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On the Core of Cost-Revenue Games:

Minimum Cost Spanning Tree Games with Revenues

Arantza Estévez-Fernándeza Hans Reijnierseb

Abstract

In this paper, we analyze cost sharing problems arising from a general service by explicitly taking into

account the generated revenues. To this cost-revenue sharing problem, we associate a cooperative game

with transferable utility, called cost-revenue game. By considering cooperation among the agents using

the general service, the value of a coalition is defined as the maximum net profit that the coalition may

obtain by means of cooperation. As a result, a coalition may profit from not allowing all its members

to get the service that generates the revenues. We focus on the study of the core of cost-revenue

games. Under the assumption that cooperation among the members of the grand coalition grants the

use of the service under consideration to all its members, it is shown that a cost-revenue game has a

non-empty core for any vector of revenues if, and only if, the dual game of the cost game has a large

core. Using this result, we investigate minimum cost spanning tree games with revenues. We show

that if every connection cost can take only two values (low or high cost), then, the corresponding

minimum cost spanning tree game with revenues has a non-empty core. Furthermore, we provide

an example of a minimum cost spanning tree game with revenues with an empty core where every

connection cost can take only one of three values (low, medium, or high cost).

Keywords: Cost-revenue allocation problem, cooperative game, core, minimum cost spanning tree

problem.
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1 Introduction

In this paper, we study cost sharing problems arising from a general service by explicitly taking into

account the revenues generated by this service. In addition, we apply our findings to minimum cost

spanning tree (mcst) problems with revenues.

The study of cost sharing problems combined with revenues has been considered in the literature

before. Littlechild and Owen (1976) initiated this stream of literature within the framework of airport

problems, where they provide an algorithm to compute the nucleolus of airport profit games. Brânzei,

Iñarra, Tijs and Zarzuelo (2006) is a recent follow-up to Littlechild and Owen (1976). Suijs, Borm,

Hamers, Quant and Koster (2005) analyze the allocation of costs and revenues within a public network

communication structure within the context of cooperative games with transferable utility. Meertens and

Potters (2006) provide an algorithm to compute the nucleolus of fixed tree games with revenues. Estévez-

Fernández, Borm, Meertens and Reijnierse (2009) focus on the analysis of the core of routing games with

revenues.

Here, we consider the situation in which a group of agents may cooperate to reduce the (possibly

nonlinear) costs associated with the performance of a service. Each agent has some fixed revenue from

the performance of the service. The question is how to share the net revenues obtained from cooperation

among the agents. To solve this allocation problem, we use cooperative game theoretic techniques. By

considering cooperation among the agents, we define a cost-revenue game where the value of a coalition is

defined as the maximum net profit that the coalition can obtain by means of cooperation. Note that with

this definition, a coalition may profit from not allowing all its members to get the service that generates

the revenues. In order to provide an allocation of the cost-revenue sharing problem at hand, we focus on

the core of the cost-revenue game. The core of a game is the set of allocations of the total net revenues

obtained by the cooperation of all agents to which no group of agents has an incentive to deviate, that is,

the core is the set of stable allocations of the total net revenue. In this paper, we characterize the class

of cost-revenue games with a nonempty core under the assumption that cooperation among the members

of the grand coalition grants the use of the service under consideration to all its members. It turns out

that a cost-revenue game has a nonempty core for any vector of revenues that guarantees full service to

all the members of the grand coalition if, and only if, the dual game of the corresponding cost game has

a large core.

We apply the general results found for cost-revenue games to the study of mcst allocation problems

with revenues. In an mcst allocation problem, a group of customers needs to be connected to a common

information source; the customer needs a physical connection to the source (for instance, the cable for

TV transmission) and this connection may be done either directly, or indirectly through other costumers.
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It turns out that the cheapest way to connect all customers to the source is through a spanning tree that

can be constructed by means of cooperation among the customers. The mcst allocation problem is, then,

how to share the connection costs among the agents. Claus and Kleitman (1973) introduced this problem,

which has been extensively analyzed in the literature. Granot and Huberman (1981) define mcst games

and show that mcst games have a nonempty core. Granot and Huberman (1984) define allocation rules

for mcst allocation problems which lead to elements of the core of the corresponding mcst games and

show that, for some instances, some of these rules lead to the nucleolus of the associated game. Kuipers,

Solymosi and Aarts (2000) provide a method to compute the nucleolus of an mcst game in polynomial

time. For a more extensive overview on the literature of mcst games, we refer to Moretti (2008). When

the revenues obtained by the customers by being connected to the source are taking into account, we

face an mcst allocation problem with revenues. In this paper, we define mcst games with revenues and

we provide an example of an mcst game with revenues where it is profitable that all the members of

the grand coalition connect to the source and whose core is empty. In this example, the connection costs

between two different players can only take one of three values: high, medium, or low cost. We show that

if the connection costs can only take one of two costs (high or low cost), then, the associated mcst game

with revenues always has a nonempty core, of course, under the assumption that it is profitable for the

grand coalition to have all its members connected to the source.

The remainder of the paper is organized as follows. Section 2 provides the basic definitions and

terminology of graph theory and cooperative games used in this paper. In Section 3, we analyze cost-

revenue games. Section 4 analyzes mcst games with revenues. We conclude with some further remarks in

Section 5.

2 Preliminaries

2.1 Graph theory

A graph Γ is a tuple (V,E) in which V is the finite set of nodes and E is the set of edges. A subgraph

(V ′, E′) of Γ is a graph with V ′ ⊂ V and E′ = {{v, w} ∈ E : v, w ∈ V ′}; we denote Γ|V ′ = (V ′, E′).

A path from node v to w, path(v, w), is a sequence of nodes v0, v1, . . . , vp with v0 = v, vp = w and,

for each k ∈ {0, . . . , p − 1}, {vk, vk+1} ∈ E. We denote by V (path(v, w)) the set of nodes of path(v, w)

and by E(path(v, w)) the set of edges of path(v, w). Formally, V (path(v, w)) = {v0, v1, . . . , vp} and

E(path(v, w)) = {{v0, v1}, . . . , {vp−1, vp}}. A path v0, . . . , vp is simple if all nodes are different. A cycle,

κ, is a sequence of nodes v0, v1, . . . , vp with v0 = vp, p ≥ 3, v0, v1, . . . , vp−1 different nodes and, for each

l ∈ {0, . . . , p−1}, {vl, vl+1} ∈ E. We denote by V (κ) the set of nodes of κ and by E(κ) the set of edges of
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κ. Formally, V (κ) = {v0, v1, . . . , vp−1} and E(κ) = {{v0, v1}, . . . , {vp−1, vp}}. Given a graph Γ, we denote

by C(Γ) the set of cycles of Γ.

A subset V ′ of V is called connected if, for every v, w ∈ V ′, there is a path from v to w using only nodes

of V ′; we denote by C(Γ) the set of all connected subsets of V , that is, C(Γ) = {V ′ ⊂ V : V ′ is connected}.

A subset U of V is called maximally connected or component if U is connected and, for any w ∈ V \ U ,

U ∪ {w} is not connected. Given V ′ ⊂ V , we denote by V ′
|Γ the set of components of V ′ with respect to

Γ.

A graph Γ = (V,E) is a forest if it has no cycles and it is a tree if it is a connected forest. A rooted

tree with root v0 ∈ V is a tree where node v0 is singled out.

2.2 Cooperative games

A cooperative (transferable utility) game in characteristic function form is an ordered pair (N, v) where

N is a finite set of players and v : 2N → R is the characteristic function satisfying v(∅) = 0. In general,

v(S) represents the value of coalition S, that is, the joint payoff that this coalition can obtain when its

members decide to cooperate. A cooperative game can reflect costs or rewards. A game reflecting costs

is denoted by a mapping c, while a game reflecting rewards is denoted by a mapping v. The following

properties and definitions refer to rewards.

The central question within a cooperative framework is how to share the revenues that the players

obtain by means of cooperation, that is, how to share the value of the grand coalition, v(N), among the

players. One of the most studied solution concepts in cooperative game theory is the core of a game, first

introduced in Gillies (1953). The core of a game (N, v), Core(v), is the set of efficient allocations of v(N)

(or in other words, exactly v(N) is shared among the players) that are coalitionally rational (that is, to

which no coalition can reasonably object). Formally,1

Core(v) = {x ∈ R
N : x(N) = v(N), x(S) ≥ v(S) for all S ⊂ N}.

