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Abstract

The internal estimates of Loss Given Default (LGD) must reflect eco-

nomic downturn conditions, thus estimating the “downturn LGD”, as the

new Basel Capital Accord Basel II establishes. We suggest a methodology

to estimate the downturn LGD distribution to overcome the arbitrariness

of the methods suggested by Basel II. We assume that LGD is a mixture

of an expansion and recession distribution. In this work, we propose an

accurate parametric model for LGD and we estimate its parameters by the

EM algorithm. Finally, we apply the proposed model to empirical data on

Italian bank loans.
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1. Introduction

Loss Given Default (LGD) is the loss incurred by a financial institution

when an obligor defaults on a loan, given as the fraction of Exposure At

Default (EAD) unpaid after some period of time. In the Basel II framework

(Basel Committee on Banking Supervision (BCBS), 2004, paragraph 286-

317), banks adopting the advanced Internal Rating Based (IRB) approach

are allowed to use their own estimates of LGDs that have to reflect economic

downturn conditions. Hence, the “downturn LGD” is the maximum of the

long-run default-weighted average LGD and the stressed LGD.

It requires the banks to identify the appropriate downturn conditions and

incorporate them so as to produce LGD parameters for the bank’s exposures,

which are consistent with the identified downturn conditions. The main

reason for this requirement is that the Vasicek model (Vasicek, 2002) used in

Basel II does not have systematic correlation between Probability of Default

(PD) and LGD and, to compensate for this deficiency, downturn LGD are

required to be used as input to the model.

Although the downturn LGD is a key variable for banking practice, such

a pivotal topic is relatively unexplored in the literature. The main aim

of this paper is to propose a methodology to estimate the downturn LGD

distribution. To achieve this aim, we consider the dynamic behaviour of

LGD over the economic cycle characterized by two regimes: expansion and

recession.

We assume that the LGD is a mixture of an expansion and a recession dis-

tributions, each of these distributions is given by the mixture of a Bernoulli

random variable and a beta random variable, as Calabrese (2012) suggested.

On the one hand, the Bernoulli random variable allows to reproduce the high
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concentration of data at total recovery and total loss (Calabrese and Zenga,

2010; Renault and Scaillet, 2004; Schuermann, 2003). On the other hand,

the beta distribution is well suited1 to the modelling of LGDs (Bruche and

González-Aguado, 2008; Gupton et al., 1997; Gupton and Stein, 2002). To

estimate the parameters of the downturn LGD distribution, we apply the EM

algorithm (Dempster et al., 1977). To obtain a finite beta density function,

Calabrese and Zenga (2010)’s parametrization is used. With this method

banks do not need to identify arbitrarily downturn conditions and, unlike

the factor method, data on the default risk and default correlation are not

required. Finally, we apply this proposal to a comprehensive Bank of Italy

data set (Bank of Italy, 2001) of 149,378 Italian bank loans and we compare

it with some methods used in the literature to estimate the downturn LGD.

The present paper is organized as follows. The next section analyses the

available literature on downturn LGD. Section 3 describes some approaches

to estimate downturn LGD. The following section presents the proposed

approach to estimate the downturn LGD distribution. Section 5 describes

the dataset of the Bank of Italy and shows the estimation results by applying

the proposed model to these data. Finally, the last section is devoted to

conclusions.

2. Literature review

An extensive literature suggested a link between LGD and the economic

cycle (e.g. Bellotti and Crook, 2012; Calabrese, 2012). The systematic

1Since LGD lies in the interval [0,1], the beta distribution is a suitable parametric

model for LGDs since it has support [0,1] and, in spite of requiring only two parameters,

is quite flexible.
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correlation between PD and LGD is not taken into account in many mod-

els. In the standard rating-based credit risk model developed by Gupton

et al. (1997), it is assumed that recoveries on defaulted exposures are ran-

dom outcomes, independent of the default event. A similar independence

assumption is made in the model of Jarrow et al. (1997) and in the Vasicek

model (Vasicek, 2002) used in the Basel II Accord. However, if realizations

of recoveries are low exactly at times when many firms default, the assump-

tion that recoveries are independent of default rates or constant would re-

sult in an underestimation of credit risk. To compensate for this deficiency,

downturn LGD estimates are required to be used as an input to the model.

