Difference PoLog>PoPa PoLog PoLog<PoPo PoLog<PoPa

PoPo PoPo>PoPa PoPo PoPo>PoPa

KEY: The comparative results that relate to the distribution that is theoretically expected to perform best 

in each quadrant are underlined.
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5. Implications for the OR theory and practice 

As others (e.g. Fortuin and Martin, 1999; Botter and Fortuin, 2000; Syntetos et al., 2009) 

have already pointed out, the management of spare parts and other inventory items with 

intermittent demand is a difficult task. A number of authors have argued that compound 

distributions could be used to model such intermittent demand patterns. However, there have 

been very few empirical studies in this area. The main contribution of this paper relates to a 

detailed empirical investigation on the viability of using compound Poisson distributions to 

model intermittent demand. Goodness-of-fit tests were carried out for various compound 

Poisson distributions and the challenges involved in using such distributions were explored. 

Compound Poisson processes have a structure that is similar to the demand-generating 

process associated with intermittent demand – events (in this case demand orders) arrive 

sporadically and the size of the events is variable. The likeness between compound Poisson 

processes and the order arrival processes typically observed among spare parts will have an 

intuitive appeal to inventory managers. Goodness-of-fit tests were carried out in this study for 

four different compound Poisson distributions: (i) Poisson-Pascal; (ii) Poisson-Poisson; (iii) 

Poisson-Log Series and (iv) Poisson-Geometric. The empirical demand data used in these 

tests was extensive and consisted of the demand histories of more than 15,000 spare parts 

SKUs. All four distributions were found to provide high levels of frequency of fit.  

Compound Poisson distributions also model the order sizes independently of the order arrival 

process. Orders are assumed to arrive according to a Poisson process but different 

distributions could be used to model the order sizes. Different compound Poisson 

distributions could therefore be used to model SKUs with differing order size profiles. In the 

area of inventory management, there is wide agreement that effective classification can lead 

to substantial improvements in performance. In this paper, we proposed a scheme that assigns 

different compound Poisson distributions to SKUs with differing order size properties. The 

scheme classifies SKUs based on the modality and variability of the observed orders sizes 

and it can greatly facilitate the process of selecting distributional models for items with 

intermittent demand. The scheme has been assessed for its empirical validity in terms of the 

goodness of fit. The results suggest that the scheme is very effective in assigning the best-

fitting distribution to SKUs falling in two of the four identified categories. Ambiguous results 

were obtained in the case of the other two categories and further empirical tests need to be 
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carried in order to ascertain the effectiveness of the scheme in these categories. The scheme 

was developed, not based on empirical findings from individual studies, but rather on a fixed 

set of criteria relating to order size distributions of intermittent demand items. As such, the 

scheme is generally applicable and we recommend that practitioners and researchers may 

adopt this solution (after a simulation of its performance on real data related to the cases 

under concern). 

However, it is true to say that further tests are required in order to assess the effectiveness of 

the scheme in terms of its stock control performance. The goodness-of-fit results in this study 

will be instructive for practitioners concerned with performance targets (such as the fill rate) 

which are derived based on the entire demand distribution. In such cases, the scheme 

identifies a distribution that in theory is likely to provide practitioners with a good fit for the 

observed demand data. The scheme is however less useful for performance targets that are 

concerned with only a single point in the demand distribution. For example, the cycle service 

level is defined as the appropriate percentile of the demand distribution. There is therefore 

less benefit in such cases in identifying a distribution that provides good fit across the entire 

demand distribution. A distribution might perform well under the cycle service level 

definition if it provides good fit at the specified percentile but very poor fit across the rest of 

the distribution. For such performance targets, practitioners are bound to find the 

classification scheme proposed in this study less effective.     

One of the issues considered in this study is the need for a hierarchical list of criteria that 

should be used when selecting distributions for modelling demand. The most important 

criterion is that the hypothesised distribution has to match the underlying structure of demand 

as understood by the inventory managers. But based on the challenges encountered in this 

study, it seems that the next most important criterion should be the mathematical tractability 

of the distribution. If the distribution is to be useful in practical settings, then it needs to have 

a probability function that is easy to compute using readily available software packages such 

as Microsoft Excel ®. In the context of intermittent demand, distributions with large number 

of parameters should be avoided as much as possible. For a given demand pattern, as the 

number of parameters increases, the degrees of freedom (the number of independent 

observations in a sample that are available to estimate parameters) decrease. The accuracy of 

the parameter estimates will therefore deteriorate as the number of parameters increases. This 

is particularly a problem in the case of intermittent demand. In general, the accuracy of the 
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parameter estimates will improve as the samples becomes more diverse. When demand is 

intermittent, there is little diversity in the observations (most of the observations are zeroes). 

Finally, mathematical tractability in terms of the domain compliance of the parameter 

estimators is also an issue worth considering. Some distributions might seem appealing in 

theory but, if they have domain incompliant estimators, they might not perform as well (for 

example, the Poisson-Pascal distribution in this study). 

After mathematical tractability, the next most important criterion is corroborative empirical 

evidence. However, relevant empirical evidence might be hard to come by and occasionally 

the findings in different studies might contradict one another. The final criterion should be 

the flexibility of the distribution. While flexibility might be desirable, this is an issue that can 

be easily resolved by simply increasing the number of distributions in order to ensure that 

there is a distribution to accommodate each of the possible demand profiles. While this might 

seem inconvenient, the challenges encountered in this study suggest that it might be 

worthwhile to sacrifice flexibility for mathematical tractability. 

6.Conclusions and further work 

Demand classification is an important operational issue in the management of spare part 

inventory items. Demand classification facilitates decision-making with respect to forecasting 

and stock control and enables managers to focus their attention on the SKUs considered most 

important. In this paper, we carried out goodness-of-fit tests to assess whether compound 

Poisson distributions provide a good fit to SKUs with intermittent demand. An empirical 

dataset of nearly 15,000 spare part SKUs from two different industries was used in these 

tests. The compound Poisson distributions were found to provide good fit for most of the 

SKUs in the empirical dataset. These results suggest that managers should consider using the 

compound distributions discussed in this work to model the demand of intermittently moving 

inventory items. We have also proposed a demand classification scheme that categorises 

SKUs based on the mode and variability of the observed order sizes. The scheme facilitates 

the process of selecting distributional models for items with intermittent demand. The scheme 

was also tested for its empirical validity and the results suggest that it is mostly effective in 

the sense that the proposed compound distribution often provided the highest levels of 

frequency of fit for SKUs falling within the associated category. A comprehensive list of 

criteria to be used when selecting demand distributions has also been proposed. Finally, an 

extensive discussion has been provided on parameter estimation related difficulties in this 
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area. As such, we feel that our work should enable further theoretical developments in the 

area of spare parts management and should successfully inform relevant real world practices. 

In the next steps of our research, we plan to replicate our findings on more demand datasets 

and assess the empirical validity of the classification scheme in terms of its implications for 

forecast accuracy. The scheme will also need to be assessed for effectiveness in terms of 

stock control performance. Further work and empirical studies on the performance of non-

parametric approaches (like Bootstrapping for example) and the way such approaches 

compare to the more ‘traditional’ distribution-based inventory control considered in this 

paper should also contribute significantly towards extending the current state of knowledge in 

this area. Finally, an attempt will be made to link the quantitative measures in the scheme (i.e. 

the mode and squared coefficient of variation of the order sizes) with the qualitative aspects 

of SKUs. The linkage between the technical attributes of the classification scheme and the 

qualitative attributes of the SKUs assigned to the various categories may be of great value to 

practitioners operating in this area. 
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