The upper core of a game (N, v), U(v), is the set of not necessarily efficient allocations that are coalitionally

rational. Formally,

U(v) = {x ∈ R
N : x(S) ≥ v(S) for all S ⊂ N}.

Largeness of the core was first introduced in Sharkey (1982). The core of (N, v) is said to be large if,

for every x ∈ U(v), there is a y ∈ Core(v) with yi ≤ xi for each i ∈ N . The class of games with a large

core has been characterized in Estévez-Fernández (2012) by means of minimal cover inequalities. Given

a finite set N , a collection C ⊂ 2N \ {∅} is called a minimal cover of N if C 6= {N} and the following two

conditions are satisfied:
1Here and further, for any vector x ∈ R

N , we denote x(S) :=
∑

i∈S xi.
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(i) ∪S∈CS = N ;

(ii) ∪S∈C \{S′}S 6= N for every S′ ∈ C.

By condition (i), it follows that C covers N ; by condition (ii), we have that no element of C is superfluous.

We denote by MC(N) the set of minimal covers of N . Let P(N) denote the set of partitions of N . Note

that P(N) \ {{N}} ⊂ MC(N).

Given a finite set N and C ∈ MC(N), for every i ∈ N , we denote by ξ(C, i) the number of times that

i is “extra covered” in C; formally, ξ(C, i) = |{S ∈ C : i ∈ S}|−1. We denote by E(C) the set of elements

of N that are “extra covered” by C; formally, E(C) = {i ∈ N : ξ(C, i) > 0}.

Given C ∈ MC(N) with E(C) 6= ∅, a vector µ ∈ R
2E(C)\{∅}
+ is said to be a vector of minimal cover

balanced weights (mc-balanced vector) for C if

∑

S∈2E(C)\{∅}

µSe
S =

∑

i∈E(C)

ξ(C, i)e{i}. (2.1)

with eR ∈ R
N defined as eRi = 1 if i ∈ R and eRi = 0 if i 6∈ R for every R ∈ 2N \ {∅}. We denote by M(C)

the set of mc-balanced vectors for C. Trivially, M(C) 6= ∅ if E(C) 6= ∅. It follows that

∑

S∈C

eS = eN +
∑

S∈2E(C)\{∅}

µSe
S (2.2)

for every µ ∈ M(C). Note that if E(C) = ∅, then, C is a non-trivial partition of N and
∑

S∈C e
S = eN .

Given a game (N, v) and a minimal cover C ∈ MC(N), the minimal cover inequality associated with C is

∑

S∈C

v(S) ≤ v(N) + max
µ∈M(C)

{

∑

S∈2E(C)\{∅}

µSv(S)
}

. (2.3)

Theorem 2.1 (Estévez-Fernández (2012)). A game (N, v) has a large core if, and only if, all minimal

cover inequalities are satisfied.

Let (N, v) be a game, a coalition S ⊂ N is called essential if, for every non-trivial partition 〈S1, . . . , St〉

of S, v(S) >
∑t

l=1 v(Sl). We denote by Ess(v) the set of essential coalitions of (N, v). Notice that only

essential coalitions are needed for the description of both the core and the upper core of a game. Therefore,

following the comments in the Final Remarks of Estévez-Fernández (2012), we can rewrite Theorem 2.1

as follows:

A game (N, v) has a large core if, and only if,

∑

S∈C

v(S) ≤ v(N) + max
µ∈M(C)

{

∑

S∈2E(C)\{∅}

µSv(S)
}

for every C ∈ MC(N) such that C ⊂ Ess(v).
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A game (N, v) is said to be exact (Schmeidler 1972) if, for every S ⊂ N , there exists x ∈ Core(v) such

that x(S) = v(S).

Given a forest Γ = (N,E), the game (N, v) is said to be forest-essential with respect to2 Γ if

v(N) = max〈S1,...,St〉∈P(N){
∑t

l=1 v(Sl)} and all essential coalitions are connected with respect to Γ,

that is, Ess(v) ⊂ C(Γ). If Γ is a tree, we say that (N, v) is tree-essential with respect to Γ.

Let (N, c) be a cost game. The anti core of (N, c), ACore(c), is the set of efficient allocations of c(N)

to which no coalition can reasonably object. Formally,

ACore(c) = {x ∈ R
N : x(N) = c(N), x(S) ≤ c(S) for all S ⊂ N}.

The dual game of (N, c), (N, c∗), is defined, for every S ⊂ N , by

c∗(S) = c(N)− c(N \ S).

It is easily seen that ACore(c) = Core(c∗).

3 Cost-revenue games

In this section, we analyze situations in which a group of agents cooperate in order to obtain a higher

joint revenue. Each time a coalition decides to cooperate, an additive reward is obtained and a (possibly

nonadditive) cost is generated. The problem at hand is how to share the net revenue that is obtained

by the grand coalition among the agents. We define cost-revenue games and concentrate on the study of

their cores. It turns out that a cost-revenue game has a nonempty core for any vector of revenues that

provides maximal cooperation if, and only if, the dual game of the cost game has a large core.

Let (N, c) be a cost game. Consider the case in which, next to the costs that a coalition must confront,

the coalition also obtains revenues when it decides to cooperate. Let b ∈ R
N
+ be the vector of revenues,

where bi is the revenue that player i generates if i gets the service under consideration. Then, the total

revenue that a coalition S ⊂ N can obtain by cooperation is

πb(S) = b(S)− c(S).

Notice that, due to the revenue structure of the game, it may be more profitable for coalition S not to

form as a whole. Given a cost game (N, c) and a vector of revenues b ∈ R
N
+ , we define the cost-revenue

game, (N, vb), for every S ⊂ N , by

vb(S) = max
R⊂S

{πb(R)}.

2In fact, a forest-essential game with respect to Γ is a game with the total dependency property (see Kuipers, Solymosi

and Aarts (2000)) and where the grand coalition is stable (see Derks and Kuipers (1997)).
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The following example illustrates the computation of cost-revenues games and shows that full parti-

cipation of the grand coalition is relevant in order to have nonemptiness of the core of the corresponding

cost-revenue game.

Example 3.1. Consider the six players cost game (N, c) with characteristic function defined as follows:

if |S| = 1, c(S) =







2 if S ⊂ {1, 2, 3},

1 otherwise;

if |S| = 2, c(S) =



















4 if S ⊂ {1, 2, 3},

3 if S ∈ {{1, 6}, {2, 5}, {3, 4}},

2 otherwise;

if |S| = 3, c(S) =



















6 if S = {1, 2, 3},

4 if S ∈ {{1, 2, 5}, {1, 2, 6}, {1, 3, 4}, {1, 3, 6}, {2, 3, 4}, {2, 3, 5}},

3 otherwise;

if |S| = 4, c(S) =







5 if S ∈ {{1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 3, 6}},

4 otherwise;

if |S| = 5, c(S) = 5;

if S = N , c(S) = 6.

Let b = (2, 2, 2, 0, 0, 0). The cost-revenue game is, then,

vb(S) =







1 if {1, 2, 4} ⊂ S, or {1, 3, 5} ⊂ S, or {2, 3, 6} ⊂ S,

0 otherwise.

Note that vb(N) = 1 > 0 = b(N) − c(N). Below, we explain how to compute the value of coalition

{1, 2, 4}.

vb({1, 2, 4}) = max{πb({∅}), πb({1}), πb({2}), πb({4}), πb({1, 2}), πb({1, 4}), πb({2, 4}), πb({1, 2, 4})}

= max{0, 2− 2, 2− 2, 0− 1, 4− 4, 2− 2, 2− 2, 4− 3} = max{0, 0, 0,−1, 0, 0, 0, 1}= 1.

Note that (N, c) has a nonempty anti core since, for instance, (1, 1, 1, 1, 1, 1) ∈ ACore(c). However, (N, vb)

has an empty core. To show this, suppose that x ∈ Core(vb), then, 1 ≤ x1 + x2 + x4, 1 ≤ x1 + x3 + x5,

1 ≤ x2 + x3 + x6, 0 ≤ x4 + x5 + x6. By adding all these equations, we obtain 3 ≤ 2x(N) = 2vb(N) = 2,

establishing a contradiction; then, Core(vb) = ∅. Here, the first equality follows from x ∈ Core(vb). 3

As we have seen in the example above, when no all members of the grand coalition get the service

that generates the revenues, the core of the cost-revenue game can be empty. For that reason, we assume
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from now on that it is profitable to form the grand coalition, that is,

vb(N) = πb(N) = b(N)− c(N). (3.1)

Taking into account that πb(N) = maxR⊂N{b(R)− c(R)}, it follows that Assumption (3.1) is equivalent

to

b(S) ≥ c∗(S) for every S ⊂ N. (3.2)

Assumption (3.1) may seem somehow restrictive. In fact, Equation (3.1) ensures that the grand

coalition will effectively form without leaving any player behind. The following example shows that

nonemptyness of the anti core of the cost game is not sufficient to have nonemptyness of the core of the

corresponding cost-revenue game, even when the cost game is exact.3 Therefore, revenues have a real

impact in the structure of the core of cost-revenue games.