In the Basel II Accord (BCBS, 2005c), two approaches are presented

to estimate downturn LGD. One approach would be to apply a mapping

function similar to that used for the PDs that would extrapolate downturn

LGDs from bank-reported average LGDs. Alternatively, banks could be

asked to provide downturn LGD figures based on their internal assessments

LGDs during adverse conditions. Provided that data is available, the latter

approach is the easiest to implement, so Basel III (BCBS, 2011 paragraph

20) considers only this method to compute downturn LGD.

The drawback is that LGD data is generally sparse and there is very

limited industry experience with regard to LGD estimates. Downturn LGD

estimation based on historical data is currently not possible for many banks

because of the short time periods available or for the lack of an economic

downturn during the available period. The first approach of Basel II is an

appropriate solution when historical data is not available.

Following the first approach of Basel II, Miu and Ozdemir (2006) suggest

that the original LGD assessment by banks, without considering PD and

LGD correlation, can be appropriately adjusted by incorporating a certain
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degree of conservatism in cyclical LGD estimates within a point-in-time

modelling framework. They use Monte Carlo to tabulate the relationship

between long-run and downturn LGD. Barco (2007) extends their work to

develop an analytical relationship between long-run and downturn LGD.

Moreover, Sabato and Schmid (2008) suggest a simple mapping function

to estimate downturn LGD. They investigate the relationship between LGD

and the credit cycle over the period from 2002 to 2007 using data covering

a set of retail loans. The linear mapping function proposed by the Board

of Governors of the Federal Reserve System (2006) can be considered as a

particular case of Sabato and Schmid’s proposal, as explained in Section 3.

Both the approaches presented by Basel II show the pivotal drawback

of how economic downturn or mapping function of average LGD should be

defined and identified. This arbitrariness leads to very different approaches

being implemented across banks and countries, and significant effects on the

level of capital requirements. As many authors have shown (e.g., Saurina and

Trucharte, 2004; Altman and Sabato, 2005), Basel II Advanced-IRB capital

requirements are highly sensible to LGD values in particular for retail asset

classes. Hence, there is the necessity of suggesting a method to estimate

downturn LGD to overcome the arbitrariness of the approaches suggested

by Basel II.

3. Downturn LGD estimation models

Following the first approach of Basel II (BCBS, 2005c), Sabato and

Schmid (2006) suggest the following linear mapping function to estimate

downturn LGD on unsecured positions

DLGD − µLGD = LGDSF (1− µLGD) (1)
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where µLGD is the long-term average 2 LGD, DLGD is the expected Down-

turn LGD and LGDSF is the LGD Stressing Factor given by

LGDSF =
stressed LGD− LGD

LGD
. (2)

Sabato and Schmid (2006) suggest to compute the stressed LGD as a func-

tion (not specified) of the stressed PD, given by the average PD plus the

standard deviation of the observed default rates. The mapping function

(1) implies that debts with relatively low historical LGD rates (e.g. se-

nior bank loans) should have relatively large adjustments to their long-term

average LGD rates, while debts with high historical LGD rates (e.g. subordi-

nated bonds) should have relatively small adjustments. In other words, the

difference between downturn LGD and the long-term average LGD varies

inversely with the long-term average LGD.

In recognition that banks may be unable to estimate the LGD stressing

factor, the Board of Governors of the Federal Reserve System (2006) pro-

poses the following particular case of the equation (1) with LGDSF = 0.08

DLGD = .08 + .92µLGD. (3)

where µLGD equals the long-term average LGD and DLGD is the expected

Downturn LGD. It is worth noting that the magnitudes of the proposed

adjustments to LGD are relatively modest, with a maximum adjustment of

only eight percentage points. The Federal Reserve has offered no justification

for the linear mapping function (3) except perhaps its intuitive appeal that

debts with the lowest historical average LGD rates receive the largest upward

downturn LGD adjustments.

2µLGD is known as long-run default-weighted average loss rate given default in Basel

II (BCBS, 2005).
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The methodology suggested by Miu and Ozdemir (2006) and then gen-

eralized by Barco (2007) also belongs to the first approach of Basel II. To

analyse Barco’s model, we start with the well-known Merton framework

where the log return of the obligor i’s asset value is given by

Ai = ρPDi Xm +
√

1− (ρPDi )2Xis

where ρPDi is known as correlation of asset returns. The independent stan-

dard normal random variables Xm and Xis are the systematic factor and

obligor-specific idiosyncratic factor, respectively. Barco (2007) models the

value of the asset of the creditor with a lognormal distribution. This is

achieved by first establishing the following relationship for the standardised

asset return

Ri = ρRi Xm +
√

1− (ρRi )2Ym

where Ym is an independent standard normal random variable representing

the residual systematic asset return not explained by Xm. The parameter

ρRi correlates the assets of the obligor to the systemic factor Xm. Assuming

obligor exposure is one unit with mean default rate denoted by µPDi , its loss

random variable is defined by

Li = 1{Ai<Φ−1(µPDi )}L
R
i

where 1{}(·) is the indicator function and Φ−1(·) is the quantile function of

the standard normal distribution.

Assuming a fully granular portfolio, Li is contained in a homogeneous

portfolio and continue to suppose that its exposure is equal to one unit, so

Barco (2007) defines

L∞ = lim
N→∞

1

N

N∑
i=1

Li.
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In a model with two systematic factors, from Proposition 3 in Gordy (2003)

and the strong law of large numbers Barco (2007) obtains

qα(L∞) = qα

[
lim
N→∞

1

N

N∑
i=1

Li

]
= qα [E(Li|Xm, Ym)]

where qα is the α quantile.

An important result obtained by Barco (2007) is the analytical expres-

sion of the downturn LGD

DLGD =
qα [E(Li|Xm, Ym)]

Φ

(
Φ−1(µPDi )+ρPDi Φ−1(α)√

1−(ρPDi )2

) (4)

where Φ(·) is the cumulative distribution function of a standard normal

distribution.

The main drawback of the first approach of Basel II is that the mapping

function between long-run and downturn LGD can change from model to

model. This difference can have a significant effect on capital requirements.

For example, Barco (2007), Miu and Ozedemir (2006) using the normal

distribution underestimate tail contributions.

4. A new modelling approach for downturn LGD

We consider a dynamic behaviour of LGD over the economic cycle char-

acterized by two distributions of LGDs held over expansion and recession

periods. By considering two regimes of the economic cycle, expansion and

recession, LGDs are drawn from a mixture of an expansion (E) and a reces-

sion (R) distributions

FLGD(y) = πFLGD/E(y) + (1− π)FLGD/R(y) 0 ≤ y ≤ 1 (5)
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where FLGD/S(y) is the cumulative distribution function of the LGD over

a given period conditional on the state S (S = E,R) of the economic cycle

and π is the probability of the expansion regime (Filardo, 1994). We assume

that the parameter π is fixed over a given period of time.

In order to fit the model (5) to LGDs data, we first specify the cu-

mulative distribution functions FLGD/E(·) and FLGD/R(·), which later we

estimate jointly with the parameter π. Since the incidence of LGDs equal

to 0 or 1 is high (Calabrese and Zenga, 2010; Renault and Scaillet, 2004;

Schuermann, 2003), to supply accurate estimations for the extreme values,

Calabrese (2012) proposes to consider LGD as a mixed random variable, ob-

tained as the mixture of a Bernoulli random variable and the beta random

variable B. This means that the distribution function of LGD FLGD/S(·)

conditional on the state S of the economic cycle is defined as

FLGD/S(y) =


ps0 y = 0

ps0 + [1− ps0 − ps1]FB/S(y) y ∈ (0, 1)

1 y = 1

(6)

where FB/S(·) denotes the distribution function of the beta random variable

B conditional on the state S of the economic cycle and psj = P{LGD = j/S}

is the conditional probability that the LGD is equal to j with j = 0, 1 given

the state S of the economic cycle.

Consistently with the hypothesis that LGD is a mixed random variable,

we define the cumulative distribution estimator of LGD as

F̂LGD(y;π,θ,σ) =



n0

n
y = 0

n0

n
+
(

1− n0

n
− n1

n

)
F̂M (y;π,θ,σ) y ∈ (0, 1)

1 y = 1.

(7)
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where n0 = ]{LGDi = 0} and n1 = ]{LGDi = 1} indicate the frequency of

the LGDs equal to 0 and 1, respectively, and n is the number of LGDs in

the portfolio.