Example 3.2. Consider the five players exact cost game (N, c) with4 ACore(c) = conv{(0, 0, 1, 2, 0),

(1, 1, 0, 0, 1)}, and let b = (1, 1, 1, 1, 0). In Table 1, we provide the coalitional values of (N, c), (N, c∗),

(N, b) and (N, vb).

S {1} {2} {3} {4} {5} {1, 2} {1, 3} {1, 4} {1, 5} {2, 3} {2, 4} {2, 5} {3, 4} {3, 5} {4, 5}

c(S) 1 1 1 2 1 2 1 2 2 1 2 2 3 1 2

c∗(S) 0 0 0 0 0 0 1 1 0 1 1 0 0 1 1

b(S) 1 1 1 1 0 2 2 2 1 2 2 1 2 1 1

vb(S) 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0

S {1, 2, 3} {1, 2, 4} {1, 2, 5} {1, 3, 4} {1, 3, 5} {1, 4, 5} {2, 3, 4} {2, 3, 5} {2, 4, 5} {3, 4, 5}

c(S) 2 2 3 3 2 2 3 2 2 3

c∗(S) 1 2 0 1 1 2 1 1 2 1

b(S) 3 3 2 3 2 2 3 2 2 2

vb(S) 1 1 0 1 1 0 1 1 0 0

S {1, 2, 3, 4} {1, 2, 3, 5} {1, 2, 4, 5} {1, 3, 4, 5} {2, 3, 4, 5} N

c(S) 3 3 3 3 3 3

c∗(S) 2 1 2 2 2 3

b(S) 4 3 3 3 3 4

vb(S) 1 1 1 1 1 1

Table 1: Coalitional values of the cost game, dual game, additive revenues, and cost-revenue game in

Example 3.2.

Note that b(S) ≥ c∗(S) for every S ⊂ N . However, (N, vb) has an empty core. To show this, suppose

that x ∈ Core(vb), then, 1 ≤ x1+x2+x3+x4, 1 ≤ x1+x2+x3+x5, 1 ≤ x1+x2+x4+x5, 1 ≤ x1+x3+x4+x5,

3Similarly as in (reward) games, a cost game is exact if, for every S ⊂ N , there is an x ∈ ACore(c) such that x(S) = c(S).
4By conv we refer to the convex hull of the corresponding vectors.
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1 ≤ x2 + x3 + x4 + x5. By adding all these equations, we obtain 5 ≤ 4x(N) = 4vb(N) = 4, establishing a

contradiction; then, Core(vb) = ∅. Here, the first equality follows from x ∈ Core(vb). 3

The first result of this section states that if the core of a cost-revenue game is nonempty, then, its

core can be expressed in terms of the vector of revenues and the anti core of the cost game.

Lemma 3.1. Let (N, c) be a cost game, let b ∈ R
N
+ be a vector of revenues satisfying Assumption (3.1),

and let (N, vb) be the corresponding cost-revenue game. Then,

Core(vb) = {b− y : y ∈ ACore(c) with y ≤ b}.

Proof: We first show “⊂”. If Core(vb) = ∅, we are done. Let x ∈ Core(vb) and let y = b− x, we have to

show that (i) y ∈ ACore(c) and (ii) y ≤ b.

(i) Let S ⊂ N , then,

b(S)− c(S) ≤ max
R⊂S

{b(R)− c(R)} = vb(S) ≤ x(S),

where the last inequality follows because x ∈ Core(vb). Then,

y(S) = b(S)− x(S) ≤ c(S). (3.3)

Besides,

b(N)− c(N) = vb(N) = x(N),

where the first equality follows by Assumption (3.1) and the second one because x ∈ Core(vb).

Then,

y(N) = b(N)− x(N) = c(N). (3.4)

By Equations (3.3) and (3.4), we have that y ∈ ACore(c).

(ii) Since x ∈ Core(vb), it follows that, for every i ∈ N ,

xi ≥ vb({i}) ≥ 0

and, therefore, yi = bi − xi ≤ bi for every i ∈ N .

Next, we show “⊃”. If there exists no y ∈ ACore(c) satisfying y ≤ b, then, we are done. Let x =

b− y with y ∈ ACore(c) and y ≤ b, we have that

x(N) = b(N)− y(N) = b(N)− c(N) = vb(N), (3.5)

9



where the second equality follows because y ∈ ACore(c) and the third one is a direct consequence of

Assumption (3.1). Moreover, for every S ⊂ N , let RS ⊂ S be such that vb(S) = πb(R
S) = b(RS)− c(RS).

We have that

x(S) ≥ x(RS) = b(RS)− y(RS) ≥ b(RS)− c(RS) = vb(S), (3.6)

where the first inequality is a direct consequence of x ≥ 0 since b ≥ y and the fact that RS ⊂ S, and the

second inequality follows since y ∈ ACore(c). By Equations (3.5) and (3.6), we have that x ∈ Core(vb). 2

The following result characterizes the set of cost games in which, for any vector of revenues satisfying

Assumption (3.1), it follows that the corresponding cost-revenue game has a nonempty core.

Theorem 3.2. Let (N, c) be a cost game. Then, (N, vb) has a nonempty core for any b ∈ R
N
+ satisfying

Assumption (3.1) if, and only if, (N, c∗) has a large core.

Before starting the proof, notice that b ∈ R
N
+ satisfies Assumption (3.1) (or, equivalently, Equa-

tion (3.2): b(S) ≥ c∗(S) for every S ⊂ N) if, and only if, b ∈ U(c∗).

Proof: We first show the “if” part. Let (N, c∗) have a large core. Then, for any b ∈ U(c∗), there is a

yb ∈ Core(c∗) = ACore(c) with b ≥ yb. By Lemma 3.1, it follows that b− yb ∈ Core(vb).

We now show the “only if” part. Let (N, c) be such that (N, vb) has a nonempty core for every b ∈ R
N
+

satisfying Assumption (3.1). Let b ∈ U(c∗) and choose any x ∈ Core(vb). First, we have that b ≥ b − x

since x ≥ 0 by non-negativity of (N, vb); second, b− x ∈ ACore(c) = Core(c∗) by Lemma 3.1. Therefore,

(N, c∗) has a large core. 2

The next example shows that largeness of the core of (N, c∗) and largeness of the anti core 5 of (N, c)

can be unrelated.

Example 3.3. Consider the cost game (N, c) given in Table 2.

S {1} {2} {3} {4} {1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4} {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4} N

c(S) 2 2 1 1 4 2 2 2 2 2 3 3 3 3 4

c∗(S) 1 1 1 1 2 2 2 2 2 0 3 3 2 2 4

Table 2: Coalitional values of the cost game and dual game in Example 3.3.

5We define the lower core of a cost game (N, c), L(c), as the set of non necessarily efficient allocations to which no

coalition can reasonably object. Formally, L(c) = {x ∈ R
N : x(S) ≤ c(S) for all S ⊂ N}. Then, we say that the cost game

(N, c) has a large anti core if, for any x ∈ L(c), there is a y ∈ ACore(c) with xi ≤ yi for each i ∈ N .
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It can be easily seen that Core(c∗) = ACore(c) = {(1, 1, 1, 1)}. Since, for any x ∈ U(c∗), we have that

xi ≥ 1 for every i ∈ N , it follows that the core of (N, c∗) is large. On the other hand, it can be checked

that (1, 1.1, 0.9, 0.9) ∈ L(c), and, therefore, the anticore of (N, c) is not large since 1.1 > 1. 3

4 Minimum cost spanning tree games with revenues

In this section, we study minimum cost spanning tree (mcst) games with revenues. First, we provide an

example of an mcst game with revenues that has an empty core. In this example, the connection cost

between two different villages can only take one of three possible values (low, medium, and high cost).

Therefore, the arising question is whether we can find an mcst game with revenues with an empty core in

which the connection cost between two different villages can only take one of, at most, two possible values

(low and high cost). We call these games 2-mcst games with revenues. Second, we answer this question

by showing that, under Assumption (3.1), every 2-mcst game with revenues has a non-empty core.