The cumulative distribution estimator of the mixture M of two beta

random variables is given by

F̂M (y;π,θ,σ) =
1

n− n0 − n1

∫ y

0

n−n0−n1∑
i=1

[πfe(lgdi; θe, σe)+(1−π)fr(lgdi; θr, σr)]d lgdi

(8)

where π is the probability of the expansion regime. Moreover, fs(lgd; θs, σs)

is the probability density function of the beta random variable Bs (with

s = r, e) of parameters θs
σs

+ 1 and 1−θs
σs

+ 1

fs(lgd; θs, σs) =
Γ
(

1
σs

+ 2
)
lgd

θs
σs (1− lgd)

1−θs
σs

Γ
(
θs
σs

+ 1
)

Γ
(

1−θs
σs

+ 1
) , (9)

where θs is the mode of the s-th beta density function and σs > 0 is the

dispersion parameter. The parametrization of the beta density function

fs(lgd; θs, σs) is applied by Calabrese and Zenga (2010) in the nonparametric

estimation. The main advantage of this parametrization is that every beta

density function of the mixture M is finite for all values of θs and σs since

the beta parameters θs
σs

+ 1 and 1−θs
σs

+ 1 are higher than one.

The beta random variable Bs of parameters θs
σs

+ 1 and 1−θs
σs

+ 1 has an

expected value

E(Bs) =
θs + σs
2σs + 1

and variance

V (Bs) =
σs(θs − θ2

s + σs + σ2
s)

(1 + 2σs)2(1 + 3σs)
(10)

for S = r, e. To understand the influence of the parameter σs, in Figure 1

we plot the variance V (Bs) as a function of σs by fixing θs. From this plot
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we can deduce that the variance of Bs increases by increasing σs and with

constant θs. An interesting result is that the limit of the variance V (Bs), as

σs tends to infinity, is 0.08, the variance of a uniform random variable with

support the unit interval [0,1]. This outcome is due to the convergence of

the beta density function (9) to a uniform density function as σs diverges

to infinity.

Figure 1 around here

When σs goes to zero, we can apply Maclaurin series to equation (10) ob-

taining

V (Bs) = σsθs(1− θs) +O(σ2
s),

this means that by fixing θj the variance V (Bs) tends to zero as σs tends to

zero too, as Figure 1 shows. From this approximation we can also deduce

that by fixing σs near to zero, the variance V (Bs) becomes a parabola with

maximum in θs = 0.5.

In this paper we propose a method to estimate the unknown parameters

in the mixture of two beta density functions. We use the Expectation-

Maximization (EM) algorithm (Dempster et al., 1977) to estimate the pa-

rameters π and θ,σ in equation (8). For notation simplicity, we consider

the parameter vector π = [π, 1−π]′, so we aim at estimating the parameters

vector (π,θ,σ).

In the mixture framework, the observed data lgd = (lgd1, lgd2, ..., lgdn−n0−n1)

are completed with a component-label vector Z = (Z1, Z2, ..., Zn−n0−n1)
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whose elements are assumed to be independent and are defined as

zis =

 1 if lgdi comes from the state s

0 otherwise.

Under the assumption that LGDi are independent and identically dis-

tributed random variables with cumulative distribution function (5), the

complete-data log-likelihood function is

lc (π,p0,p1,θ,σ) = lnπ

n−n0−n1∑
i=1

zie + ln(1− π)

n−n0−n1∑
i=1

zir (11)

+

n−n0−n1∑
i=1

∑
S=e,r

zis ln fLGD/S (lgdi; θ
s, σs) .

The EM algorithm (Dempster et al., 1977; McLachlan and Krishnan,

1997) maximizes the log-likelihood function (11). Each iteration of the EM

algorithm includes the “E-step”, which computes the conditional expecta-

tion of the complete-data log-likelihood (11) given the observed data lgd,

and the “M-step”, which obtains the maximum of the complete-data log-

likelihood function (11).

To compute the initial value π(0), analogously to Ji et al. (2005) we

assign the smallest 50% of lgdi belonging to the interval (0,1) to the expan-

sion component, and the highest 50% of lgdi to the recession component.

Maximizing (11), we obtain the initial values (π(0),θ(0),σ(0)).

Afterwards, the algorithm3 follows the sequence:

(1) On the (k + 1)-th iteration, the E-step requires the calculation of the

conditional expectation of the complete-data log-likelihood (11). Since

Z is non-observed data, z
(k)
is is replaced by the conditional expectation

3The code in R language is available on request.
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of Zis given the observed data lgd and we consider the parameter

estimates (π(k),θ(k),σ(k)) from the k-th iteration of the M-step

z
(k+1)
is = E

(
Zis

∣∣∣lgdi,π(k),θ(k),σ(k)
)

= P
(
Zis = 1

∣∣∣lgdi,π(k),θ(k),σ(k)
)

=
π

(k)
s fs

(
lgdi; θ

(k)
s , σ

(k)
s

)
∑
s=e,r

π(k)
s fs

(
lgdi; θ

(k)
s , σ(k)

s

)
with i = 1, 2, ..., n− n0 − n1 and S = r, e.

(2) On the (k + 1)-th iteration, the M-step requires the maximization of

the complete-data log-likelihood function (11) with respect to π, θ, σ

replacing zis by z
(k+1)
is . Firstly, the elements of the updated estimates

θ(k+1) are obtained as

π̂(k+1)
s =

n−n0−n1∑
i=1

z
(k+1)
is

n− n0 − n1
,

with S = r, e.

To estimate θ(k+1) and σ(k+1), we compute the score functions for θ

and σ (see Appendix). The updated estimates θ(k+1) and σ(k+1) are

the solution of the following system
∂lc (π,θ,σ)

∂θ
= 0

∂lc (π,θ,σ)

∂σ
= 0

Since the updated estimates θ(k+1) and σ(k+1) do not have a closed-

form, they are obtained by using a nonlinear optimization algorithm.
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The E-step and the M-step are alternatively repeated until the difference

between two consecutive values of the complete-data log-likelihood (11) is

negligible.

5. Empirical evidence

5.1. Data set

A comprehensive survey on the loan recovery process of Italian banks

was conducted in the years 2000-2001 by the Bank of Italy. Its purpose was

to gather information on the main characteristics of the Italian recovery

process.

The survey is divided into three main sections. The first focuses on orga-

nizational aspects, the second regards credit recovery procedures and the

last concerns analytical data on individual debts. About 250 banks were

surveyed by means of a questionnaire. The database is composed of 149,378

defaulted borrowers and, since they covered nearly 90% of total domestic

loans, this is the most recent and the most important survey on the Italian

recovery process.

It is important to specify that data refer to individual loans which are pri-

vately held, and not listed on the market. In particular, loans are towards

Italian resident debtors non-performing on the 31/12/1998 and entirely writ-

ten off within the end of 1999.

The definition of default chosen in the survey is narrower than the one pro-

posed by the BCBS (2004, paragraph 452). The difference is the inclusion of

transitory non-performing debts. Finally, the Bank of Italy established the

discount rates for each quarter from 1975 to 1999 by relying on the interest

rates on short-term loans.
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We highlight that to constrain LGD within the interval [0,1], we apply

the expression proposed by Calabrese and Zenga (2010)

LGD =
LOSS

TE
=

LOSS

EAD + I + L
.

where LOSS is the loss amount and TE denotes the Total Exposure, given

by the sum of the Exposure At Default (EAD), the legal costs (L) and the

interest on delayed payment (I).

Table 1 around here

Table 1 reports the main characteristics of the Bank of Italy’s data. Our re-

sults are consistent with the values suggested by the Basel II Accord (BCBS,

2004 paragraph 287-8) under the foundation IRB approach: LGD is fixed

at 45% for all senior unsecured debts and at 75% for all subordinated ex-

posures. Moreover, Schuermann (2003) obtain similar values for positions

with different seniority levels and instrument types. For the dispersion, the

coefficient of variation (55.17% of the average LGD) is similar to the results

obtained by Schuermann (2003) (53.63% of the average recovery rate) and

by Renault and Scaillet (2004) (60.31% of the average recovery rate) on cor-

porate bonds.

Figure 2 around here

Figure 2 shows the LGD distribution. Firstly, the mode of the LGD distri-

bution is the extreme value 1, with 23% of the observations. Besides, LGD

equal to 0 exhibits also a high percentage (7.78%). Many authors obtain
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a bimodal LGD distribution for different countries, for example, Araten et

al. (2004) and Asarnow and Edwards (1995) for the US, Hurt and Felso-

valyi (1998) for Latin America, Franks et al. (2004) for France, Grunert

and Weber for Germany (2005) and Dermine and Neto de Carvalho (2006)

for Portugal. For instance, in Friedman and Sandow’s (2003) study about

10% and 20% of the observations showed recovery rates respectively equal

to zero and one.