LetN = {1, 2, . . . , n} denote the set of villages that have to be connected to a source. LetN0 = N∪{0},

where 0 denotes the source. Let C = (cij) be an N0 × N0-matrix, where cij ≥ 0, for every i, j ∈ N0,

represents the costs to go from village i to village j. Since the cost matrix is nonnegative, it turns out

that the graph that connects all villages to the source with a minimum cost is a tree. Throughout this

article we assume that:

(i) cii = 0 for all i ∈ N0,

(ii) cij = cji for all i, j ∈ N0 (symmetry).

The network (N0, C) is usually represented by the complete graph on N0 with costs cij on the edge

between nodes i and j.

Given a network (N0, C) and a subset S ⊂ N , we denote S0 := S∪{0}. A tree (V,E) is called a spanning

tree of S if V = S0. Let T(S) denote the set of all spanning trees of S and, for Γ = (S0, E) ∈ T(S), let

c(Γ, S) denote the cost associated with the tree, that is,

c(Γ, S) =
∑

{i,j}∈E

cij .

By associating each village in N with a player, an mcst game, (N, c), is defined, for every S ⊂ N , by

c(S) := min
Γ∈T(S)

{c(Γ, S)}.

Next, consider that if village i ∈ N is connected to the source, a revenue bi ≥ 0 is obtained. We

denote an mcst problem with revenues by a tuple (N0, C, b). Associating each village in N with a player,
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we denote by (N, vb) the corresponding mcst game with revenues. Note that, under Assumption (3.1), we

have that vb(N) = b(N)− c(N).

Example 4.1. Consider the mcst problem with revenues represented in Figure 1, where the numbers at

the edges represent the connecting costs and the boldface numbers at the nodes represent the revenues.

1 2

0

3

6 2

14

5

5 10

10 5

10

Figure 1: The mcst problem with revenues in Example 4.1.

The value of coalition {1, 2} is computed as follows:

vb({1, 2}) = max{0, b1 − c({1}), b2 − c({2}), b1 + b2 − c({1, 2})}

= max{0, 6− 5, 2− 10, 6 + 2− 10} = max{0, 1,−8,−2} = 1.

The associated mcst game with revenues is given in Table 3.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N

vb(S) 1 0 4 1 5 4 7

Table 3: Coalitional values of the mcst game with revenues in Example 4.1.

It can be checked that Core(vb) = conv{(3, 0, 4), (1, 2, 4), (1, 0, 6)}. 3

In general, mcst games with revenues satisfying Assumption (3.1) can have an empty core as the

following example illustrates.

Example 4.2. Consider the mcst network (N0, C) with N = {1, 2, 3, 4, 5, 6, 7} and matrix cost defined

as

cij =































0 if i = j,

3 if {i, j} ∈ {{0, 1}, {1, 2}, {1, 3}, {1, 4}, {2, 7}, {3, 6}, {4, 5}},

4 if {i, j} ∈ {{0, 2}, {0, 3}, {0, 4}, {2, 5}, {3, 7}, {4, 6}},

5 otherwise.
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Note that (N, c∗) does not have a large core by considering the minimal cover C = {{1, 2, 4, 5}, {1, 2, 3, 7},

{1, 3, 4, 6}}. It follows from c∗({1, 2, 4, 5}) = c∗({1, 2, 3, 7}) = c∗({1, 3, 4, 6}) = 10, c∗(N) = 21 and

c∗({1, 2, 4, 5}) + c∗({1, 2, 3, 7}) + c∗({1, 3, 4, 6}) = 30 > 21 + 8 = c∗(N) + max
µ∈M(C)

{

∑

S∈2E(C)\{∅}

µSc
∗(S)

}

,

where an optimal solution to the maximization problem above is µ̂ defined as µ̂S = 1 if S ∈ {{1, 2, 3}, {1, 4}}

and µ̂S = 0 otherwise. It can be checked that b = (1, 2, 2, 2, 5, 5, 5) satisfies Assumption (3.1) and

(N, vb) has an empty core since vb({4}) = vb({1, 2}) = vb({1, 3}) = 0, vb({2, 5, 7}) = vb({3, 6, 7}) =

vb({4, 5, 6}) = vb(N) = 1 and, therefore, if x ∈ Core(vb), we have that 0 ≤ x4, 0 ≤ x({1, 2}), 0 ≤ x({1, 3}),

1 ≤ x({2, 5, 7}), 1 ≤ x({3, 6, 7}), 1 ≤ x({4, 5, 6}) and x(N) = 1; then, by adding the inequalities, we ob-

tain 3 ≤ 2x(N) = 2, establishing a contradiction. 3

Note that every connection cost in the mcst network of Example 4.2 can take one of three given values:

3, 4, or 5. Next, we analyze the case in which connection costs between two different villages in an mcst

network can take, at most, two values: low and high cost. It turns out that, under Assumption (3.1), the

corresponding mcst game with revenues always has a non-empty core. From now on, we refer to this type

of mcst network as a 2-mcst network. Formally, (N0, C) is a 2-mcst network if, for every i, j ∈ N0, i 6= j,

cij ∈ {k,K} with 0 ≤ k ≤ K.

Next, we show nonemptiness of the core of 2-mcst games with revenues under Assumption (3.1). For

this, the dual game of a 2-mcst game plays a crucial role. Therefore, we first provide some results on the

dual game of a 2-mcst game. The first result states that the dual game of an mcst game is tree-essential

with respect to any optimal tree Γ̂ for the grand coalition. It is based on results from Kuipers (1994) (see

Theorem 4.4 in Kuipers (1994) and comments below) and the proof is, therefore, omitted.

Theorem 4.1. Let (N0, C) be an mcst network and let (N, c) be the associated mcst game. Let Γ̂ be an

optimal mcst for N . Then, the associated dual game (N, c∗) is forest-essential with respect to Γ̂|N .

Before stating the following result, we need to introduce some extra notation. Given a 2-mcst network

(N0, C), we define the k-graph Γk = (N0, E
k) as

Ek = {{i, j} ⊂ N0 : cij = k}.

Note that if Γk is a forest, then, Ek is contained in the set of edges of every mcst for N . If Γk is not a

forest, for every mcst for N , there exist some edges e1, . . . , et ∈ ∪κ∈C(Γk)E(κ) such that Ek\{e1, . . . , et} is

contained in the set of edges of this mcst for N . Conversely, we can select edges e1, . . . , et ∈ ∪κ∈C(Γk)E(κ)

such that Γ̃ = (N0, E
k \ {e1, . . . , et}) is a forest with |N0|Γ̃| = |N0|Γk |. Then, there exists an mcst for
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N whose set of edges contains Ek \ {e1, . . . , et}. Given a 2-mcst network (N0, C), we define the graph

Φk = (N0, F
k) as

F k =







Ek if Γk is a forest,

Ek \ (∪κ∈C(Γk)E(κ)) if Γk is not a forest.

Note that Φk is a forest.

Next, we describe the set of essential coalitions with respect to (N, c∗). With minor abuse of language,

we write essential coalition when we refer to an essential coalition with respect to (N, c∗). By Theorem 4.1,

all essential coalitions are connected in every mcst for N . Note that, since F k is contained in any mcst

for N , we have that every connected coalition in F k is also connected in any mcst for N . Next, we

analyze those coalitions that are connected in every mcst for N and that have no empty intersection with

∪κ∈C(Γk)V (κ).

Lemma 4.2. Let (N0, C) be a 2-mcst network with cij ∈ {k,K}, 0 ≤ k ≤ K, for every i, j ∈ N0 with

i 6= j, and let S ⊂ N with S ∈ C(Γk). If there exists κ ∈ C(Γk) with 1 < |S ∩ V (κ)| < |V (κ)|, then,

S 6∈ C(Γ̂|N ) for at least one mcst Γ̂ for N .

Proof: Let κ ∈ C(Γk) with 1 < |S ∩ V (κ)| < |V (κ)|. Let i, j ∈ S ∩ V (κ) and let k ∈ V (κ) \ S. Then,

there are two disjoint paths in κ connecting i and j, one of them visiting k. Let the edge e be on the

path that does not visit k. Using Kruskal’s algorithm, we can find an mcst Γ̂ containing all edges of κ

with the exception of e. The only path connecting i and j that uses only edges in E(Γ̂) visits village k.

Therefore, S is not connected in Γ̂. 2

As an immediate consequence of Theorem 4.1 and Lemma 4.2, we have the following result: if an

essential coalition has nonempty intersection with the set of nodes of a cycle of the k-graph, then, the

intersection is either a singleton, or the set of nodes of the cycle.

Corollary 4.3. Let (N0, C) be a 2-mcst network with cij ∈ {k,K}, 0 ≤ k ≤ K, for every i, j ∈ N0

with i 6= j, let (N, c) be the associated 2-mcst game, and let S ∈ Ess(c∗). If there exists κ ∈ C(Γk) with

S ∩ V (κ) 6= ∅, then, either S ∩ V (κ) = V (κ), or S ∩ V (κ) = {i} for some i ∈ S.

Given a 2-mcst network (N0, C) with k-graph Γk and 2-mcst game (N, c), as a result of Corollary 4.3,

we have that if two cycles κ1, κ2 ∈ C(Γk) share two nodes, then, an essential coalition, S, of the dual

game satisfies that either |S ∩ (V (κ1) ∪ V (κ2))| ≤ 1, or V (κ1) ∪ V (κ2) ⊂ S. Following this, we define an

equivalence relation in order to describe the set of essential coalitions of the dual game of a 2-mcst game.

Let Γ = (N0, E) be a graph and let κ1, κ2 ∈ C(Γ). We say that κ1 and κ2 are related, κ1Rκ2, if

|V (κ1) ∩ V (κ2)| ≥ 2. Note that the binary relation R is reflexive and symmetric, but does not need to
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be transitive. Therefore, we consider the transitive closure of R, R+. It follows that R+ is an equivalence

relation. We denote by [κ] the equivalence class of κ ∈ C(Γ) with respect to R+ and by [C(Γ)] the set

of equivalence classes in Γ, that is, [C(Γ)] = {[κ] : κ ∈ C(Γ)}. Given κ ∈ C(Γ), we denote V ([κ]) =

∪κ̃∈[κ]V (κ̃) and E([κ]) = ∪κ̃∈[κ]E(κ̃).

Let (N0, C) be a 2-mcst network. We define E(N0, C) as follows,

E(N0, C) =

{

S ∈ C(Γk) : |S ∩ V ([κ])| ∈ {0, 1, |V ([κ])|} for every [κ] ∈ [C(Γk)]

}

.

The following result is a direct consequence of Theorem 4.1 and Corollary 4.3 and the proof is,

therefore, omitted.

Corollary 4.4. Let (N0, C) be a 2-mcst network with cij ∈ {k,K}, 0 ≤ k ≤ K, for every i, j ∈ N0 with

i 6= j, and let (N, c) be the associated 2-mcst game. Then, Ess(c∗) ⊂ E(N0, C).

The following result states that if two essential coalitions have a nonempty intersection, then, the sum

of their values in the dual of the 2-mcst game equals the sum of the values of their union and intersection

in the dual of the 2-mcst game. Due to the technicality of the proof, this is postponed to the Appendix.

Lemma 4.5. Let (N0, C) be a 2-mcst network with cij ∈ {k,K}, 0 ≤ k ≤ K, for every i, j ∈ N0 with

i 6= j, and let (N, c) be the associated 2-mcst game. Then,

c∗(T1) + c∗(T2) = c∗(T1 ∩ T2) + c∗(T1 ∪ T2)

for every T1, T2 ∈ E(N0, C) with T1 ∩ T2 6= ∅.

Next, we provide de main result of this Section.

Theorem 4.6. Let (N0, C) be a 2-mcst network with cij ∈ {k,K}, 0 ≤ k ≤ K, for every i, j ∈ N0

with i 6= j, and let (N, c) be the associated 2-mcst game. Let b ∈ R
N
+ be a vector of revenues satisfying

Assumption (3.1). Then, (N, vb) has a nonempty core.

Proof: By Theorem 3.2, it suffices to show that (N, c∗) has a large core. By Theorem 2.1, we have to

show that, for all C ∈ MC(N),
∑

T∈C c
∗(T ) ≤ c∗(N) + maxµ∈M(C)

{
∑

T∈2E(C)\{∅} µT c
∗(T )

}

. Note that,

as already mentioned in Section 2, we can restrict our analysis to minimal covers whose elements are

essential coalitions of (N, c∗). Therefore, fix C ∈ MC(N) such that T ∈ Ess(c∗) for every T ∈ C. By

Corollary 4.4, T ∈ E(N0, C) for every T ∈ C. Let C = {T1, . . . , Tl1 , . . . , Tlr−1 , . . . , Tlr} be ordered as

follows: let l0 = 0, then, Tls−1+1 ∩ Tls−1+2 6= ∅, . . . , (∪ls−1
l=ls−1+1Tl) ∩ Tls 6= ∅ for every s ∈ {1, . . . , r} and

(∪ls
l=ls−1+1Tl) ∩ (∪lr

l=ls+1Tl) = ∅ for every s ∈ {1, . . . , r − 1}. Note that {∪l1
l=1Tl, . . . ,∪

lr
l=lr−1+1Tl} is a

partition of N . Then,

lr
∑

l=1

c∗(Tl) =

l1
∑

l=1

c∗(Tl) +

l2
∑

l=l1+1

c∗(Tl) + . . .+

lr
∑

l=lr−1+1

c∗(Tl)
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= c∗(∪l1
l=1Tl) +

l1−1
∑

l=1

c∗((∪l
l̄=1Tl̄) ∩ Tl+1) + . . .+ c∗(∪lr

l=lr−1+1Tl) +

lr−1
∑

l=lr−1+1

c∗((∪l
l̄=lr−1+1Tl̄) ∩ Tl+1)

=

r
∑

s=1

c∗(∪ls
l=ls−1+1Tl) +

r
∑

s=1

ls−1
∑

l=ls−1+1

c∗((∪l
l̄=ls−1+1Tl̄) ∩ Tl+1)

≤ c∗(N) +

r
∑

s=1

ls−1
∑

l=ls−1+1

c∗((∪l
l̄=ls−1+1Tl̄) ∩ Tl+1)

≤ c∗(N) + max
µ∈M(C)

{

∑

T∈2E(C)\{∅}

µT c
∗(T )

}

,

where the second equality is a consequence of successively applying Lemma 4.5; the first inequality fol-

lows because {∪l1
l=1Tl, . . . ,∪

lr
l=lr−1+1Tl} is a partition of N and (N, c∗) is forest-essential with respect to

any mcst Γ for N by Theorem 4.1; finally, the last inequality follows because µ defined as µT = 1 if

T = (∪l
l̄=ls−1+1

Tl̄) ∩ Tl+1 for some s ∈ {1, . . . , r} and l ∈ {ls−1 + 1, . . . , ls − 1} and µT = 0 otherwise, is

an mc-balanced vector for C. 2

To conclude this Section, note that the cost game in Example 3.1 is a 2-mcst game with k = 1,

K = 2, and C defined as cij = 1 if {i, j} ∈ {{0, 4}, {0, 5}, {0, 6}, {1, 4}, {1, 5}, {2, 4}, {2, 6}, {3, 5}, {3, 6}}

and ci,j = 2 otherwise. Therefore, Assumption (3.1) it is, indeed, necessary in Theorem 4.6.

5 Further remarks

Littlechild and Owen (1976) were the first to analyze cost problems arising from a general service facility

by taking into account the profits that the service generates. They restricted their study to the framework

of airport problems, with a more recent follow up by Brânzei et al. (2006). Meertens and Potters (2006)

consider fixed tree games with revenues. In both settings, the underlying cost game is concave6 and,

therefore, its dual game is convex 7 and has a large core (see Sharkey 1982). Estévez-Fernández et al.

(2009) consider routing games with revenues. A routing game is similar to a traveling salesman game (see

Potters et al. 1992), except that a proper coalition cannot choose the order of the visits of the salesman,

but must use the order induced by an optimal order to visit all cities8. Example 5.1 shows that the dual

of a routing game does not always have a large core.

6A cost game (N, c) is concave if, for every i ∈ N and every S ⊂ T ⊂ N \ {i}, c(S ∪ {i}) − c(S) ≥ c(T ∪ {i}) − c(T ).
7A game (N, v) is convex if, for every i ∈ N and every S ⊂ T ⊂ N \ {i}, v(S ∪ {i}) − v(S) ≤ v(T ∪ {i}) − v(T ).
8The cities are usually numbered in such a way that this is the increasing order.