5.2. Estimation results and comparative analysis

Table 2 around here

In order to estimate the downturn LGD, we apply the methodology proposed

in this work and the four methods analysed in Section 2 and 3 to the Bank of

Italy’s database. The results4 are reported in Table 2. Even if the database

concerns loans, our proposal is also applicable to bonds.

The main advantage of the methodology here proposed is that it allows

to estimate the downturn LGD distribution, shown in Figure 3, without the

arbitrary definition of an economic downturn period or a mapping function

of long-run LGD. Moreover, the high concentration of data at total recov-

ery and total loss (Calabrese and Zenga, 2010; Renault and Scaillet, 2004;

Schuermann, 2003) can be replicated by the model suggested in this work.

Figure 3 around here

The approach proposed in this paper is compared with the four models

analysed in Section 2 and 3. For the model suggested by Sabato and Schmid

4To obtain these results we apply the algorithm in Appendix.
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(2008) (SS model) we need to estimate the LGD stressing factor defined in

equation (2). Following the authors’ suggestion, the LGD stressing factor is

given by the sum of the mean (µPD = 0.0063) and the standard deviation

(σPD = 0.0055) of the default rates. These results are obtained from data

of the International Monetary Fund by assigning to each loan the annual

default rate evaluated at the time of default. Furthermore, for both the SS

model and the one proposed by the Federal Reserve System (FED model),

we consider the average LGD (0.6154) from Table 1.

For the factor model suggested by Barco (2007) we consider α = 0.999.

We specify that from equation (4) we should estimate µPDi and ρPDi for each

loan. Since these data are not available in the Bank of Italy’s survey, we

assign to each loan the annual PD evaluated at default time and supplied

by the International Monetary Fund. This means that we assign the same

PD to loans defaulted the same year. Moreover, we compute the correlation

coefficient ρPD of the assigned PDs and, for lack of data, it is assumed con-

stant for all observations. Finally, compliant to Basel II adverse conditions

are identified as a negative GDP growth rate, occurred only in 1993. This

means that in the second approach of Basel II (AC model) the downturn

LGD is given by the mean of 12,992 LGDs defaulted in 1993.

Furthermore, we apply the methodology suggested in this paper and the

obtained estimates are reported in Table 2. If we focus our attention only

on the recession distribution, this represents the downturn LGD distribution

and it is shown in Figure 3. We compute the average of this distribution

and we report it in Table 3. The downturn LGDs computed by the methods

outlined in Section 2 and 3 are also reported in Table 3.

To understand how we should interpret the results in Table 3, we un-

derline that for a bank the underestimation of the downturn LGD is more
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risky than the overestimation. The first important result of this comparison

is that the approach suggested by Basel II and III of using estimates dur-

ing adverse conditions strongly underestimates the downturn LGD. We can

deduce it because the estimate of the downturn LGD 0.6370 is very close to

the long-run default-weighted average loss rate µLGD = 0.6154. This result

could be due to the long-term influence of the GDP growth rate on LGDs,

coherent with Calabrese (2012) and Bellotti and Crook (2009). In this way,

we would show the arbitrariness of identifying adverse conditions.

Even using a mapping function, as SS and FED models do, the estimate

of downturn LGD are 8.08% and 5.60% lower, respectively, than the estimate

obtained by our proposal. The FED model shows the clear drawback of

using a mapping function with fixed parameters. Even if these parameters

are estimated in the SS model, we obtain a downturn LGD lower than that

of the FED model. We presume that this result could be due to the lack of

an accurate method to estimate the LGD stressing factor LGDSF defined in

equation (2). This means that also this method is subject to arbitrariness.

Finally, Barco’s model supplies a downturn LGD a bit lower than that

of our proposal. This means that Barco’s model overcomes the drawback of

the underestimation of downturn LGD but it needs some information (i.e.

µPDi and ρPDi ) for each loan that are often not available. We highlight that

we do not need this information or any kind of additional information to

apply our model.

From this empirical analysis we can conclude that, on the one hand, the

model proposed in this paper overcomes the drawback of arbitrariness of

some methods used in the literature. On the other hand, it is an accurate

model that allows to represent the high concentration of data at total loss. In

this way it overcomes the drawback of the underestimation of the downturn
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LGD, without using any additional information on borrowers.