16



Example 5.1. Consider the routing problem with revenues (N0, C, b) with N = {1, 2, 3, 4, 5},





























0 1 2 3 4 5

0 0 2 1 10 2 10

1 2 0 2 12 1 12

2 1 2 0 10 2 11

3 10 12 10 0 2 20

4 2 1 2 2 0 2

5 10 12 11 20 2 0





























= C

b = (10, 10, 10.5, 10, 10), and optimal tour π̂ : 0−1−2−3−4−5−0. In Table 4, we provide the coalitional

values of the routing game (N, cπ̂), the corresponding dual game (N, c∗π̂), (N, b) and (N, vπ̂b).

S {1} {2} {3} {4} {5} {1, 2} {1, 3} {1, 4} {1, 5} {2, 3} {2, 4} {2, 5} {3, 4} {3, 5} {4, 5}

cπ̂(S) 4 2 20 4 20 5 24 5 24 21 5 22 14 40 14

c∗
π̂
(S) 3 0 10 −16 10 4 13 −13 13 13 −16 10 3 20 4

b(S) 10 10 10.5 10 10 20 20.5 20 20 20.5 20 20 20.5 20.5 20

vπ̂b(S) 6 8 0 6 0 15 6 15 6 8 15 8 6.5 0 6

S {1, 2, 3} {1, 2, 4} {1, 2, 5} {1, 3, 4} {1, 3, 5} {1, 4, 5} {2, 3, 4} {2, 3, 5} {2, 4, 5} {3, 4, 5}

cπ̂(S) 24 8 25 18 44 15 15 41 15 24

c∗
π̂
(S) 14 −12 14 6 23 7 4 23 4 23

b(S) 30.5 30 30 30.5 30.5 30 30.5 30.5 30 30.5

vπ̂b(S) 15 22 15 15 6 15 15.5 8 15 6.5

S {1, 2, 3, 4} {1, 2, 3, 5} {1, 2, 4, 5} {1, 3, 4, 5} {2, 3, 4, 5} N

cπ̂(S) 18 44 18 28 25 28

c∗
π̂
(S) 8 24 8 26 24 28

b(S) 40.5 40.5 40 40.5 40.5 50.5

vπ̂b(S) 22.5 15 22 15 15.5 22.5

Table 4: Coalitional values of the routing game, associated dual game, additive revenues, and routing

game with revenues in Example 5.1.

Note that b(S) ≥ c∗(S) for every S ⊂ N . Still, (N, vπ̂b) has an empty core. To show this, suppose that

x ∈ Core(vπ̂b); then, 15 ≤ x({1, 4}), 8 ≤ x2, and 0 ≤ x({3, 5}). By adding all these equations we obtain

23 ≤ x(N) = vπ̂b(N) = 22.5 establishing a contradiction. Therefore, Core(vπ̂b) = ∅.

Hence, to ensure balancedness, Assumption (3.1) is insufficient. Estévez-Fernández et al. (2009) show

that balancedness is guaranteed if in the corresponding traveling salesman problem with revenues, it is

optimal for N to visit all cities and to visit them in increasing order. This boils down to b(S) ≥ c∗tsp(S) for

every S ⊂ N , where (N, ctsp) denotes the traveling salesman game corresponding to distance matrix C.
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In Table 5, we provide the coalitional values of the traveling salesman game (N, ctsp), the corresponding

dual game (N, c∗tsp), and (N, b). Note that it is more profitable to only visit cities {1, 2, 3, 4} than to visit

all cities in N . Besides, note that b is not an element of the upper core of (N, c∗tsp) since b3 = 10.5 < 11 =

c∗tsp({3}) and b5 = 10 < 12 = c∗tsp({5}).

S {1} {2} {3} {4} {5} {1, 2} {1, 3} {1, 4} {1, 5} {2, 3} {2, 4} {2, 5} {3, 4} {3, 5} {4, 5}

ctsp(S) 4 2 20 4 20 5 24 5 24 21 5 22 14 40 14

c∗tsp(S) 3 0 11 −16 12 4 13 −13 13 13 −16 13 3 20 4

b(S) 10 10 10.5 10 10 20 20.5 20 20 20.5 20 20 20.5 20.5 20

b(S) − ctsp(S) 6 8 −9.5 6 −10 15 −3.5 15 −4 −0.5 15 −2 6.5 −19.5 6

S {1, 2, 3} {1, 2, 4} {1, 2, 5} {1, 3, 4} {1, 3, 5} {1, 4, 5} {2, 3, 4} {2, 3, 5} {2, 4, 5} {3, 4, 5}

ctsp(S) 24 8 25 15 44 15 15 41 15 24

c∗tsp(S) 14 −12 14 6 23 7 4 23 4 23

b(S) 30.5 30 30 30.5 30.5 30 30.5 30.5 30 30.5

b(S) − ctsp(S) 6.5 22 5 15.5 −13.5 15 15.5 −10.5 15 6.5

S {1, 2, 3, 4} {1, 2, 3, 5} {1, 2, 4, 5} {1, 3, 4, 5} {2, 3, 4, 5} N

ctsp(S) 16 44 17 28 25 28

c∗tsp(S) 8 24 8 26 24 28

b(S) 40.5 40.5 40 40.5 40.5 50.5

b(S) − ctsp(S) 24.5 −3.5 23 12.5 15.5 22.5

Table 5: Coalitional values of the traveling salesman game, associated dual game, additive revenues, and

net revenues in Example 5.1.

3

Appendix

In this Appendix, we show the proof of Lemma 4.5 in Section 4. Before giving the proof, we provide three

auxiliary lemmas.

Lemma A.1. Let (N0, C) be a 2-mcst network with cij ∈ {k,K}, 0 ≤ k ≤ K, for every i, j ∈ N0 with

i 6= j, and let (N, c) be the corresponding 2-mcst game. Then,

c∗(T ) = |T |k + (k −K)

(

∑

i∈T

(

|
{

j ∈ N0 \ T : {i, j} ∈ F k
}

|+ |
{

[κ] ∈ [C(Γk)] : V ([κ]) ∩ T = {i}
}

|
)

− 1

)

for every T ∈ E(N0, C).
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Proof: By definition of E(N0, C), we have that T ∈ C(Γk) and, therefore, there exists U ∈ N0|Γk with

T ⊂ U . Then,

c∗(T ) = c(N)− c(N \ T )

= k|N | − k
(

|Γk
|N0

| − 1
)

+K
(

|Γk
|N0

| − 1
)

−
(

k|N \ T | − k(|Γk
|(N0\T )| − 1) +K(|Γk

|(N0\T )| − 1)
)

= k|T | − (K − k)
(

|Γk
|(N0\T )| − |Γk

|N0
|
)

= k|T | − (K − k)
(

|Γk
|(U\T )| − 1

)

= k|T |

− (K − k)

(

∑

i∈T

(

|
{

j ∈ U \ T : {i, j} ∈ F k
}

|+ |
{

[κ] ∈ [C(Γk)] : V ([κ]) ∩ T = {i}
}

|

)

− 1

)

= k|T |−

(K − k)

(

∑

i∈T

(

|
{

j ∈ N0 \ T : {i, j} ∈ F k
}

|+ |
{

[κ] ∈ [C(Γk)] : V ([κ]) ∩ T = {i}
}

|

)

− 1

)

,

where the fourth equality is a direct consequence of T ⊂ U with U ∈ N0|Γk ; the fifth equality follows

because the elements of Γk
|(U\T ) are those components that we obtain when the edges between T and

U \ T are broken; the sixth equality is a direct consequence of T ⊂ U and, then, {i, j} ⊂ U for every

{i, j} ∈ Ek with i ∈ T . 2

Lemma A.2. Let (N0, C) be a 2-mcst network with cij ∈ {k,K}, 0 ≤ k ≤ K, for every i, j ∈ N0 with

i 6= j. If T1, T2 ∈ E(N0, C) with T1 ∩ T2 6= ∅. Then,

(i) If |V ([κ]) ∩ T1| = |V ([κ]) ∩ T2| = 1 for some [κ] ∈ [C(Γk)], then, V ([κ]) ∩ T1 = V ([κ]) ∩ T2;

(ii) T1 ∪ T2, T1 ∩ T2 ∈ E(N0, C).

Proof:

(i) On the contrary, suppose that V ([κ]) ∩ T1 = {i1} and V ([κ]) ∩ T2 = {i2} with i1 6= i2. Since

|V ([κ]) ∩ T1| = 1 and |V ([κ]) ∩ T2| = 1, we have that i1 ∈ T1 \ T2 and i2 ∈ T2 \ T1. Note that

V ([κ]) ∈ C(Γk) and, therefore, there exists a path connecting i1 and i2, path(i1, i2), using only

edges in E([κ]).

Let j ∈ T1 ∩ T2; by connectivity of T1, there exists a path, path(i1, j), connecting i1 and j in

Γk using nodes of T1. Note that no edge of path(i1, j) belongs to E([κ]) since |V ([κ]) ∩ T1| = 1.
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Analogously, there exists a path, path(j, i2), connecting j and i2 in Γk using nodes of T2 and such

that, analogously as before, no edge in the path belongs to E([κ]). Therefore, combining path(i1, j)

and path(j, i2), we can construct a path connecting i1 and i2, path(i1, i2)
∗, without using any edge

in E([κ]). Combining the paths path(i1, i2) and path(i1, i2)
∗, there exists a cycle κ̄ ∈ C(Γk) with

i1, i2 ∈ V ([κ̄]) and [κ] 6= [κ̄]. This establishes a contradiction since i1, i2 ∈ V ([κ]) and, therefore,

[κ] = [κ̄].

(ii) First, note that T1 ∪ T2 ∈ C(Γk) since T1, T2 ∈ C(Γk) with T1 ∩ T2 6= ∅. Moreover, for every

[κ] ∈ [C(Γk)], we have that

a. if V ([κ]) ⊂ T1 (analogously, V ([κ]) ⊂ T2), then, V ([κ]) ⊂ T1 ∪ T2;

b. if V ([κ]) ∩ T1 = {i} for some i ∈ T1 and |V ([κ]) ∩ T2| = 1 (analogously, V ([κ]) ∩ T2 = {i}

for some i ∈ T2 and |V ([κ]) ∩ T1| = 1), then, V ([κ]) ∩ T2 = {i} by (i) of this Lemma and

V ([κ]) ∩ (T1 ∪ T2) = {i};

c. if V ([κ]) ∩ T1 = {i} for some i ∈ T1 and V ([κ]) ∩ T2 = ∅ (analogously, V ([κ]) ∩ T2 = {i} for

some i ∈ T2 and V ([κ]) ∩ T1 = ∅), then, V ([κ]) ∩ (T1 ∪ T2) = {i};

d. if V ([κ]) ∩ T1 = ∅ and V ([κ]) ∩ T2 = ∅, then, V ([κ]) ∩ (T1 ∪ T2) = ∅.

Therefore, T1 ∪ T2 ∈ E(N0, C).

Second, note that the intersection of two connected sets is connected and, therefore, T1∩T2 ∈ C(Γk).

Moreover, for every [κ] ∈ [C(Γk)], we have that

e. if V ([κ]) ∩ T1 = ∅ (analogously, V ([κ]) ∩ T2 = ∅), then, V ([κ]) ∩ (T1 ∩ T2) = ∅;

f. if V ([κ]) ∩ T1 = {i} for some i ∈ T1 and |V ([κ]) ∩ T2| = 1 (analogously, V ([κ]) ∩ T2 = {i}

for some i ∈ T2 and |V ([κ]) ∩ T1| = 1), then, V ([κ]) ∩ T2 = {i} by (i) of this Lemma and

V ([κ]) ∩ (T1 ∩ T2) = {i};

g. if V ([κ]) ∩ T1 = {i} for some i ∈ T1 and V ([κ]) ⊂ T2 (analogously, V ([κ]) ∩ T2 = {i} for some

i ∈ T2 and V ([κ]) ⊂ T1), then, V ([κ]) ∩ (T1 ∩ T2) = {i};

h. if V ([κ]) ⊂ T1 and V ([κ]) ⊂ T2, then, V ([κ]) ⊂ T1 ∩ T2.

Therefore, T1 ∩ T2 ∈ E(N0, C). 2

Lemma A.3. Let (N0, C) be a 2-mcst network with cij ∈ {k,K}, 0 ≤ k ≤ K, for every i, j ∈ N0 with

i 6= j, and let T1, T2 ∈ E(N0, C) with T1 ∩ T2 6= ∅. Then,

(i)
∑

i∈T1\T2
|{j ∈ T2 \ T1 : {i, j} ∈ F k}|+

∑

i∈T2\T1
|{j ∈ T1 \ T2 : {i, j} ∈ F k}| = 0;
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(ii)
∑

i∈T1
|{j ∈ N0 \ T1 : {i, j} ∈ F k}|+

∑

i∈T2
|{j ∈ N0 \ T2 : {i, j} ∈ F k}| =

∑

i∈T1∪T2
|{j ∈ N0 \ (T1 ∪ T2) : {i, j} ∈ F k}|+

∑

i∈T1∩T2
|{j ∈ N0 \ (T1 ∩ T2) : {i, j} ∈ F k}|;

(iii)
∑

i∈T1
|
{

[κ] ∈ [C(Γk)] : V ([κ]) ∩ T1 = {i}
}

|+
∑

i∈T2
|
{

[κ] ∈ [C(Γk)] : V ([κ]) ∩ T2 = {i}
}

| =
∑

i∈T1∪T2
|
{

[κ] ∈ [C(Γk)] : V ([κ]) ∩ (T1 ∪ T2) = {i}
}

|

+
∑

i∈T1∩T2
|
{

[κ] ∈ [C(Γk)] : V ([κ]) ∩ (T1 ∩ T2) = {i}
}

|.

Proof: First, note that T1 ∪ T2, T1 ∩ T2 ∈ E(N0, C) by Lemma A.2 (ii).

(i) On the contrary, suppose that

∑

i∈T1\T2

|{j ∈ T2 \ T1 : {i, j} ∈ F k}|+
∑

i∈T2\T1

|{j ∈ T1 \ T2 : {i, j} ∈ F k}| 6= 0.

Then, there exist i1 ∈ T1 \ T2 and i2 ∈ T2 \ T1 with {i1, i2} ∈ F k. Note that, by definition of

F k, {i1, i2} 6∈ ∪κ∈C(Γk)E(κ). Let j ∈ T1 ∩ T2; by connectivity of T1, there exists a path, path(i1, j),

connecting i1 and j in Γk using nodes of T1. Analogously, there exists a path, path(j, i2), connecting

j and i2 in Γk using nodes of T2. Therefore, combining path(i1, j) and path(j, i2), we can construct

a path, path(i1, i2), connecting i1 and i2 without using the edge {i1, i2}. As a result, there exists a

cycle κ ∈ C(Γk) with {i1, i2} ∈ E(κ), establishing a contradiction.

(ii)
∑

i∈T1

|{j ∈ N0 \ T1 : {i, j} ∈ F k}|+
∑

i∈T2

|{j ∈ N0 \ T2 : {i, j} ∈ F k}|

=
∑

i∈T1\T2

|{j ∈ N0 \ T1 : {i, j} ∈ F k}|+
∑

i∈T1∩T2

|{j ∈ N0 \ T1 : {i, j} ∈ F k}|

+
∑

i∈T2\T1

|{j ∈ N0 \ T2 : {i, j} ∈ F k}|+
∑

i∈T1∩T2

|{j ∈ N0 \ T2 : {i, j} ∈ F k}|

=
∑

i∈T1\T2

(

|{j ∈ N0 \ (T1 ∪ T2) : {i, j} ∈ F k}|+ |{j ∈ T2 \ T1 : {i, j} ∈ F k}|
)

+
∑

i∈T1∩T2

(

|{j ∈ N0 \ (T1 ∪ T2) : {i, j} ∈ F k}|+ |{j ∈ T2 \ T1 : {i, j} ∈ F k}|
)

+
∑

i∈T2\T1

(

|{j ∈ N0 \ (T1 ∪ T2) : {i, j} ∈ F k}|+ |{j ∈ T1 \ T2 : {i, j} ∈ F k}|
)

+
∑

i∈T1∩T2

(

|{j ∈ N0 \ (T1 ∪ T2) : {i, j} ∈ F k}|+ |{j ∈ T1 \ T2 : {i, j} ∈ F k}|
)

=
∑

i∈T1∪T2

|{j ∈ N0 \ (T1 ∪ T2) : {i, j} ∈ F k}|+
∑

i∈T1\T2

|{j ∈ T2 \ T1 : {i, j} ∈ F k}|

+
∑

i∈T1∩T2

|{j ∈ T2 \ T1 : {i, j} ∈ F k}|+
∑

i∈T2\T1

|{j ∈ T1 \ T2 : {i, j} ∈ F k}|

+
∑

i∈T1∩T2

(

|{j ∈ N0 \ (T1 ∪ T2) : {i, j} ∈ F k}|+ |{j ∈ T1 \ T2 : {i, j} ∈ F k}|
)
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=
∑

i∈T1∪T2

|{j ∈ N0 \ (T1 ∪ T2) : {i, j} ∈ F k}|+
∑

i∈T1∩T2

|{j ∈ T2 \ T1 : {i, j} ∈ F k}|

+
∑

i∈T1∩T2

(

|{j ∈ N0 \ (T1 ∪ T2) : {i, j} ∈ F k}|+ |{j ∈ T1 \ T2 : {i, j} ∈ F k}|
)

=
∑

i∈T1∪T2

|{j ∈ N0 \ (T1 ∪ T2) : {i, j} ∈ F k}|+
∑

i∈T1∩T2

|{j ∈ N0 \ (T1 ∩ T2) : {i, j} ∈ F k}|,

where the first equality follows because T1 = (T1 \ T2) ∪ (T1 ∩ T2) and T2 = (T2 \ T1) ∪ (T1 ∩ T2).