Different types of portfolios (e.g. for bonds by Renault and Scaillet

(2004) and Schuerman (2003)) and different geographic areas (e.g. Araten

et al. (2004) for US, Grunert and Weber for Germany (2005)) show a high

concentration of data at total loss, we could expect also for these datasets

that our proposal outperforms the methods used in the literature. In con-

clusion, our proposal could supply accurate estimate of the downturn LGD

for different types of portfolios with different geographic locations.

Table 2 around here

6. Concluding remarks

This paper aims at proposing an accurate method to estimate the down-

turn LGD distribution to compensate for the fact that the Vasicek regulatory

capital model does not incorporate systematic LGD. To represent the dy-

namic behaviour of LGD over the economic cycle, this paper proposes that

the LGD distribution is given by a mixture of an expansion and a recession

distributions. To represent the high concentration of data at total loss and

total recovery, we suggest an accurate parametric model for each state of

the economic cycle and a method to estimate their parameters.

The main advantages of this proposal are that banks do not need to

identify arbitrarily downturn conditions and additional information on the

default risk for each borrower. Finally, we apply our proposal to a com-

prehensive dataset of Italian bank loans. The main result of this empirical

analysis is that our model can replicate the high concentration of data at

total loss, unlike the other analysed models, so it overcomes the drawback

of underestimating the downturn LGD. Our hope is to provide a framework
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that banks can use based on their internal data to estimate downturn LGD

for different portfolios.
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7. Appendix

In this appendix, we obtain the score functions for θ and σ. The notation

used here is defined in Section 4. The derivatives of the complete-data log-

likelihood function (11) with respect to θ and σ are

∂lc (π,p0,p1,θ,σ)

∂θ
=

n∑
i=1

∑
S=e,r

z
(k+1)
is

∂ ln gs (lgdi; θs, σs)

∂θ

∂lc (π,θ,σ)

∂σ
=

n∑
i=1

∑
S=e,r

z
(k+1)
is

∂ ln gs (lgdi; θs, σs)

∂σ
.

To compute the score functions, we consider the following results

∂ ln gs (lgdi; θs, σs)

∂θs
=

1

θs

{[
ψ

(
1− θs
σs

+ 1

)
− ψ

(
θs
σs

+ 1

)]
+ ln

(
lgdi

1− lgdi

)}
and

∂ ln gs (lgdi; θs, σs)

∂σs
=

1

σ2
s

{[
θsψ

(
θs
σs

+ 1

)
+ (1− θs)ψ

(
1− θs
σs

+ 1

)]
+

−ψ
(

1

σs
+ 2

)}
− ln

(lgdi)
θs

(1− lgdi)1−θs
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where ψ(·) is called digamma function (Abramowitz and Stegun, 1972, p.

380) ψ(z) =
∂logΓ(z)

∂z
=
∂Γ(z)

Γ(z)
for z > 0.
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Loss Total Exposure LGD

Mean 0.1319 0.2275 0.6154

Median 0.0067 0.0133 0.6667

Standard deviation 4.4815 14.0504 0.3395

Minimum 0 ' 0 0

Maximum 1212.3954 5135.7263 1

I quartile 0.0020 0.0045 0.3333

II quartile 0.0067 0.0133 0.6667

III quartile 0.0233 0.0429 0.9545

Table 1: Some characteristics of the Bank of Italy’s data set. The amounts “Loss” and

“Total Exposure” are expressed in Thousands of Euros.

π̂ p̂0 p̂1 θ̂ σ̂

Expansion 0.7337 0.0571 0.1687 0.3925 0.5968

Recession 0.2663 0.0207 0.0612 0.9171 0.1014

Table 2: Estimates obtained by the mixture model from the Bank of Italy’s data.
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Mixture model Barco’s model FED model SS model AC model

Downturn LGD 0.7823 0.7673 0.7385 0.7191 0.6370

Table 3: Average downturn LGD
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Figure 1: The variance V (BS) of the beta random variable Bs as a function of the pa-

rameter σS with θS = 0.5.
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Figure 2: The LGD distribution of the Bank of Italy data set.
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Figure 3: Estimate of downturn LGD distribution from the Bank of Italy data set. The

upper part of the plot is the estimate of the extreme values 0 and 1 (the discrete compo-

nent). The lower part of the plot is the estimate of the values belonging to the interval

(0,1) (the continuous component).
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