The second equality is a direct consequence of N0 \ T1 = (N0 \ (T1 ∪ T2))∪ (T2 \ T1) and N0 \ T2 =

(N0 \ (T1∪T2))∪ (T1 \T2). The third equality follows since T1∪T2 = (T1 \T2)∪ (T2 \T1)∪ (T1∩T2).

The fourth equality is a directed consequence of (i) of this Lemma. The fifth equality follows because

N0 \ (T1 ∩ T2) = (T2 \ T1) ∪ (N0 \ (T1 ∪ T2)) ∪ (T1 \ T2).

(iii) By definition of E(N0, C), if R ∈ E(N0, C) and [κ] ∈ [C(Γk)] with V ([κ]) ∩ R 6= ∅, then, either

V ([κ]) ∩R = V ([κ]), or V ([κ]) ∩R = {i} for some i ∈ R. As a result, we have that

∑

i∈R

|
{

[κ] ∈ [C(Γk)] : V ([κ]) ∩R = {i}
}

| = |
{

[κ] ∈ [C(Γk)] : |V ([κ]) ∩R| = 1
}

|.

For R ⊂ N , we denote [C(Γk)](R) =
{

[κ] ∈ [C(Γk)] : |V ([κ]) ∩R| = 1
}

. Next, we study the relation

between the sets [C(Γk)](T1) and [C(Γk)](T2) and the sets [C(Γk)](T1 ∪ T2) and [C(Γk)](T1 ∩ T2).

For this, we distinguish several cases:

a. [κ] ∈ [C(Γk)](T1) and [κ] ∈ [C(Γk)](T2). By Lemma A.2 (i), V ([κ]) ∩ T1 = V ([κ]) ∩ T2 = {i}

for some i ∈ T1∩T2 and, then, V ([κ])∩ (T1 ∪T2) = {i} and V ([κ])∩ (T1∩T2) = {i}. Therefore,

[κ] ∈ [C(Γk)](T1 ∪ T2) and [κ] ∈ [C(Γk)](T1 ∩ T2).

b. [κ] ∈ [C(Γk)](T1) and [κ] 6∈ [C(Γk)](T2). In this case, we have to distinguish between two new

cases: V ([κ]) ∩ T2 = ∅ and V ([κ]) ∩ T2 = V ([κ]).

b.1. V ([κ]) ∩ T2 = ∅. In this case, [κ] ∈ [C(Γk)](T1 ∪ T2) and [κ] 6∈ [C(Γk)](T1 ∩ T2).

b.2. V ([κ]) ∩ T2 = V ([κ]). In this case, [κ] 6∈ [C(Γk)](T1 ∪ T2) and [κ] ∈ [C(Γk)](T1 ∩ T2).

c. [κ] 6∈ [C(Γk)](T1) and [κ] ∈ [C(Γk)](T2). Analogously as in case (b), we distinguish between

two new cases: V ([κ]) ∩ T1 = ∅ and V ([κ]) ∩ T1 = V ([κ]).

c.1. V ([κ]) ∩ T1 = ∅. In this case, [κ] ∈ [C(Γk)](T1 ∪ T2) and [κ] 6∈ [C(Γk)](T1 ∩ T2).

c.2. V ([κ]) ∩ T1 = V ([κ]). In this case, [κ] 6∈ [C(Γk)](T1 ∪ T2) and [κ] ∈ [C(Γk)](T1 ∩ T2).

d. [κ] 6∈ [C(Γk)](T1) and [κ] 6∈ [C(Γk)](T2). In this case, [κ] 6∈ [C(Γk)](T1 ∪ T2) and [κ] 6∈

[C(Γk)](T1 ∩ T2).
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Following these cases, we have |[C(Γk)](T1)|+ |[C(Γk)](T2)| = |[C(Γk)](T1∪T2)|+ |[C(Γk)](T1∩T2)|

and, therefore,

∑

i∈T1

|
{

[κ] ∈ [C(Γk)] : V ([κ]) ∩ T1 = {i}
}

|+
∑

i∈T2

|
{

[κ] ∈ [C(Γk)] : V ([κ]) ∩ T2 = {i}
}

|

= |
{

[κ] ∈ [C(Γk)] : |V ([κ]) ∩ T1| = 1
}

|+ |
{

[κ] ∈ [C(Γk)] : |V ([κ]) ∩ T2| = 1
}

|

= |
{

[κ] ∈ [C(Γk)] : |V ([κ]) ∩ (T1 ∪ T2)| = 1
}

|+ |
{

[κ] ∈ [C(Γk)] : |V ([κ]) ∩ (T1 ∩ T2)| = 1
}

|

=
∑

i∈T1∪T2

|
{

[κ] ∈ [C(Γk)] : V ([κ]) ∩ (T1 ∪ T2) = {i}
}

|

+
∑

i∈T1∩T2

|
{

[κ] ∈ [C(Γk)] : V ([κ]) ∩ (T1 ∩ T2) = {i}
}

|.

2

Proof of Lemma 4.5: By Lemma A.2 (ii), we have that T1 ∪ T2, T1 ∩ T2 ∈ E(N0, C). Then,

c∗(T1) + c∗(T2)

= k|T1|

− (K − k)

(

∑

i∈T1

(

|
{

j ∈ N0 \ T1 : {i, j} ∈ F k
}

|+ |
{

[κ] ∈ [C(Γk)] : V ([κ]) ∩ T1 = {i}
}

|

)

− 1

)

+ k|T2|

− (K − k)

(

∑

i∈T2

(

|
{

j ∈ N0 \ T2 : {i, j} ∈ F k
}

|+ |
{

[κ] ∈ [C(Γk)] : V ([κ]) ∩ T2 = {i}
}

|

)

− 1

)

= k(|T1|+ |T2|)

− (K − k)

(

∑

i∈T1

(

|
{

j ∈ N0 \ T1 : {i, j} ∈ F k
}

|+ |
{

[κ] ∈ [C(Γk)] : V ([κ]) ∩ T1 = {i}
}

|

)

− 1

)

− (K − k)

(

∑

i∈T2

(

|
{

j ∈ N0 \ T2 : {i, j} ∈ F k
}

|+ |
{

[κ] ∈ [C(Γk)] : V ([κ]) ∩ T2 = {i}
}

|

)

− 1

)

= k|T1 ∪ T2| − (K − k)

(

∑

i∈T1∪T2

(

|
{

j ∈ N0 \ (T1 ∪ T2) : {i, j} ∈ F k
}

|

+|
{

[κ] ∈ [C(Γk)] : V ([κ]) ∩ (T1 ∪ T2) = {i}
}

|

)

− 1

)

+ k|T1 ∩ T2| − (K − k)

(

∑

i∈T1∩T2

(

|
{

j ∈ N0 \ (T1 ∩ T2) : {i, j} ∈ F k
}

|

+|
{

[κ] ∈ [C(Γk)] : V ([κ]) ∩ (T1 ∩ T2) = {i}
}

|

)

− 1

)

= c∗(T1 ∪ T2) + c∗(T1 ∩ T2),
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where the first and last equalities follow from Lemma A.1 and the third equality is a direct consequence

of Lemma A.3 (ii) and (iii). 2
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Brânzei, R., Iñarra, E., Tijs, S. and Zarzuelo, J. (2006), ‘A simple algorithm for the nucleolus of airport

profit problems’, International Journal of Game Theory 34, 259–272.

Claus, A. and Kleitman, D. J. (1973), ‘Cost-allocation for a spanning tree’, Networks 3, 289–304.

Derks, J. and Kuipers, J. (1997), ‘On the core of routing games’, International Journal of Game Theory

26, 193–205.
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